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In this thesis work, decoding algorithms for BCH and LDPC codes used in DVB-S2 

standard are implemented in MATLAB environment. For the decoding of LDPC 

codes, soft decision based belief propagation algorithm is used and for the decoding 

of BCH codes, a new recently developed technique, which is called soft decoding 

based on error magnitudes, is employed. The new approach has lower complexity 

compared to its counterparts and easy to implement in hardware and for this reason it 

can be used in future DVB-S2 standards. Bit error rate performance graphs for the 

decoding algorithms are obtained via computer simulation in MATLAB 

environment.  
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ÖZ 

 

DVB-S2 STANDARDINDAKİ BLOK KODLARININ ETKİN ÇÖZÜMLERİ 

 

KUTUP KODLARININ PERFORMANS ANALİZİ 

 

ATTAR, IBRAHIM 

Yüksek Lisans,  Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç. Dr.  Orhan GAZİ 

 

Mayıs 2015, 39 sayfa 

 

 

Bu tez çalışmasında DVB-S2 standardında bulunan LDPC ve blok kodlarının 

benzetimleri yapılmıştır. BCH kodlarının çözümü için hata genliklerini baz alan son 

zamanlarda geliştirilen bir yöntem denenmiştir. Kullanılan yöntem düşük 

karmaşıklık miktarına sahip olmakta ve donanımsal olarak gerçekleştirilmesi oldukça 

kolaydır. Benzetimi yapılan bu yeni teknik gelecekteki DVB-S standartlarında 

kullanılabilir.  LDPC kodlarının çözümü için yumuşak karar yayılması algoritması 

kullanılmıştır.  Bütün benzetimler MATLB ortamında yapılmış ve bit hata oranı 

performans grafikleri çizilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Coding Theory 

The block diagram of a classical communication system is illustrated in the Fig. 1 

where channel encoder and decoder units are also displayed. The resulting errors in 

the transmitted message of communication over an unreliable channel represent the 

main problem of coding theory. The communications over the noisy channel make 

the coding theory worried about the reliability. Error correcting codes are utilized in 

extent range of communication system. The main concerns of coding theory can be 

summarized as: 

 

1. Construct codes that can correct a maximal number of errors while using a 

minimal amount of redundancy. 

 

2. Construct codes (as above) with efficient encoding and decoding procedures. 

Studying of error control codes is called coding theory [1]. This zone of discrete 

applied mathematics contains study and discovery of several coding schemes that are 

used to correct the errors occurred during data transmission. Error control coding is 

an important part of the overall communication system. Suppose that using an 

infrared connection to ray mp3 files from the computer to the smart phone. The 

transmitted data in this connection are 0's and 1's string. Generally, the smart phone 

receives a 0 when the computer sent a 0. Sometimes, malfunction hardware or 

channel noise causes the sent data 0 will be received as a 1. The challenge is to 

develop methods to overcome these errors which occur over data transmissions. 

Errors control codes are utilized for detecting and correcting errors that happen in the 

data transmissions over noisy channel. 

 



 

 

2 

 

 

1.2 Channel Coding 

In digital communication system, Channel coding is used for protecting the message 

bits from interference and noise to reduce errors bit numbers. Channel coding 

operation is done by adding some selectively parity check bits to the transmitted 

information stream. The extra bits allow the operations of detection and correction of 

error bits in the received bits sequence and reliable data transmission is achieved. 

Protection of the information is the main aim of using channel coding; this is done by 

an expansion in bandwidth or a reduction in data rate. There are two main types of 

channel codes, convolutional codes and block codes [2]. 

 

 

Figure 1: Block Diagram of Digital Communication Systems 

 

1.3 Linear Block Codes 

Block codes act on a block of bits. Block codes are indicated to (n, k) codes. A block 

of k data bits are mapped to a block of n sequence of bits. The amount of redundancy 

added to the information blocks equals to n-k. Using code generator, the code picks k 

data bits and calculates (n-k) parity bits. Generally, block codes are systematic and 

because of that the information bits stay without change attached either to the front 

or to the back with parity bits stream. After that, the receiver makes the decision 

about the received sequence validity. Shannon proved that the codes are existed with 

decoding errors of probability as small as coveted, and high rate of information 

(depends on the channel) [3]. Assuming that information source output is a stream of 

binary bits 0's and 1's. In block codes coding, this data binary stream is divided into 
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message or data blocks of specific and fixed length, every message or data block 

consists of data bits k [4]. There are 2k  distinct messages totally. The block message 

(input message) is transformed into binary n-tuple c with n>k by the encoder. This 

binary n-tuple c is called the codeword of the message block. Thus, there are 2k  

codewords corresponding to the possible messages 2 .k
 2k  codewords is referred to 

block codes. The 2k  codewords must be distinct to make the block code useful. 

Therefore, there is a correspondence one-to-one between the block messages and 

their codewords. With the structure of block codes, the encoding complexity will be 

greatly reduced. 

 

1.4 Additive White Gaussian Noise (AWGN) 

White noise has a flat power spectral density and it is process signal (or random). 

Therefore, at any center frequency within a fixed bandwidth, AWGN is the signal 

which contains equal power. There are many applications and communication 

circuits in a wide band can be tested and measured by this white noise [5]. 

 

The most accepted model of the noise in communications channels is the following 

suppositions 

 Additive noise, i.e. the received signal is the transmitted signal added with 

some noise and the noise is independent statistically from the signal. 

 White noise, i.e. the noise power spectral is flat, therefor, for any non-zero 

time offset autocorrelation of this noise with the time is zero. 

 All the noise samples have Gaussian distributions. 

In communication channels, (AWGN) is random radio statistically noise 

differentiated by a wide frequency range with respect to the signal in a 

communication channels [6]. The channel capacity if AWGN channel is defined as 

2

0

log (1 )
p

C B
N B

   

Where ,C  B are the channel capacity and the analog signal bandwidth respectively, 

0N  is the noise power spectral density (watts/hertz) and p  is the power of the 

received signal. 
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1.5 Belief Propagation 

Belief propagation (BP) is a message passing algorithm proposed by Judea Pearl in 

1982 [7]. Belief propagation (BP) has been applied in a wide variety of problems in 

computer vision and pattern recognition that uses graphical models. Belief 

propagation (BP) method is a comparatively new and powerful approach for 

inference and overcome problems. There are many fields of statistical physics, 

machine learning and error-correcting codes that infer problems. Interestingly, 

several of the previous developed approaches such as the transfer matrix approach 

and turbo codes are actually just dissimilarity of the same belief propagation 

technique. Inference the problem deals usually with many questions as: There is a set 

of variables is given with statistical dependencies, when only the states of a possible 

little group of these variables from data is known, what are their most probable 

states? Also Belief Propagation is a dynamic programming approach to answer 

conditional probability queries in a graphical model. It is a Bayesian procedure 

inherently, conditioned on the observed nodes which computes the marginal 

distribution for each unobserved node. 

Belief propagation works by sending messages along the edges of the graph factor 

[8]. Recall that a variable node i  in a graph factor is associated with a random 

variable ,iX  which can take a value from its state space .iX  A belief of a variable 

node ,i  denoted by  i ib x  represents the likeness of random variable iX  to take 

value  .i ix X  In BP, the beliefs are calculated as a function of messages received 

by the nodes. It turns out that the beliefs are equal to the marginal probabilities for 

tree-like graphs. 

