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1. Introduction

A significant issue in elasticity theory is how to represent the characteristics of materials that could
alter as a result of various activities. For this reason, a number of researchers have put forth
variable-order fractional operators (VOFO), or operators whose order varies over time or in response
to particular state variables. The interest can be traced back to the early work of Samko and
Ross [22, 24], and further advancements in the field of VOFOs were made at the beginning of the
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previous decade [17, 27]. The VOFOs that explicitly depend on a temperature field are modeled as
random noise were suggested [11]. As an alternative to the model [5], Beltempo et al. [4] have
discussed the use of VOFO to handle the aging of materials, such as concrete and other solid materials
and polymers. In order to simulate real-world structures on computers, VOFO has been used to model
the aging of materials and provide relaxation functions that are mathematically consistent and can be
coded finite-element specific algorithms [6, 7]. VOFOs are clearly a special case of ordinary and
fractional differential equations, which are the generalization of these classes when the fractional
order is a constant. In reality, a lot of physics, monetary, and biological processes seem to behave in
fractional orders, which can change over time and/or space [16, 20, 25, 28].

Current investigation has focused on the stabilization and synchronization of two recently suggested
fractional order ( constant fractional power) chaotic maps, the generalized 3D fractional Logistic [23],
Henon and Lozi maps [8, 13, 14], and the 2D fractional Logistic, Henon and Lozi map [2, 12, 21]. In
this effort, we shall consider the VOFOs to generalize the Lozi system (similarly for other maps) to
deliver the variable fractional Lozi map (VFLM) and the variable fractional flow map. The stability
and stabilizing of the system are studied, and some variable fractional order examples are illustrated
in the sequel. Finally, an analysis is presented to study the proposed system involving the equilibrium
points and the set of fixed points.

2. Methods

We have the following concepts:

2.1. The VOFOs

The classic arbitrary integration operator is considered by the integral formula

=℘ϕ(η) =
1

Γ(℘)

∫ η

0
(η − ς)℘−1 ϕ(ς) dς .

For a general function ϕ and 0 < ℘ < 1, the classical arbitrary differentiation is given by the formula

<℘ϕ(η) =
1

Γ(1 − ℘)
d
dη

∫ η

0

ϕ(ς)
(η − ς)℘

dς.

The Caputo arbitrary differential operator of order 0 < ℘ < 1 is formulated by the equation

{℘ϕ(η) =
1

Γ(1 − ℘)

∫ η

0

ϕ′(ς)
(η − ς)℘

dς.

The VOFOs of the above operators are presented in [26]. Let ℘(η) be a continuous function, then the
VOFO for integration is written by the equation

=℘(η)ϕ(η) =
1

Γ(℘(η))

∫ η

0
(η − ς)℘(ς)−1 ϕ(ς) dς .

The classical fractional derivative is formulated by the structure

<℘(η)ϕ(η) =
1

Γ(1 − ℘(η))
d
dη

∫ η

0

ϕ(ς)
(η − ς)℘(ς) dς,
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and for the Caputo operator is given by the formula

{℘(η)ϕ(η) =
1

Γ(1 − ℘(η))

∫ η

0

ϕ′(ς)
(η − ς)℘(ς) dς.

We proceed to introduce the VOFO for discrete formula type Caputo calculus:

Definition 2.1. The VOFO in terms of Caputo calculus is given by [5]:

{℘(η)
ℵ
ϕ(η) = ∆

−(v−℘(η))
ℵ

∆vϕ(η) (2.1)

=
1

Γ(v − ℘(η))

η−(v−℘(η))∑
ς=ℵ

(η − ς − 1)v−℘(η)−1∆vϕ(ς),

where ϕ : Nℵ := {ℵ,ℵ + 1,ℵ + 2, ...} → R, ℘(η) < N, v = 1 + d℘(η)e and η ∈ Nℵ+v−℘(η). Furthermore,
the term η(℘(η)) is given by the fraction

η(℘(η)) =
Γ(η + 1)

Γ(η + 1 − ℘(η))
, ℘(η) > 0.