 

1.6 Thesis Outline 

Chapter one is the introduction to the channel coding and communication system 

generally with some explanations. In Chapter-2, the main thesis topic DVB-S2) is 

introduced and its encoder and decoder blocks (LDPC, BCH codes) with their 

encoding and decoding algorithms are explained. 

The proposed soft decoding algorithms are presented in Chapter-3 with numerical 

examples. Finally, Chapter-4 includes Conclusion and Future work. 
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CHAPTER 2 

 

DVB-S2 ENCODING AND DECODING  

 

 

2.1 DVB-S2 Introduction 

Transmitting information from one side to another side with high performance over a 

communication channel using the limited sources efficiently is the main goal of the 

modern communication systems. Twenty first century communication platforms are 

more effective in delivering messages from the sender to the recipient when 

compared to the ancient communication channels. Arguably, they are more effective 

and cost friendly when compared to the ancient communication methods, which were 

not only slow but also ineffective in delivering messages, especially the urgent ones.  

Modern technology has bred digital communication channels that make it possible 

for one to transmit messages via a wireless media and satellite. They have become 

more popular over the recent decades. Notably, these platforms' popularity is 

attributed to the efficiency and privacy provided by mobile networks. Hence, users 

may use these without fear that a third party may access their messages. Moreover, 

modern communication gadgets such as mobile phones and tablets are portable. 

Thus, one is sure to remain connected even in remote areas where communication 

was previously a big issue. Although wireless communication channels have eased 

communication in many ways, it has posed many challenges. Scholars are on the run 

to come up with new ways of handling many of these challenges. Some of these 

technologies include DVB-S2 [9]. The method has become increasingly popular 

considering its ability to transmit messages over many media platforms to its 

subscribers. 

DVB-S2 (2nd Generation Digital Satellite Television Broadcasting) refers to a 

satellite application that came into being back in 2005 [10]. The application meets 

the set ETSI standards. The DVB-S2 standard revolves around three main principles. 

They include a high definition performance capacity, reliability, and wide range of 
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media reception. The principles are in line with the modern source coding methods 

such as MPEG-4 AVC (Advanced Video Coding), and new FEC coding approaches, 

such as LDPC (Low-Density Parity Check) [11], BCH (Bose-Chaudhuri-

Hocquenghem) codes [12]. For FEC, the DVB-S2 standard goes through two main 

stages. They include the inner (LDPC) and the outer coding (BCH) respectively. The 

DVB-S2 standard is more preferred over other channels due to its ability to transmit 

data more effectively when compared to other systems in various generations. Some 

of its advantages over other systems include flawless data, alongside flexibility to the 

receiver. One may acquire a good ration between good performance and complexity 

of DVBS2 through an appropriate modulation and coding of the channels. DVB-S2 

profits from the latest modern evolutions in modulation and channel coding to 

achieve a well-balanced proportion between performance and complexity. The two 

methods are likely to generate around 30% efficiency of DVBS2 when compared to 

that of DVB-S [13] even without changing the environment. The transmitter side of 

the DVB-S2 is depicted in Fig. 2.  

 

BCH Encoder

(Nbch,Kbch)
LDPC Encoder

(Nldpc,Kldpc)

DATA
Bit Inter-

leaver

Bit Mapper,

Qpsk

Modulation

Bit Mapper,

Qpsk

Demodulation

Bit De-inter-

leaver

LDPC Decoder

(Nldpc,Kldpc)
BCH Decoder

(Nbch,Kbch)

DATA

    AWGN

Figure 2: Basic DVB-S2 Block Diagram 

 

2.2 BCH Codes 

The Bose, Chaudhuri, and Hocquenghem (BCH) codes are the largest category of 

powerful error-correction cyclic codes [14]. It is one of the block codes that are the 

generalization of the Hamming codes for multiple-error corrections. The independent 

founders of binary BCH code was Bose and Chaudhuri back in the wake of 1960 



 

 

7 

 

[15]. Initially, the codes were invented back in 1959 by Hocquenghem. They refer to 

big groups of cyclic codes, which contain the binary and non-binary codes. BCH 

(n,k) binary codes can be constructed with any integer positive number 3m   with 

these parameters. 

                           2 1mn             n k mt                 min 2 1d t     

Where ,  t   refer to the errorcorrection capability and the design distance code 

respectively.  

The formula above represents a BCH code with special parameters. It guarantees the 

correction of t errors that occur in the n bit codewords. The generator polynomial of 

the BCH codes ( )g x  is a polynomial in GF(2) for t-error correction capability. It 

has roots 
2 3 2, , ,......, t    ( .  ( ) 0 ,i=1,2,...,2t).ii e g    Assume ( )i x  is the 

minimal polynomial corresponding to
i . The generator polynomial is the least 

common multiple (LCM) of ( )i x , i=1, 2, 2t. Hence, 

 

             1 2 3 2( ) { ( ), ( ), ( ),..., ( )}tg x LCM x x x x                                       (2.1) 

 

Since the minimal polynomials of
2 3 2, , ,......, t     are the same, the expression 

in (2.1) is reduced to  

 

                1 3 5 2 1( ) { ( ), ( ), ( ),..., ( )}tg x LCM x x x x    
 

                                 (2.2)                                              

 

The BCH codes in the above formula are referred to as the primitive, narrow-sense 

BCH codes [16]. Therefore, codeword polynomials becomes as 

1

0 0 1( ) ... n

nc x c c x c x 

     which is a multiples of the generator polynomial 

 g x          . .   ,  i e c x m x g x c x  has 
1 2 2, , ,..., t    which serve as roots. 

Consequently,  

( 1)

0 1 1( ) ... 0i i i n

nc c c c   

     , i=1, 2, 3, 2t or using matrix notation we can 

write 

                                     0 1 2 2[ , , ,..., ][ ] 0tc c c c H                                                 (2.3) 
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2.3 LDPC Codes 

Low-Density Parity-Check (LDPC) code was proposed firstly by Gallagher in his 

Ph.D. thesis in 1960 [11]. After that, LDPC code rediscovered in 1996 by MacKay 

and Neal [20]. Shortly after the re-invention of the Low-Density Parity-Check 

(LDPC), the code has become quite popular in the modern society. The popularity is 

attributed to the fact that Low-Density Parity-Check (LDPC) may perform relatively 

well close to the Shannon limit [3]. Similarly, one may apply a simple algorithmic 

decoding procedure referred to as belief propagation to these codes.  Moreover, they 

show high and good quality output bearing in mind that they are specialized error 

correction codes. 

Low-Density Parity-Check (LDPC) code has a special matrix structure that contains 

an abundance of 0’s and some few 1's. An ( , , )n j k
 Low-Density Parity-Check 

(LDPC) has a block length n . All the columns have a minimal number j  of 1's. On 

the other hand, all the rows have a minimal but fixed number k of 1's. The latter is an 

example of a matrix whose digits does not appear diagonally. 

The design for Low-Density Parity-Check (LDPC) emanates from the parity check 

matrix. Here, the two types of nodes namely; variable and check nodes are joined to 

some points in each other. The distinction between the two nodes allows one to 

compute for parallel codes (i.e. the separation of sets allows parallel decoding 

computations). On the contrary, the decoding procedures for the turbo codes (which 

are the most competitors to LDPC codes) are different [21]. In fact, it is directly 

dependent on the codes in other blocks especially in serial computing. Arguably, 

Low-Density Parity-Check (LDPC) can be represented by a simple graph as 

illustrated by the Tanner’s graph [22]. It helps one to analyze the performance of the 

codes accurately when compared to other methods. Moreover, it is effective when 

one wishes to optimize both the regular and irregular construction designs. Low

Density ParityCheck (LDPC) codes are used in Digital Video BroadcastSatellite

Second Generation (DVB-S2) standard. In fact, for the very first time, Low

Density Parity-Check (LDPC) codes are used for standard broadcasting which came 

into being back in 2003 [23].  

Tanner graph representing LowDensity ParityCheck (LDPC) is generally 

bipartite because it has many variable and constraint nodes on either of the sides [23] 
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[24].  Each of the variable nodes corresponds directly to a bit. Moreover, each of the 

constraint nodes is directly correspondent to the parity check when defining an 

appropriate codeword. A parity-check constraint is only applicable to a particular 

codeword sub-set that takes part in the constraint. The parity check may only be 

completed effectively if the XOR of the bits that take part is 0, 1 and they equal the 

sum of modulo 2. 

The graph’s edges have variable nodes attached to the constraint nodes to indicate 

that all the bits related to the variable will take part in the parity check constraints. In 

this case, a codeword refers to all the bit sequences related to the variable nodes on 

condition such that all the parity checks have been conducted successfully. The 

representation of a Low-Density Parity-Check (LDPC) in a Tanner graph reflects the 

representation of the code’s parity check matrix. The code is represented in this latter 

description as a sequence of bits 1 2, ,..., )( nx x xx   to a linear algebraic simple 

equation. There are two elements of a parity-check matrix. They are 0s and 1s, 

complete with modulo 2 arithmetic. It entails multiplying x by a row of H.  In 

addition, it involves taking the XOR of the bits in x to correspond the 1's in the row 

of H. The relationship between the parity-check matrix representations with the 

Tanner graph is clear. Its illustration in the Tanner graph depends on the structure of 

the bits involved. The Low-Density Parity-Check (LDPC) as illustrated by Gallager 

can be decoded using flipping and iterative decoding algorithms [13]. 

 

2.4 DVB-S2 Encoder 

The DVB-S2 FEC part consists of two block codes concatenated in serial manner; 

these serially concatenated codes are the BCH and LDPC block codes. We can 

denote the BCH codes as outer codes and the Low-Density Parity-Check (LDPC) as 

the inner codes. The encoded frame structure for the concatenated system is given in 

Fig. 3. Low-Density Parity-Check (LDPC) starts the decoding process earlier than 

BCH.  The signal to noise may affect the decoding procedure if it is relatively high. 

Hence, BCH offers a state of the art protection against many residual errors that may 

alter the performance and cases of degradation. Therefore, it enhances the strength of 

FEC if the SNR is higher. The Low-Density Parity-Check (LDPC) is deemed as 

being a super-channel if the Low-Density Parity-Check (LDPC) encoder and decoder 
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are fully operational. Such an intuitive representation gives the two codes a 

competitive advantage over others. Choosing the concatenation carefully may 

enhance the performance of FEC decoding.  

 

DATA BCHFEC LDPCFEC

(Nldpc)

Kbch Nbch - Kbch Nldpc - Kldpc

Nbch - Kldpc

Figure 3: FEC Frame Structure of DVB-S2 

Table 1 shows short FEC-FRAME ( ldpcn = 16200 bits) parameters, and Table 2 lists 

some of the coding parameters of normal FEC-FRAME ( ldpcn = 64800 bits), 

similarly. 

 

Table 1: Coding Parameters of Short FECFRAME ( ldpcn = 16200 bits) [13] 

LDPC 

Coded 

Block nldpc 

Effective 

LDPC 

Rate 

Kldpc/16 

200 

BCH 

T-Error 

Correction 

BCH Coded 

Block Nbch  

LDPC 

Uncoded 

Block Kldpc 

BCH 

Uncoded 

Block  

kbch 

LDPC                                      

Code 

Identifier 

16 200 1/5 12 3 240 3 072 1/4 

16 200 1/3 12 5 400 5 232 1/3 

16 200 2/5 12 6 480 6 312 2/5 

16 200 4/9 12 7 200 7 032 1/2 

16 200 3/5 12 9 720 9 552 3/5 

16 200 2/3 12 10 800 10 632 2/3 

16 200 11/15 12 11 880 11 712 3/4 

16 200 7/9 12 12 600 12 432 4/5 

16 200 37/45 12 13 320 13 152 5/6 

16 200 8/9 12 14 400 14 232 8/9 

NA NA NA NA NA 9/10 
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Table 2: Coding Parameters of Normal FECFRAME (
ldpcn = 64800 bits) 

LDPC 

Coded 

Block nldpc 

Effective 

LDPC 

Rate 

Kldpc/16 

200 

BCH 

T-Error 

Correction 

BCH Coded 

Block Nbch  

LDPC 

Uncoded 

Block Kldpc 

BCH 

Uncoded 

Block  

kbch 

LDPC 

Code 

Identifier 

16 200 1/5 12 3 240 3 072 1/4 

16 200 1/3 12 5 400 5 232 1/3 

16 200 2/5 12 6 480 6 312 2/5 

16 200 4/9 12 7 200 7 032 1/2 

16 200 3/5 12 9 720 9 552 3/5 

16 200 2/3 12 10 800 10 632 2/3 

16 200 11/15 12 11 880 11 712 3/4 

16 200 7/9 12 12 600 12 432 4/5 

16 200 37/45 12 13 320 13 152 5/6 

16 200 8/9 12 14 400 14 232 8/9 

NA NA NA NA NA 9/10 

 

 

2.4.1 BCH encoder 

BCH’s t-error correcting codes ( , )bch bchN K  are generally applicable to the random 

message bits ( )bchK  for generating error-protected packets. Many BCH codes have 

the parameters for ldpcn = 64800 are listed in Table 2 and the code parameters for

ldpcn = 16200 are available in Table 1. The generator polynomials of the BCH 

encoder for terror correcting are achieved by the multiplication of the first t 

polynomials given in Table 3 for ldpcn = 64800 and Table 4 for ldpcn = 16200. 
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Table 3: BCH Polynomials (for Normal FECFRAME nldpc = 64800) 

1+x
2
+x

3
+x

5
+x

16
 g1(x) 

1+x+x
4
+x

5
+x

6
+x

8
+x

16
 g2(x) 

1+x
2
+x

3
+x

4
+x

5
+x

7
+x

8
+x

9
+x

10
+x

11
+x

16
 g3(x) 

1+x
2
+x

4
+x

6
+x

9
+x

11
+x

12
+x

14
+x

16
 g4(x) 

1+x+x
2
+x

3
+x

5
+x

8
+x

9
+x

10
+x

11
+x

12
+x

16
 g5(x) 

1+x
2
+x

4
+x

5
+x

7
+x

8
+x

9
+x

10
+x

12
+x

13
+x

14
+x

15
+x

16
 g6(x) 

1+x
2
+x

5
+x

6
+x

8
+x

9
+x

10
+x

11
+x

13
+x

15
+x

16
 g7(x) 

1+x+x
2
+x

5
+x

6
+x

8
+x

9
+x

12
+x

13
+x

14
+x

16
 g8(x) 