The corresponding discrete integral equation can be formulated by the sum

ϕ(η) = ϕ0(η) +
1

Γ(℘(η))

η−℘(η)∑
ς=ℵ+v−℘(η)

(η − ς − 1)℘(η)−1ϕ(℘(η) + ς − 1). (2.2)

Note that when ℘(η) is a constant function, we obtain the discrete form in [1].

2.2. The VFLM

By using the VOFOs in the above part, we have the VFLM. Rene Lozi introduced the Lozi chaotic
map in [18] and it is formulated by the structureφ(v + 1) = −α|φ(v)| + ψ(v) + 1

ψ(v + 1) = βφ(v),
(2.3)

where v ∈ N, φ(v) and ψ(v) are the functions and the certain parameters α and β which are in R. It is
discovered that (2.3) contains a chaotic attractor with (α, β) = (1.7, 0.5). In view of Definition 2.1, we
have the following VFLM{℘(η)

ℵ
φ(η) = −α|φ(η − 1 + ℘(η))| + ψ(η − 1 + ℘(η)) + 1 − φ(η − 1 + ℘(η))

{℘(η)
ℵ
ψ(η) = βφ(η − 1 + ℘(η)) − ψ(η − 1 + ℘(η)).

(2.4)

Clearly, when ℘(η) is a constant function, we obtain the system in [15]{℘ℵφ(η) = −α|φ(η − 1 + ℘)| + ψ(η − 1 + ℘) + 1 − φ(η − 1 + ℘)
{℘
ℵ
ψ(η) = βφ(η − 1 + ℘) − ψ(η − 1 + ℘).

(2.5)
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Now the integral difference in the above section implies



φ(η) = φ(ℵ) +
1

Γ(℘(η))
∑η−℘(η)
ς=ℵ+1(η − ς − 1)℘(η)−1

(−α|φ(τ − 1 + ℘(η))| + ψ(η − 1 + ℘(η)) + 1 − φ(η − 1 + ℘(η)))

ψ(η) = ψ(ℵ) +
1

Γ(℘(η))
∑η−℘(η)
ς=ℵ+1(η − ς − 1)℘(η)−1

(βφ(η − 1 + ℘(η)) − ψ(η − 1 + ℘(η))) ,

(2.6)

where

(η − ς − 1)℘ ( η)−1

Γ(℘(η))
=

Γ(η − ς)
Γ(℘(η)) Γ( η − ς − ℘(η) + 1)

indicates the discrete kernel function. Note that when ℘(η) is a constant function, we obtain the system
in [15], as follows:



φ(η) = φ(ℵ) +
1

Γ(℘)
∑η−℘

ς=ℵ+1(η − ς − 1)℘−1

(−α|φ(τ − 1 + ℘)| + ψ(η − 1 + ℘) + 1 − φ(η − 1 + ℘))

ψ(η) = ψ(ℵ) +
1

Γ(℘)
∑η−℘

ς=ℵ+1(η − ς − 1)℘−1

(βφ(η − 1 + ℘) − ψ(η − 1 + ℘))

. (2.7)

For numerical structure, when ℵ = 0, we get (see Figures 1 and 2)



φ(v) = φ(0) +
1

Γ(℘(v))
∑v

j=1

(
Γ(n − j + ℘(v))

Γ(n − j + 1)

)
(−α|φ( j − 1)| + ψ( j − 1) + 1 − φ( j − 1)) ,

ψ(v) = ψ(0) +
1

Γ(℘(v))
∑v

j=1

(
Γ(n − j + ℘(v))

Γ(n − j + 1)

)
(βφ( j − 1) − ψ( j − 1)) ,

v ∈ N, ℘(v) ∈ (0, 1], j ≤ v. (2.8)

Figure 3 shows the solution of the discrete systems, when ℘(v) = 1/v, 0.99/v, 1.1/v, v ∈ N.
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Figure 1. The 3D-plots of VFLM with (α, β) = (1.7, 0.5) for different values functional
fractional order ℘(η) ∈ (0, 1]. From the left ℘(η) = 0.9, ℘(η) = η, ℘(η) = η2 and ℘(η) = η3.