1+x
5
+x

7
+x

9
+x

10
+x

11
+x

16
 g9(x) 

1+x+x
2
+x

5
+x

7
+x

8
+x

10
+x

12
+x

13
+x

14
+x

16 
g10(x) 

1+x
2
+x

3
+x

5
+x

9
+x

11
+x

12
+x

13
+x

16
 g11(x) 

1+x+x
5
+x

6
+x

7
+x

9
+x

11
+x

12
+x

16 
g12(x) 

 

Table 4: BCH Polynomials (for Short FECFRAME nldpc = 16200) 

1+x+x
3
+x

5
+x

14
 g1(x) 

1+x
6
+x

8
+x

11
+x

14
 g2(x) 

1+x+x
2
+x

6
+x

9
+x

10
+x

14
 g3(x) 

1+x
4
+x

7
+x

8
+x

10
+x

12
+x

14
 g4(x) 

1+x
2
+x

4
+x

6
+x

8
+x

9
+x

11
+x

13
+x

14
 g5(x) 

1+x
3
+x

7
+x

8
+x

9
+x

13
+x

14
 g6(x) 

1+x
2
+x

5
+x

6
+x

7
+x

10
+x

11
 +x

13
+x

14
 g7(x) 

1+x
5
+x

8
+x

9
+x

10
+x

11
 +x

14
 g8(x) 

1+x+x
2
+x

3
+x

9
+x

10
+x

14
 g9(x) 

1+ x
3
+x

6
+x

9
+x

11
+x

12
+x

14 
g10(x) 

1+x
4
+x

11
+x

12
+x

14
 g11(x) 

1+x+x
2
+x

3
+x

5
+x

6
+x

7
+x

8
+x

10
+x

13
+x

14 
g12(x) 
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BCH encoding [18] for the information bits 1 2 1 0( , ,..., , )kbch kbchm m m m m   to get a 

codeword of the form 1 2 1 0 1 2 1 0( , ,..., , , , , , )kbch kbch nbch kbc nbch kbcc m m m m d d d d       can 

be achieved using the following [18]: 

 

 Multiplying the generated message polynomial

1 2

1 2 1 0( ) ...kbch kbch

kbch kbchm x m x m x m x m x 

      by bch bchn k
x

 . 

 Divide ( )bch bchn k
x m x


by ( )g x , the polynomial generator.  

Let 
1

1 1 0( ) ...bch bch

bch bch

n k

n kd x d x d x d
 

     be the remainder. 

 Set the codeword polynomial as ( ) ( ) ( ).bch bchn k
c x x m x d x


   

 

2.4.2 LDPC encoder 

The BCH encoder output is fed to the inner LDPC [19]. The number of the parity bits 

added by LDPC codes is indicated in Tables 1 and 2 as shown in the following 

formula: 

ldpc ldpc bchP N N   

 

LDPC encoder offers a support to 11 coding rates. The coding rates show the ratio 

between the number of message bits ( bchK bits) and the number of LDPC coded 

block bits (FEC-FRAME). For instance, the rate of 1/4 in a normal frame indicates: 

  

16200 1

64800 4

bch

ldpc

N

N
 

 

 

Therefore, each information bit received from the FEC outer encoder (BCH), three 

parity check bits are added by LDPC encoder. A low ratio is preferred because it 

gives the data a stronger protection against errors that emanate from the LDPC 

encoder. Similarly, it strengthens the data transmission capacity and minimizes the 

systems’ errors. 

The LDPC decoder on the receiving end checks the sequence received in an iterative 

manner using fifty iterations. Such an error correction procedure employs a sparse 
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parity-check matrix although the decoding algorithms are quite challenging to 

interpret. 

Richardson and Urbanke [6] came up with the process of encoding that has 

successfully been useful for a long time. The procedure is applicable to all the codes 

that have a sparse equality-check matrix. The stages involved in this method include 

pre-processing and encoding. During the pre-processing stage, one follows all the 

steps in section H as illustrated in the following Figure’s columns and rows.  

 

A B
1

1

1

1T
0

C D E
n

n-k g K-g

Figure 4: Richardson and Urbanke's Row and Column Variations 

 

In matrix notation, 

                                   

A B T

H

C D E

 
 

  
 
   

 

                                            (2.4) 

 

In this structure, T is a triangular matrix and it is quite weak although all the 

entrances have a value that equals to 1. The process involves permutation of the 

columns and rows in parity check matrix H. Parity check matrix H is a sparse matrix 

and also A, B, C, D, E, and T are sparse matrices. For instance, the distance assesses 

how close H can be, by row and column permutation, to the inferior triangular 

matrix. Multiply H from the left by 
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1

0I

ET I

 
 
 

 

                 

                                                 (2.5) 

 

The results are 

 

1 1 0

A B T

ET A C ET B D 

 
 
 
       

 

                                           (2.6) 

 

Let the code parameters be as follows: 

C  is the codeword. Hence, c = (s, p1, p2) 

s   refers to the data bits 

1p  and 2p  refer to the parity bits,  

1p  has length 2,  g p  has length  –  .k g  

By 0TH C  , we get 

 

1 1

1 0

0 2

A B T s

p

ET A C ET B D p 

   
   

   
           

 

                              (2.7) 

 

from which we get, 

 

                       1 2 0T T TAs Bp Tp  
 

                                           (2.8) 

 

And 

 

                     
1 1

1( )s ( ) 0T TET A C ET B D p      
 

                                  (2.9) 

 

Computation of p1 using Richardson and Urbanke’s encoding operation is explained 

in Table 5. 
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Table 5: Calculating p1 Using Richardson and Urbanke’s Encryption Approach 

Operation Comment Complexity 

AsT

 Multiply the data by A sub-matrix O(n) 

1T [As ]T

 Back exchange, the lower triangular T  O(n) 

1-E[T  As ]T

 Multiplication by sparse matrix O(n) 

CsT

 Multiplication by sparse matrix O(n) 

1[-ET As ]+ [Cs ]T T

 Addition O(n) 

1 1(-ET As Cs )T T   
 Multiply by g×g matrix O(n+g2) 

 

Computation of p2 using Richardson and Urbanke’s encoding operation is explained 

in Table 6. 

 

Table 6: Calculating p2 Using Richardson and Urbanke’s Encryption Approach  

Operation Comment Complexity 

AsT

 Multiplication by sparse matrix O(n) 

1

TBp
 Multiplication by sparse matrix O(n) 

1[As  ]T TBp
 Addition O(n) 

1

1-T (As + )T TBp

 Back exchange, the lower triangular T O(n) 

 

And the parameter   is defined as: 

 

                            
1ET B D   

 
                                                (2.10) 

 

Assuming that   is non-singular we get 

 

                                    

1 1

1

1 1

( )s

     ( )

T TP ET A C

ET A C





 

 

  

  
 

                                           (2.11) 
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The first step is to multiply the data by A submatrix A .Ts  The calculation 

complexity of A is on the order of n, i.e., O(n) due to the sparseness of A.  Initially, it 

would compute ]1 .[ TsT A yT   Since [ ]TAs TyT and T is an inferior triangular. 