Figure 2. The behavior of the discrete VFLM, when (α, β) = (1.7, 0.5). From the left ℘(v) =

sin(
1

1 + v
), ℘(v) = sin(

1
0.1 + v

), ℘(v) = sin(
1

0.01 + v
) and ℘(v) = sin(

1
0.001 + v

), v ∈ N. The
iteration is running from 1 to 1000.

AIMS Mathematics Volume 8, Issue 1, 733–751.
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Figure 3. The solution of the discrete VFLM, when (α, β) = (1.7, 0.5). The left is the original
system (2.3), ℘(v) = 1/v, ℘(v) = 0.99/v and ℘(v) = 1.1/v, v ∈ N. The iteration runs from 1
to 1000.

3. Stability

In this section, we look into the VFLM’s overall stability.

3.1. Linear system

We begin with the definition below, which can be expanded into the n-dimensional space.

Definition 3.1. Suppose that g(η) = g(η; η0, g0) is an outcome of the following equation

{℘(η)g(η) = G(η, g), η ∈ [η0,∞), (3.1)

such that

• g(η) is defined on the interval [η0,∞);
• the point (η, g(η)) ∈ S, where

S := {(η, g(η)) : η ∈ (s1,∞), ‖g‖ < η0, η > η0}.

Then g is known as a stable outcome if there arises a positive real number w > 0 for all outcomes
g(η) = g(η; η0, g0) ∈ S owing the inequality

‖g1 − g0‖ < w;

and for a given number ε > 0 there occurs 0 < $ ≤ w with

‖g1 − g0‖ < $⇒

AIMS Mathematics Volume 8, Issue 1, 733–751.
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‖g(η; η0, g0) − g(η; η0, g1)‖ < ε, η ∈ [η0,∞).

Moreover, if
lim
η→∞
‖g(η; η0, g0) − g(η; η0, g1)‖ = 0

then the solution g is asymptotically stable.

The following are the consequences:

Theorem 3.2. Consider the linear system

{℘(η)
(
φ(η)
ψ(η)

)
= Ξ2×2

(
φ(η)
ψ(η)

)
. (3.2)

Then all its outcomes are stable if and only if they are bounded.
Moreover, if the characteristic polynomial corresponds to Ξ is stable then the outcomes are

asymptotically stable.

Proof. Via creating a matrix-valued function with two variables, Υ, as follows:

Υ(η, η0) = Id + =℘Ξ(η) + =℘Ξ(η)=℘Ξ(δ1) + ... + =℘Ξ(η)=℘Ξ(δ1)...=℘Ξ(δn−1) + ...,

such that Id presents the identity matrix. In view of =℘, we conclude that

Υ(η0, η0) = Id.

Now, let the outcomes of system (3.2) be bounded. As a consequence, there occurs a fixed number
κ > 0 satisfying the inequality ‖Υ‖ < κ, where ‖.‖ represents the max norm. This implies that

‖φ(η) − φ0(η)‖ <
ε

2κ
, ‖ψ(η) − ψ0(η)‖ <

ε

2κ
, ε > 0.

Consequently, we obtain

‖φ(η; η0, φ0) − φ(η; η0, χ1)‖ = ‖Υ(η, η0)(φ0 − φ1)‖ <
κε

2κ
=
ε

2
.

Similarly, we have

‖ψ(η; η0, ψ0) − ψ(η; η0, φ1)‖ = ‖Υ(x, x0)(ψ0 − ψ1)‖ <
κε

2κ
=
ε

2
.

Let R = (φ, ψ)t, then

‖R(η) − R0(η)‖ ≤ ‖Υ(η, η0) (R(η) − R0(η)) ‖
≤ κ‖R(η) − R0(η)‖

< κ(
ε

2κ
+
ε

2κ
) = ε.

Thus, all the solutions of system (3.1) are stable.

AIMS Mathematics Volume 8, Issue 1, 733–751.



740

Contrariwise, the stability of the outcomes, including the zero solution yields that for a positive
number ε > 0 there is a positive constant υ satisfying the inequality

‖R(η)‖ < υ⇒ ‖Υ(η)R(η)‖ < ε.

In particular,
‖φ(η)‖ = ‖φ(η; η0, φ0)‖ < ε/2

and
‖ψ(η)‖ = ‖ψ(η; η0, ψ0)‖ < ε/2.

Which leads to all solutions are bounded.
Now, since the characteristic polynomial corresponding to Ξ is stable then the outcomes are

asymptotically stable, because

‖φ(η; η0, φ0) − φ(η; η0, φ1)‖ ≤ κ exp
(
Ξ(η − η0)℘(η)

℘(η)

)
‖φ1 − φ0‖

≤ κ exp(−ε1
η℘(η)

℘(η)
), 0 < ε1 < ε

= 0, η→ ∞, ℘(η) ∈ (0, 1].

Similarly, for ψ, we have

‖ψ(η; η0, ψ0) − ψ(η; η0, ψ1)‖ ≤ c exp
(
Ξ(η − η0)℘(η)

(℘(η))

)
‖ψ1 − ψ0‖

≤ κ exp(−ε1
η℘(η)

℘(η)
), 0 < ε1 < ε

= 0, x→ ∞, ℘(η) ∈ (0, 1],

which implies the asymptotically stable outcomes. �

Corollary 3.3. Consider the sup norm ‖Ξ‖ < 1 and all its eigenvalues are in the interval [0,1]. Then
system (3.2) is asymptotically stable if and only if its outcomes are bounded.

Proof. If ‖Ξ‖ < 1 and all its eigenvalues are in the interval [0, 1], then it is an invertible positive
contraction [19]. Then Ξ−1

2×2 − Id is positive semi-definite, with Det(Ξ2×2) > 0 (see the proof of
Proposition 3.5 [9]). This suggests that the Ξ characteristic polynomial is real stable. We have the
solutions that are asymptotically stable in light of Theorem 3.2. �

Non-homogeneous case is given in the next outcome.

Theorem 3.4. All of the continuous non-homogeneous system solutions that match Eq (3.2)

{℘(η)
(
φ(η)
ψ(η)

)
= Ξ2×2

(
φ(η)
ψ(η)

)
+

(
χ1(η)
χ2(η)

)
(3.3)

are stable if and only if they are bounded and

‖X‖ < ϑ, ϑ ∈ (0,∞), X = (χ1, χ2)t.

AIMS Mathematics Volume 8, Issue 1, 733–751.
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The solutions are additionally asymptotically stable if the characteristic polynomial Ξ is stable
satisfying ‖Ξ‖ < κ and

κ <
e
ϑ
, ϑ > 0, ‖Ξ‖ ≤ κ.

Proof. Let ‖X(η)‖ < ϑ, ϑ > 0. The assumption of the theorem implies

‖φ(η)‖ ≤ κ exp
(
κϑ
η℘(η)

℘(η)

)
‖φ0‖

≤ κ exp
(
(κϑ − e)

η℘(η)

℘(η)

)
‖φ0‖

= 0, κϑ − e < 0, ℘(η) ∈ (0, 1], η→ ∞.

This proves the result. �

An application of Theorem 3.4, is in the following outcome

Corollary 3.5. Assume that the sup norm ‖Ξ‖ < 1 and all its eigenvalues are in the interval [0, 1] and
‖X‖ < ϑ, ϑ > 0. Consequently, system (3.3) admits asymptotically stable solutions whenever

κ <
e
ϑ
, ϑ > 0, ‖Ξ‖ ≤ κ.