Through back-alteration yT can be computed in linear time. The calculation for 

( )EyT  and ( )TCs  can also be done through O(n) complexity as (E,C) because they 

also sparse. Let: 

  

                                   1   ( )T T TET As Cs z     
                                         (2.12) 

 

Then   is g×g, and p1 is calculated from (2.11) with complexity order O (n+g
2
). In 

addition we can calculate p2 using 

 

                                         
1

2 1p =-T (As + )T T TBp

 
                                             (2.13) 

 

The formula for computing p2 is almost identical to that of computing p1, and p2 can 

be calculated with complexity order O(n),  C can be calculated with complexity order  

O(n+g
2
). The arithmetic and encrypting procedure are run in O(n

2
). During the 

encoding, the performance of the encoder is still economical on time and less 

complexity. Richardson and Urbanke also proved that for custom codes, the 

predictable g is restricted by O(n), thus, the encoder works in O(n).  

 

2.5 DVB-S2 Decoder 

DVB-S2 decoder consists of two block codes (LDPC and BCH decoders). LDPC 

decoder receives the coded sequence and decodes it using belief propagation 

algorithm, and sends it to BCH decoder. After receiving soft information from LDPC 

decoder, BCH decoder starts to achieve its decoding algorithm. Recently a new 

approach for the decoding of BCH codes using error magnitudes is proposed in [26]. 

In this thesis work we will use this new approach to decode the BCH codes available 

in DVB-S2 structure.   
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2.5.1 LDPC decoder 

The selected decoder should be as suitable as possible when examining provisional 

data with a bit of 0 or 1 after the receiving the vector y. Hence,   1  |  i r ip P c y   

given that ic is the code symbol transmitted given the received signal vector  . 

Therefore,    

 

                            
[ 0 | ] 1i ipr c y p  

 
                                              (2.14) 

 

Let l

ijq  represents the information (probability) flowing through check node    from 

the variable node   . Then we have the probabilities (0)lqij and (1)lqij  which can 

also be names as the belief scores for the iy  values, i.e. 

(0) ( 0),  (1) ( 1)l l

ij i ij iq prob y q prob y     and they satisfy 

 

                                    
(0) (1) 1l lqij qij 

 
                                            (2.15) 

 

Let, (1)ij

lq P
i

 and (0) 1ijq Pl
i

  , and let l

ijr be the probability transferred from 

check node    to data node    in the first round. The probability ijr  is calculated for 

bits 0 and 1, i.e. (0)l

ijr , and (1)l

ijr  are the probabilities for iy being equal to 0 or 1 

respectively such that: 

 

(0) (1) 1l lrij rij 
 

 

In addition, (0)lrij  is a likelihood that an even number of 1’s are received from all 

other data nodes. Initially, let’s suppose that there are an even number of 1’s on the 

second data node. Let 1q  be the likelihood that there is 1 at data node    and 2q  is 

the likelihood that there is a 1 at data node    . It is computed as: 
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                (     )       (    )(    )                                      (2.16) 

                                    

1 2 1 2

1 2 1 2

1 2

1 2

1
(2 2 2 4 )

2

1
[1 (1 2 )(1 2 )]

2

q q q q

q q q q

q q q

   

   

    
 

 

Then consider the likelihood of having  an even number of 1’s on three data nodes, 

     ,   ,  (1 – q) is the likelihood that there is an odd number of 1’s on    and   : 

which is calculated as 

 

1 2 3

1
[1 (1 2 )(1 2 )(1 2 )]

2
q q q    

 

 

Then, 

  (           )  
 

 
 
 

 
∏(     )

 

   

 

 

It is important to note that the information which    transmits to    during the first 

round is 

                          

'

'

(l) 1 1
(0) (1 2 (1))]

2 2
j

n

ji i j
i V i

r q
 

  
 

                                       (2.17) 

With 

                                         
(l) (l)(1) 1 (0)ji jir r 

 

 

If jv represents the sets of data nodes attached to the check codes, the probability 

which jv  passes to    on the first round can be computed for the bits 0 and 1 as:  

 

 

                   

'

'

( ) ( 1)(0) (1 ) (0)

i

n
l l

ji ij i j i
j C j

q k p r 

 

  
  

                  

                    (2.18) 
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'

'

( ) ( 1)(1) (1)

i

n
l l

ji ij i j i
j C j

q k p r 

 

 
  

                                 (2.19) 

Where iC  represents all the check nodes. The constant 
ijk  can be calculated using 

the equality:  

  

                                        
(l) (l)(0) (1) 1ji jiq q 

 
                                           (2.20) 

 

For each data node, the following formulas are used to compute the bit probabilities:  

 

                        

( ) ( 1)

( ) ( 1)

(0) (1 ) (0)

(1) (1)

i

i

n
l l

i i i ji

j C

n
l l

i i i ji

j C

Q k p r

Q k p r









 







 

 

                                        

                                        (2.21) 

                                         

Where ( )l

iQ  refers to the probability of 0 and 1 at data node    during round  . 

 

Belief propagation algorithm can also be implemented in logarithmic scale where the 

likelihood formulas are given as: 

 

   (
  (    | )

  (    | )
)  

    
  

 

            

(2.23) 

     (  )  (
  (    | )

  (    | )
) 

                         

 

                                       (2.24) 

 

In this case, iL  is the likelihood ratio and il is the log-likelihood ratio for    through 

the log ratio, multiplications are turned into sums because they are quite cheap to use 

in hardware. Using the probability ratio, we end up with: 

 

                                           

1

1
i

i

P
L




 

 

                                                 (2.25)  
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From (2.14) and (2.15), the information that    transmits to    at the first round is: 

 

             

'

'

( 1)

( )

( )

( )
( 1)

1 1
(1 2 (1))

(0) 2 2
ln ln

1 1(1)
(1 2 (1))

2 2

l

l i j
ji i Mj il

ji l
lji

i j
i Mj i

q
r

m
r

q



 



 

 

 

 




 

 

 

                           (2.26) 

 

                                   

'

'

'

'

( 1)

( 1)

1 tanh( )
2

ln

1 tanh( )
2

l

i j

i Vj i

l

i j

i Vj i

m

m



 



 










 

 

Using (2.24) and (2.26) we get 

  

                         

''

'

1 (1)

(1)

i j
m i j

i j

q
e

q




 

 

                                          (2.27)  

 

Which leads to 

                            

'
'

1
(1)

1 i j
mi j

q
e


  

 

                                           (2.28)  

 

                             

'
'

'
'

1
1 2 (1) tanh( )

21

i j

i j

m

i j

mi j

me
q

e


  

  

                                     (2.29) 

 

Both equations (26), (28) fit into 

  

                             

( )
( ) (0) ( )

( )

(0)
ln

(1)
i

l
l li

i i jil
j Ci

Q
l l m

Q 

  
 

                                       (2.30) 

 

And decoding decision is made according to If ( )  0l

il   then 0,ic   else
 

1ic  . 

During a training session, broadcasting is used when one has to repeat the process 

many times or if they have to do it until the probability becomes close to the 
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certainty value. A particular probability is il   , where  0iP   for il   and 

1iP   for il   . 

One of the major features of belief propagation is the timing of its performance 

although it is directly linear to the size of the code. The process traverses through the 

various check and data codes.  

 

2.5.2 BCH decoder 

Decoding the binary BCH code using an algebraic procedure entails the following 

steps.  

a. Computing the value of the syndrome 

b. Identifying the location of the polynomial which locates errors. There are two 

methods to locate the errors. They are the Berlekamp-Massey algorithm and 

Peterson’s algorithm.  

c. And determining the error locator polynomial’s roots. This can be done 

through Chien search. 