3.2. Stability of VFLM

In this part, we discuss the stability of VFLM (continuous case) using the above results. We deliver
the sufficient condition on the coefficients of the system in the following result:

Theorem 3.6. Consider the continuous system VFLM{℘(η)φ(η) = −α|φ(η)| + ψ(η) + 1
{℘(η)ψ(η) = βφ(η), ℘(η) ∈ (0, 1].

(3.4)

If the following inequalities are satisfied

•
e − 1

2
< α < e − 1

• 0 < β < −α + e − 1
• α + β + 1 < κ <

e
ϑ

• 1 < ϑ < e/κ,

then system (3.4) is asymptotically stable.

Proof. In matrix form, the system (3.3) becomes

{℘(η)
(
φ(η)
ψ(η)

)
=

(
−α 1
β 0

) (
φ(η)
ψ(η)

)
+

(
1
0

)
. (3.5)

The characteristic polynomial takes the formula

−β + αη + η2 = 0,

AIMS Mathematics Volume 8, Issue 1, 733–751.
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with the two differences roots
r1 =

1
2

(
−

√
α2 + 4β − α

)
and

r2 =
1
2

( √
α2 + 4β − α

)
.

By letting
√
α2 + 4β ≥ 0, we have r1 < 0 providing α > 0. Moreover, we have

‖

(
−α 1
β 0

)
‖ = α + β + 1 ≤ κ, α + β + 1 < κ <

e
ϑ
.

Hence, the characteristic polynomial is stable. All the conditions of Theorem 3.4 are achieved, then all
the solutions are asymptotically stable. �

Figure 4 shows the dynamic of the characteristic polynomials for different values of α > 0 and
β > 0. Moreover, we have the following generalization result, with a proof similar to the one in [10].

Figure 4. The characteristic polynomial with different values of α and β.

Theorem 3.7. Consider the linear fractional-order discrete-time system, as follows:

{℘(η)
ℵ
X(η) = Πn×nX(η − 1 + ℘(η)), ℘(η) ∈ (0, 1],

where X = (χ1(η), ..., χn(η))t, η ∈ Nℵ+1−℘(η).

Then the zero equilibrium is asymptotically stable if and only if

λ ∈ S ‖℘‖ =
{
ζ : |ζ | <

(
2 cos

(
|arg(ζ)| − π

2 − ‖℘‖

))‖℘‖
, |arg(ζ)| >

π‖℘‖

2

}
,

AIMS Mathematics Volume 8, Issue 1, 733–751.
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for all the eigenvalues λ of Πn×n. Moreover, if all the complex eigenvalues are in the open unit disk

λ ∈ U = {ζ : |ζ | < 1}

where

−

√
22‖℘‖

2
< <(ζ) <

√
22‖℘‖

2
and

−
√

22‖℘‖ −<(ζ)2

2
< =(ζ) <

√
22‖℘‖ −<(ζ)2

2
, 0 < ‖℘‖ < 1;

or all the real eigenvalues in the unit interval [0,1], then the system is stable.

Proof. The first part of the theorem is similar to the proof of Theorem 1.4 [10]. For the second part,
since all the eigenvalues are in the open unit disk, then the characteristic polynomial is stable which
leads to the stability of the system. �

3.3. Nonlinear system

Consider the (2 × 2) VFLM (can be extended into (n × n) fractional system)

{℘(η)
(
φ(η)
ψ(η)

)
= Ξ2×2

(
φ(η)
ψ(η)

)
+

(
h1 (η, φ, ψ)
h2 (η, φ, ψ)

)
, (3.6)

where the continuous function H (η, φ, ψ) = (h1 (η, φ, ψ) , h2 (η, φ, ψ))t achieves the inequality

‖H‖ ≤ µ‖R‖ := ‖(φ, ψ)‖, µ > 0,

uniformly with respect to η.

Theorem 3.8. Assume that Xi’s characteristic polynomial is stable. If

µη‖℘‖

Γ(‖℘‖ + 1)
< 1, µ > 0, η ∈ [0,∞)

then all the solutions of system (3.6) are stable. Moreover, if κµ < e, then the zero solution of
system (3.6) is asymptotically stable.

Proof. In view the variable fractional integral formula, we have

‖R(η)‖ ≤ ‖R0(η)‖ +
1

Γ(℘(η))

∫ η

0
‖(η − ς)℘(η)−1H(ς)‖dς

≤ κ +
µ‖R(η)‖

Γ(‖℘‖ + 1)
η‖℘‖

‖℘‖

which implies that
‖R‖ ≤

κ

1 −
µη‖℘‖

Γ(‖℘‖ + 1)

.

AIMS Mathematics Volume 8, Issue 1, 733–751.
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This yields that the solutions are bounded, then in view of the proof of Theorem 3.2, the solutions are
stable. For the second part, we have

‖φ(η)‖ ≤ κ exp
(
κµ
η‖℘‖

‖℘‖

)
‖φ0‖

≤ κ exp
(
(κµ − e)

η‖℘‖

‖℘‖

)
‖φ0‖

= 0, κµ − e < 0.

Similarly, for the variable ψ, we have

‖ψ(η)‖ ≤ c exp
(
κµ
η‖℘‖

‖℘‖

)
‖ψ0‖

≤ κ exp
(
(κµ − e)

η‖℘‖

‖℘‖

)
‖ψ0‖

= 0, κµ − e < 0.

Hence, the zero solution is asymptotically stable. �

4. Stabilizing

The exploration of chaotic systems, whether in discrete time or continuously, revolves around the
development of control mechanisms to achieve stability. In this part, we will discuss some potential
nonlinear control rules for stabilizing the aforementioned arbitrary order discrete-time systems.
Stabilization involves applying a novel time-altering parameter, ð(η), to the particular system’s states
and devising an adaptive closed-form method for these parameters to quickly push the system’s states
to zero.

Theorem 4.1. System (2.4) can be controlled by the 1D-control law

ðφ(η) = α|φ(η − 1 + ℘(η))| − ψ(η − 1 + ℘(η)) − 1.

Proof. In the controlled VFLM, which is represented by the symbol, the time-altering control
parameter ðφ(η) is employed.{℘(η)φ(η) = −α|φ(η − 1 + ℘(η))| + ψ(η − 1 + ℘(η)) + 1 − φ(η − 1 + ℘(η)) + ðφ(η)

{℘(η)ψ(η) = βφ(η − 1 + ℘(η)) − ψ(η − 1 + ℘(η)).
(4.1)

The simplified dynamics are obtained by substituting the proposed control law ðφ(x) into (4.1){℘(η)φ(η) = −φ(η − 1 + ℘(η))
{℘(η)ψ(η) = βφ(η − 1 + ℘(η)) − ψ(η − 1 + ℘(η)).

(4.2)

Hence, the set of eigenvalues is bounded where λ1,2 = −1 corresponding to the general eigenvectors

ν = (
1
β
, 0), β , 0. Then in view of Theorem 3.2, the zero solution is asymptotically stable. �

AIMS Mathematics Volume 8, Issue 1, 733–751.
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Theorem 4.2. System (2.4) can be controlled by the 2D-control law

Uφ(η) = α|φ(η − 1 + ℘(η))| − ψ(η − 1 + ℘(η)) − 1 + (1 −
α

4
)φ(η − 1 + ℘(η))

Vψ(η) = −βφ(η − 1 + ℘(η)) +
3
4
ψ(η − 1 + ℘(η)), |α| < 3.

Proof. The time-varying control parameter (Uφ(η),Vψ(η)) is employed in the 2D-controlled VFLM,
which is formulated as follows:{℘(η)φ(η) = −α|φ(η − 1 + ℘(η))| + ψ(η − 1 + ℘(η)) + 1 − φ(η − 1 + ℘(η)) + Uφ(η)

{℘(η)ψ(η) = βφ(η − 1 + σ) − ψ(η − 1 + ℘(η)) + Vψ(η).
(4.3)

The simplified dynamics are obtained by substituting the proposed 2D-control law (Uφ(η),Vψ(η))
into (4.3) 

{℘(η)φ(η) = φ(η) = −
α

4
φ(η − 1 + ℘(η))

{℘(η)ψ(η) = −
1
4
ψ(η − 1 + ℘(η)).