 

2.5.2.1 Error detection 

It is important to detect preliminary errors before decoding any of the BCH 

codewords. The syndrome of the code is determined through: 

 

2 2

1 2 2( ),  S ( ),  S ( )t

tS S c c c        

 

If the received codeword is not corrupted by the noise, then the syndrome has zero 

value since
2 2( ) ( ) ... ( )tg g g     , otherwise the syndrome is not zero. And  the 

decoding should be accomplished to trade on redundancy introduced and correct the 

errors occurred. If an error is detected, then the codeword errors can be corrected by 

using the Berlekamp-Massey algorithm. 
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2.5.2.2 Berlekamp-Massey algorithm  

Before describing the algorithm, let’s get acquainted with mathematical concepts. 

Let r be the received vector that contains v errors in locations 1 2, ,..., vi i i  so that each 

element of S can be calculated as follows: 

  

1 1

( ) ( )l l

v v
i ij j

j

l l

S  
 

    

 

Letting li

lX  , we get the alternative expression for the syndromes as shown: 

 

                                   
1

     j=1,2,...,2t
v

j

j l

l

S X


  

 

                                       (2.31)  

 

The error locator polynomial is written as:  

 

                    
1 0

1

( ) (1 ) ...
v

v

l v

l

x X x x x


           

 

                              (2.32)  

     

Where 0 1  . The roots of (2.32) connote the error locators’ reciprocal. A linear 

relationship between the coefficients in (2.32) and the syndromes can be written as: 

 

                       
1

       j=v+1,v+2,...,2t
v

j i j i

i

S S 



  
 

 

                                   (2.33)  

 

The above formula is a description of the output of the linear feedback shift register 

(LFSR) with the co-efficient 1 2, ,..., v   . Through the Berlekamp-Massey 

algorithm, it is possible to come up with a LFRS that generates a complete sequence

1 2 2{ , ,..., }tS S S .  Any LFRS that is potentially capable of producing    alongside a 

sequence of 1 2{ , }S S . 
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Once such a LFRS is found, there is no need for any modification and vice versa. It 

would need appropriate connotation to represent ( )x  in various algorithmic stages 

before computing. Assume that kL  denotes generated at stage k. Hence: 

 

                     
[ ] [ ] [ ]

1( ) 1 ... k

k

Lk k k

Lx x x      
 

                                    (2.34)  

 

Indicates that the LFSR can produce a  1 2{ , ,..., }kS S S  output.  That is: 

                                 

                     
[ ]

1

       j=L 1, L 2,...
kL

k

j i j i k k

i

S S k



      

 

                               (2.35)  

 

 There are instances where we may have a polynomial connection of 
[ 1]( )k x of 

length 1kL   that produces
 1 2 1{ , ,..., }kS S S   for some 1 2 .k t   We can verify the 

connection of the polynomial through calculating the value of the output using the 

following formula: 

 

1
[ 1]

1

ˆ
kL

k

k i k i

i

S S








    

 

                                           (2.36)  

 

If ˆ
kS has a similar value as kS , it is not necessary to update LFSR. Hence,

[ 1]( ) ( )k kx x   and 1k kL L  . If there is a non- zero discrepancy that emanates 

from 
[ 1]( )k x , thus: 

 

1 1
[ 1] [ 1]

1 0

ˆ
k kL L

k k

k k k k i k i i k i

i i

d S S S S S
 

 

 

 

         

 

                         (2.37)  

 

In such an instance, we may update of the polynomial using the following formula:  

 

[ ] [ 1] [ 1]( ) ( ) ( )k k l mx x Ax x       
                                    (2.38)  
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The new polynomial helps the calculating of the value of the new discrepancy as 

illustrated below: 

kd  , as 

                  

[ ]

0

1 1
[ 1] [ 1]

0 0

      =

k

k m

L
k

k i k i

i

L L
k m

i k i i k i l

i i

d S

Ss A S





 
 

  

 

  

  



 

 

 

                                 (2.39) 

 

 

The second summation generates: 

 

                          
1

[ 1]

0

mL
m

i m i m

i

A S Ad








   

 

                                       (2.40)  

 

If 1

m kA d d  , the computation in (2.39) breeds: 

  

1 0k k m k md d d d d     

 

2.6  DVB-S2 Applications 

Multimedia communications supplied to low population with wide geographical 

areas, the deployment of the satellites in this case is less costly than the 

corresponding terrestrial networks to achieve the same services. Similarly, regions 

with low population have experienced the advantages of the communication media. 

Notably, communication using the satellite media is quite cheaper than other media. 

Some of the modern day communication media include maritime communications 

related to the radio navigation systems. Television broadcasting uses one signal to 

reach a big community in a certain region. All the modern media links require state 

of the art technology and terrestrial applications to remain effective for long. Some 

of the advantages of Broadcasting Services of High Definition TeleVision (HDTV) 

and Standard Definition TeleVision (SDTV) are satellite News Gathering, use of 

digital transmitters and interactive services. 
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CHAPTER 3 

 

SOFT DECISION DECODING OF DVB-S2 BLOCK CODES 

 

 

3.1. The First Approach of Soft Decision Decoding of BCH Codes Using Error 

Magnitudes. 

The BCH error correcting codes have 2t syndromes that can be used to correct errors 

in the t location. Similarly, they may be used to resolve any erasures of 2t syndromes 

during the decoding process. Any erasures during the decoding procedure should be 

solved to enhance the magnitude of the identified errors [25]. Similarly, the erasures 

should be identified in the binary codes to ensure that the magnitudes stand at either 

0 or 1. The relationship between the receiver input and the output is affected with

,  i=1,...,ni . It indicates that the location of the codeword appears in the metric im . 

Solving the 2t magnitude equations is unlikely to breed a solution using GF (2). It is 

one of the methods that are used to acquire a solution that has more than 2t channel 

outputs. Solving problems involving error magnitudes comes up with a soft decision 

decoding process that has been proved to be fast and efficient. The procedure entails 

solving any emerging the extended error magnitude equation given as 

 

            

1 2 2 11

2 2 2

1 2 2 2

3 3 3
31 2 2

2 2 2
21 2 2

..............  

.............

.............

............................

............................

...........

t

t

t

t t t
tt

s   

   

  

  

   
   
   
   
   
   
   
   
     

1,2 1 1,

2 2,2 1 2,

3 3,2 1 3,

2 2t,2 1 2t,

s .............

 s ............

 s ............

...................................

...................................

 s ..........

t n

t n

t n

t t n

s

s s

s s

s s









  
 

  
  
 
 
 
 
   



 
                           (3.1) 
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Where i represents the magnitude that contains the error which corresponds to 

location i , and iS  are the  syndromes. 
,i jS is the incremental syndrome which is 

calculated by changing the bit in location
j . A solution 's exists since the matrix of 

 's is a Vandermondematrix. However, the solution is not in GF(2). The matrix 

solution can be presented as: 

 

                     

1,0 1,2 1 1,1

2,0 2,2 1 2,2

3 3,0 3,2 1 3,

2 2t,0

e  .............

e  ............

e  ............

.. ...................................