(4.4)

Thus, the set of eigenvalues is bounded, with ‖Ξ‖ < 1, where

λ1 = −1/4, λ2 = −α/4, |α| < 3.

Therefore, the zero solution is asymptotically stable in light of Corollary 3.3. �

Theorem 4.2 is a one-dimensional parametric 2D-control law of the VFLM, which is α. The next
theorem describes the two-dimensional parametric 2D-control law VFLM’s stabilizing parameters, α
and β.

Theorem 4.3. System (2.4) can be controlled by the 2D-control law

Pφ(η) = α|φ(η − 1 + ℘(η))| − ψ(η − 1 + ℘(η)) − 1 + (1 −
α

4
)φ(η − 1 + ℘(η))

Qψ(η) =
3
4
ψ(η − 1 + ℘(η)), |α| < 3.

Proof. The time-altering control parameter (Pφ(η),Qψ(η)) is utilized in the 2D-controlled VFLM,
which is formulated as follows:{℘(η)φ(η) = −α|φ(η − 1 + ℘(η))| + ψ(η − 1 + ℘(η)) + 1 − φ(η − 1 + ℘(η)) + Pφ(η)

{℘(η)ψ(η) = βφ(η − 1 + ℘(η)) − ψ(η − 1 + ℘(η)) + Qψ(x).
(4.5)

The proposed 2D-control formula is substituted to provide the simplified dynamics (Pφ(η),Qψ(η))
into (4.3) 

{℘(η)φ(η) = −
α

4
φ(η − 1 + ℘(η))

{℘(η)ψ(η) = βφ(η − 1 + ℘(η)) −
1
4
ψ(η − 1 + ℘(η)).

(4.6)
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Consequently, the collection of eigenvalues is constrained, with ‖Ξ‖ < 1, where

λ1 = −
1
4
, λ2 = −

α

4
, |α| < 3, β , 0,

corresponding to the general eigenvectors W = (−
α − 1

4β
, 1). Therefore, the zero solution is

asymptotically stable in light of Corollary 3.3. �

5. Analysis of system VFLM (2.4)

System (2.4) can be viewed as two dynamical systems{℘(η)
ℵ
φ(η) = −αφ(η − 1 + ℘(η)) + ψ(η − 1 + ℘(η)) + 1 − φ(η − 1 + ℘(η))

{℘(η)
ℵ
ψ(η) = βφ(η − 1 + ℘(η)) − ψ(η − 1 + ℘(η))

(5.1)

and {℘(η)
ℵ
φ(η) = αφ(η − 1 + ℘(η)) + ψ(η − 1 + ℘(η)) + 1 − φ(η − 1 + ℘(η))

{℘(η)
ℵ
ψ(η) = βφ(η − 1 + ℘(η)) − ψ(η − 1 + ℘(η)).

(5.2)

The solutions of these systems occurred in two different domains.

5.1. System (5.1)

The Jacobian matrix corresponds to the system (5.1) is given in the following structure:

J1 = ℘′(η)
(
−α − 1 1
β −1

)
with its eigenvalues

λ1 = ℘′(η)

−√
α2 + 4β − α − 2

2

 < 0, λ2 = ℘′(η)

 √
α2 + 4β − α − 2

2

 ≥ 0,

satisfying the relation ℘′(η) > 0,
√
α2 + 4β > α + 2. The solution of this inequality is α < −2, β ≥