.. ...................................

e

t n

t n

t n

t

e e

e e

e e















  
   
 
   

 
 
 
 
   2t,2 1 2t, ..........t ne e

 
 
 
 
 
 
 
 
   

 
                                       (3.2) 

 

In case where the first column of the above matrix appears in Galois Field GF(2), 

there are many errors exist in the first 2t locations. However, if the first column’s 

elements do not appear in GF(2), the resolution is derived by adding successive 

column (or sets of columns) to the first one to get a column which the elements of it 

in GF(2). After that, the outcome column together with the corresponding best metric 

totally produces the maximum likelihood decoding. Then, the error positions are 

included in the consonant locations of the added column(s) plus the first 2t most 

possible locations. Generally, few of the added columns may be used to get a 

solution to these problems. The decoding time depends on the probability of solving 

any equation of the extended error magnitude through the fast algorithm. Many sub-

optimal decision of decoding algorithms entails doing away with the complete search 

through adding more columns in the extended error magnitude. 

 

3.1.1 Numerical example 

As a simple example consider the cyclic (7,4,1) BCH codes with the generator 

polynomial 
3( ) 1g x x x    and GF(8), the data is [1 0 0 0] d  . 

 

The encoding operation for the given data starts with calculating 

http://en.wikipedia.org/wiki/Finite_field
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           (x)N KX d                        

 

Then the remainder 

 

           ( ) [ * ( )] / ( )N Kr x X d x g x  

 

Is calculated and code polynomial is formed using 

                          

       ( ) [ * ( )] ( )N Kc x X d x r x       

 

As 

                                 

        (x) [1 1 0 1 0 0 0]c   

 

The second step is modulation of the codeword. We used BPSK modulation, the 

modulated codeword is: 

 

(x) [ 1 1 1 1 1 1 1]c                

 

 

Then, adding the noise (AWGN) channel to the modulated signal with SNR 

approximately 7 dB, so that two errors are occurred, we get the received  signal as 

  

( 0.218,  2.228, 0,991, 3.071, 0.537,  1.269,  2.108)r       

 

Then we take the absolute values for the received signal and rearrange these absolute 

values in ascending order and indicating the locations of each value by powers of    

in the sorted vector we get the   vector as: 

 

                                      
4 2 5 6 3(1, , , , ,  , )        
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 Whose elements can be converted to binary using the table given below 

 

 

Table 7: Representation for the Elements of GF(2) Generated by p(x) = 1+x+x
3
 

3-tuple representation Polynomial 

representation 

Power representation 

(0 0 0) 0 0 

(1 0 0) 1 1 

(0 1 0) α α 

(0 0 1) α
2 

α
2 

(1 1 0) α+1 α
3 

(0 1 1) α+ α
2
 α

4 

(1 1 1) α+1+ α
2
 α

5 

(1 0 1) α
2
+1 α

6 

(1 0 0) 1 α
7 

 

In the next step we calculate syndromes 1 2(s .....s )t  using: 

 

2

2( ),  i=[1,......,2t], (S )i

i i iS r S   

 

And for the received demodulated signal  

 

(0 1 1 1 0 0 0)r   

 

The syndromes are calculated as 

 

6 2 5

1 2 1 2,  S S S S      

 

Next we will calculate , ,i jS  let remind the equations as given below  
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4 2 5 6 3

2 3 4 5 6

2 3 2 2 4 6

2 3 2 2 4 6

(1 ,  , , ,  , ,  )

                  

(0 ,  1   ,1   ,1   ,0   ,0   ,0  )

         1, x   ,x  ,x  ,x  ,x  ,x

(x) x x x          , (x ) x x x

( )       , ( )

r

r r

r r

      

       



      



     

     

   

To full all the elements in the matrix (3.1), ,2n ts  should be calculated as shown 

below: 

                    

1,3 1 3

3

3

3

3

6

1,3

2

1,3

2

1,3

(x) x x

( )

1

1

1

1 1

s s s

r

r

s

s

s

s

s

  

 







  

 

 

   



  

    

 

        

1,4 1 4

2 3 5

2 3 5

2 2

4

4

6

1,4

2

1,4

5

1,4

(x) x x x

( )

1 1

1

s s s

r x

r

s

s

s

s

s

    

    



 

 



  

   

   

          



  

   

 

   

       

                    

1,5 1 5

2 3 6

2 3 5

2 2

5

5

1,5 1

6

1,5

(x) x x x

( )

1 1

0

s s s

r x

r

s

s

s s

s

    

   



  

   

   

         



 

 

    

1,6 1 6

2 3

2 3

2

6

5

6

6 5

1,6

2 2

1,6

1,6

(x) x x

( )

1

1 1

s s s

r

r

s

s

s

s

s

  

 



 

  



  

 

 

  



  

       

 
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1,7 1 7

2

2

7

6 4

1,7

2 2

1,7

1,7

3

1,7

(x) x x

( )

1

1

s s s

r

r

s

s

s

s

s
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

 

  





  

 

 



  

     

  

 

  

 

And, 

 

3

3

2 3 5

4

2 3 6

5

2 3

6

2

7

(x) x x

(x) x x x x

(x) x x x x

(x) x x

(x) x x

a

b

c

d

e

r r

r r

r r

r r

r r

  

    

    

  

  

       

2 2

3

2 2 6

2 2 2

2

(x )

x x

x x 1

1

a

a

a

a

r r

r

r

r



 

   


     

2 2

4

2 2 4 6 10

2 2 2 2

2 2

(x )

x x x x

x x x x 1 x 1

x

b

b

b

b

r r

r

r

r



   

          



  

2 2

5

2 2 4 6 12

2 2 2 2 2

2

(x )

x x x x

x x x x 1 x x 1

0

c

c

c

c

r r

r

r

r



   

             



    

2 2

6

2 4 6

2 2 2

2

2 3

(x )

x x

x x x 1

x 1

x

d

d

d

d

d

r r

r

r

r

r



 

   

 



       

2 2

7

2 2 4

2 2 2

2

(x )

x x

x x x

x

e

e

e

e

r r

r

r

r



 

   



  

 

In the other word: 

(x) 1ar         [For the 1st s  column]   (x) xbr        [For the 2nd s  column] 

(x) 0cr        [For the 3rd s  column]    
5(x) xdr      [For the 4th s  column] 

4(x) xer      [For the 5th s  column] 

               2 2

2

(x) 1

(x ) (1)

(x ) 1

a

a

a

r

r

r







                    2 2

2 2

(x) x

(x ) (x)

(x ) x

b

b

b

r

r

r







                
2 2

2

(x) 0

(x ) (0)

(x ) 0

c

c

c

r

r

r






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d

d

d
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




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e

e

e

e
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r
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
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
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2
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1

1
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s
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
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  
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2
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5
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s s s
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s
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2,6 2 6

2

2,6 2
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2,6

2

2,6

2

2,6
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1 1

d

s s s

s s r
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s

s



 
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

  

  

  

       
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2,7 2 7

2

2,7 2

5

2,7

2

2,7

2

2,7

6

2,7

( )

1

1

e

s s s

s s r

s

s

s

s



 
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



  

  

  

     

  

 
 

              

6 2 5 6 34
1

5 4 3 5 2 6
2

                    1      

1                         

      

      

    
     

    

                                                 
The inverse of the matrix 

41      

1      





 
 
 

is: 

 

                                        

6 2

5 5

      

      

 

 

 
 
 

 

 

So, the solution matrix (3.2) will be: 
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4 5 4 5 4

1

6 6 6 2 2
2

        1            

        1           

     

     

  
   

   
 

 

Notice that the elements which contained in the first column are not in (2)GF , thus, 

adding a column to the first one to get elements (2)GF  . 

So, adding the second column to the first column: 

 

4 5 2 2

4 5

1

1

     

 

        

 
  

6 6 2 2

6 6

1 1

0

   

 

      

 
 

Now, we got [1,0]T  which they (2)GF . 

Then, we sum the first 2t  elements plus the added column(s) to get the errors: 

4 5 6 2 2 2

 2  

4 5 6 2

 2       

1 1 1 1

1 1

first t added column

first t the position of the two errorsadded column

       

   

              

    
  

4 2 5 6 3

(1,1,0,1,0,0,0)

(0,1,1,1,0,0,0)

(1, , , , , , )

c

r

      







  

Since the elements are not in GF(2) in the first column but the summation of the first 

two columns is [1,0]T , so the errors are in locations 1 and 
2 . Therefore, the two 

errors in positions 1 and 
2  are corrected to get the original codeword. 

 

 

3.2 The Second Approach of Soft Decision Decoding of BCH Codes Using Error 

Magnitudes 

There is another way to find the errors positions and this method is easier than the 

previous one. The previous solution is complex and quite hard to achieve on matlab. 

for less hardware complexity, In place of the whole codeword, the soft information 

may assist the decoder to select the minimum bits for reliability that decoded by the 
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soft decoder. Depending on the concepts of [26], there are three main procedures: 

syndrome calculator, error locator evaluator, and error magnitude solver that 

proposed in soft BCH decoder. 

When there are soft inputs, the decoder selects those whose inputs are not reliable 

and examines its error locators to come up with the following set of error locators

1 2 2
[ , ,..., ]

t

T

l l l    . Additionally, the error location set appears as follows

1 2 2[ , ,..., ]TtL l l l . It may be computed using  because 
il

 serves as the error 

locator of the il location and i

i

l

l  . 

The relationship between   and the syndrome vector 1 2 2[ , ,..., ]TtS S S S can 

represented as follows: 
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   
   
   
     
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3

2

..

..

t

s

s

 
 
 
 
 
 
 
 
  

                                               (3.3) 

 

where i  is the error magnitude in the il th location. 

Noteworthy is the fact that BCH codes have an error magnitude set that is valid as 

illustrated 1 2 2[ , ,..., ]Tt    which should be zeros and ones (i.e. binary vectors). If 

the position of il  is the correct error position, i is 1; otherwise, i is 0. The2 2t t

matrix in (4) is serves as the error locator of the   matrix. The approximate 

codeword polynomial ˆ ( )C x may be acquired through XORing i with 
ij

R . In the 

algorithm 2t locators move towards L  in a way that corrects 2t errors. The difference 

of S and the multiple of  and is a discrepancy vector 1 2 2[ , ,..., ]Tt     

illustrated as follows: 

                                               S                                                             (3.4) 
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Observe that the two operations in (3.3) and (3.4) are under (2 )mGF . Obviously, the 

valid   can be computed for making   be all zeros (vector of zeros) in case of 

whole the errors are occurred in the position vector L , otherwise, the decoding 

operation fails to correct the errors and computes as a non-binary vector. 

Solving the previous example by this way is easier and less complex comparing with 

the previous algorithm. 

 

3.2.1 Numerical example 

Same steps in the previous example are done to generate the code

( ) (1 1 0 1 0 0 0)c x   with the received values  

(0.218,  2.228, 2.8, 0.3, 0.5,  1.8,  2.2)r       ,  

But we introduce an artificial error in the 4
th

 bit. 

  and syndromes 1 2(s .....s )t  are computed as the previous example as shown 

                                            

3 4 5 6 2
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(1      )
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s
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









 



 



  

Then, put down all the elements in matrices in (3.4) as follows: 
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      

    

  

 

For the equation above, we try all the possible       values such that   equals to 

zero. If it equals to zero that means   1 2 
T

   represent the error locations (i.e. every 

1 in this matrix means there is an error in this location and otherwise). For instance, 
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That means the error occurs in the  
3  position. The error corrected by XORing   

vector with the received vector to get the original codeword. 

 

3.3 Simulation Results 

In this section, we present the simulation results done for LDPC and BCH codes. 

 

 

3.3.1 LDPC code simulation 

 

In this Figure, it is shown the result of the LDPC performance which it is used in 

DVB-S2 blocks. 

 

Figure 5: LDPC Code Performance 

 

Fig. 5 shows LDPC code presentation with rate ½. The size of code word is  N=1032 

and data bits is  K=516 and by using BPSK modulation over AWGN channel, with 

20 repetition and signal to noise ratio change from 0 up to 8 dB. 
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3.3.2 BCH code simulation 

Fig. 6 shows the performance of the BCH (255,239,2) codes over AWGN channel 

using error magnitude bases soft decision decoding algorithm.  It is seen from the 

graph that error free transmission is possible at an SNR value of 7.5dB 

 

 

 
 

Figure 6: BCH Code Performance 
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CHAPTER 4 

 

CONCLUSION AND FUTURE WORK 

 

 

4.1 Conclusion 

In this thesis work, efficient decoding algorithms are used to decode block codes 

used in DVB-S2 system. LDPC codes are obtained using the Richardson and 

Urbanke [6] encoding method which is used in the literature for a long time. In 

DVB-S2 standard there are two types of forward error correction frame structures 

which are short and long frames. In this thesis study short frame structures are 

employed. The size of the codewords is chosen as 1024. The dataword size is taken 

as 512. LDPC code rate is ½. For the decoding of LDPC codes soft decision based 

LDPC decoding algorithm called as Belief propagation algorithm is employed. An 

iterative decoding approach has been followed during the application of the Belief 

propagation algorithm for the soft decision decoding of LDPC codes. During the 

decoding operation 20 iterations are performed. For the simulations, signal to noise 

ratio range is taken from 0dB to 8dB and bit error graphs are obtained. From the 

simulation results it is seen that LDPC code with the mentioned parameters above 

achieves a BER of      at 8dB. For BCH codes we used a new approach recently 

introduced in the literature, which is the error magnitude based soft decision 

algorithm. Currently the present DVB-S2 system does not use soft decoding 

algorithms, however, soft decoding algorithms are better in BER performance than 

the hard decoding algorithms. The BCH code used in our simulation has the 

parameters BCH(255, 239, 2). It is seen from the simulation results that a BER of 

     is achieved at 7.5dB for the BCH(255, 239, 2) codes. 
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4.2 Future Work 

Our work here presents an improved architecture for DVB-S2 systems. Employing 

soft decoding algorithms for LDPC and BCH codes enables us for iterative decoding 

of this concatenated system. To achieve superior performance in communication 

systems it is obvious that most of the future communication systems will employ 

concatenated systems using iterative decoding. For a continuation of the work 

presented in this thesis, we can state that a hardware implementation of the decoding 

algorithms presented in this thesis can be performed. In addition, the iterative 

decoding of the concatenated system employing BCH and LDPC codes can be 

performed using the presented algorithms in the thesis. The iterative system 

employing BCH and LDPC codes can employ Belief propagation algorithm. And 

complexity reduction of the joint system employing LDPC and BCH codes 

employing Belief propagation algorithm is another future research area.  
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