−α2/4; or α ≥ −2, β > α + 1, providing that ℘(x) ∈ (0, 1] is not a constant function. In addition, the
corresponding eigenvectors are

v1 =

−α +
√
α2 + 4β

2β
, 1

 , v2 =

−α − √
α2 + 4β

2β
, 1

 .
Or, we have the converse case when ℘′(η) is negative:

λ1 = ℘′(x)

−√
α2 + 4β − α − 2

2

 ≥ 0, λ2 = ℘′(η)

 √
α2 + 4β − α − 2

2

 < 0,
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where ℘′(η) < 0,
√
α2 + 4β > α+2. Hence, we have the following domains of solutions (see Figure 5):

[D1]J1 = {(φ, ψ) ∈ R2 : λ ≥ 0}
[D2]J1 = {(φ, ψ) ∈ R2 : λ < 0}.

Figure 5. The plots of the eigenvalues of J1 showing the relation between the values of α and

β when when ℘(η) = 1/η and ℘(η) = sin(1/η) for ℘′(η) = 1/η2 < 0 and ℘′(η) = −
cos(1/η)

η2 <

0 respectively. In addition, ℘(η) = cos(1/η) with ℘′(η) =
sin(1/η)
η2 > 0.

The equilibrium point of system (5.1) is

(φ0, ψ0) =

(
1

α − β + 1
,

−β

−α + β − 1

)
.
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And the fixed point is (
φ f ix, ψ f ix

)
=

(
2

2α − β + 4
,

−β

−2α + β − 4

)
.

5.2. System (5.2)

The Jacobian matrix corresponds to the system (5.2) is, as follows:

J2 = ℘′(η)
(
α − 1 1
β −1

)
with its eigenvalues

λ1 = ℘′(η)

−√
α2 + 4β + α − 2

2

 , λ2 = ℘′(η)

 √
α2 + 4β + α − 2

2

 ,
where α ≥

√
α2 + 4β + 2 satisfying the inequality

0 ≤

−√
α2 + 4β + α − 2

2

 <  √
α2 + 4β + α − 2

2

 .
Thus, the solution is that α > 2, β ≥ −α2/4. If ℘(η) ∈ (0, 1] is not a constant function with a positive
derivative ℘′(η) > 0, then we have λ1 ≥ and λ2 > 0. Hence, we receive a unique domain of definite
solutions

R1 = {(φ, ψ) ∈ R2 : λ1 ≥ 0, λ2 > 0}.

Moreover, if ℘′(η) < 0, we have only one domain for the solutions (see Figure 6)

R2 = {(φ, ψ) ∈ R2 : λ1 ≤ 0, λ2 < 0}.

And the corresponding eigenvectors are

w1 =

−−α +
√
α2 + 4β

2β
, 1

 , w2 =

−−α − √
α2 + 4β

2β
, 1

 .
The equilibrium point of system (5.2) is

(φ0, ψ0) =

(
1

−α − β + 1
,
−β

α + β − 1

)
.

And the fixed point is (
φ f ix, ψ f ix

)
=

(
−2

2α + β − 4
,

−β

2α + β − 4

)
.
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Figure 6. The plots of the eigenvalues of J2 showing the relation between the values of α

and β when ℘(η) = 1/η and ℘(η) = sin(1/η) for ℘′(η) = 1/η2 < 0 and ℘′(η) = −
cos(1/η)

η2 < 0

respectively. In addition, ℘(η) = cos(1/η) with ℘′(η) =
sin(1/η)
η2 > 0.

6. Conclusions

We suggested two distinct systems in this study: The variable fractional Lozi map (VFLM) and the
variable fractional flow map. We looked into a few of these maps’ crucial dynamics. Additionally, we
looked into the prerequisites that the variable fractional dynamic systems must meet to be stable and
asymptotically stable. To obtain a stable and asymptotically stable zero solutions, we therefore imposed
the VFLM with the essential requirements. To stabilize the system, we also suggested combining these
maps with control rules. The 1D and 2D controller rules were taken as givens in this analysis. For
future works, one can extend this analysis into other types of variable fractional calculus such as the
ABC-operator [3].
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