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ABSTRACT

AN APPLICATION OF THE VEHICLE ROUTING PROBLEM TO A GLASS

MANUFACTURING FIRM

Seyran, İpek

M.S.c., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Ümit Yüceer

September 2006, 138 pages

This thesis presents an exact algorithm and a heuristic method for the delivery and

transportation of glass plates for a glass manufacturing firm. A variant of the Ca-

pacitated Vehicle Routing Problem (CVRP) is proposed as a first attempt to solve

the problem which minimizes total travelling of all the vehicles. Since the CVRP is

known to be NP-hard, the solution method cannot obtain a solution to the model.

Therefore an exact algorithm which is a kind of set-covering-based algorithm is pro-

posed next. The CVRP is modelled as a set covering (SC) problem. Then column

generation (CG) method is applied to the linear relaxation of the SC problem. The

branch-and-price algorithm is utilized in finding an integer solution on the solution

of the CG procedure. Numerical experimentations reveals that exact algorithm is

slower, and fails finding a solution to larger size problems. Consequently a heuristic

is developed as a generalization of petal algorithm. Initialization of this algorithm
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requires using some Travelling Salesman Problem (TSP) construction heuristics for

finding a TSP tour, and a TSP improvement heuristic further improves the TSP tour.

Then Petal Algorithm is applied to find all of the feasible petal routes to the TSP

tour obtained. SP model helps the petal routes to find the best VRP routes. When

the best VRP route is found, a VRP improvement heuristic attempts improving the

VRP route. Finally, the number of delivery vehicles required and the vehicle routes

are determined for the glass manufacturing firm.

Keywords: Capacitated Vehicle Routing Problem, Set Covering/Partitioning Prob-

lem, Column Generation Algorithm, Branch-and Price Algorithm, Generalized Petal

Algorithm.
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ÖZ

BİR CAM İMALAT FİRMASI İÇİN ARAÇ ROTALAMA PROBLEMİ

UYGULAMASI

Seyran, İpek

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ümit Yüceer

Eylül 2006, 138 sayfa

Bu tezde bir cam üretim firmasının dağıtım ve taşıma problemini çözmek için bir

gerçek algoritma ve bir sezgisel yöntem geliştirilmiştir. İlk olarak yapılan yolu azalt-

mak amacıyla Kapasiteli Araç Rotalama problemi (KARP) olarak modellenebilen bir

model kurulmuştur. KARP NP-zor olarak bilinmektedir, bu nedenle kurulan model

çözülememektedir. Bu yüzden bir tür küme kaplama temelli gerçek bir algoritma

geliştirilmiştir. Bu algoritma için KARP, bir küme kaplama problemi olarak model-

lenmiştir. Daha sonra sütun üretme methodu küme kaplama probleminin doǧrusal

gevşemesine uygulanmıştır. Bir tam sayılı çözüm bulabilmek için Dallandır -ve- Fiy-

atlandır yaklaşımı uygulanmıştır. Gerçek algoritmasının yavaş çalıştıǧı ve büyük

problemler için sonuç almanın zor olduǧu görülmütür. Bu nedenle petal algoritması

geliştirilmiştir. Başlangıçta Gezgin Satıcı Problemi (GSP) yapım sezgisel yöntemleri

kulanılarak bir GSP turu bulunmuştur ve GSP geliştirme sezgisel yöntemleri kul-
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lanılarak geliştirilmiştir. Petal algoritması uygulanmıştır. Küme bölüntüleme mod-

eli en iyi ARP rotasını bulmuştur. ARP rotasını geliştirmek için ARP geliştirme

sezgisel yöntemleri uygulanmıştır. Bütün bunların sonucunda cam üretim firmasının

araçlarının yaptıǧı yol miktarı , kullanılan araç sayısı ve araçların rotaları belir-

lenmiştir.

Anahtar Kelimeler: Kapasiteli Araç Rotalama Problemi, Küme Kaplama / Bölüntüleme

Problemi, Sütun Üretme Algoritması, Dallandır -ve- Fiyatlandır Yaklaşımı, Genelleştirilmiş

Petal Algoritması.
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CHAPTER 1

Introduction

This thesis presents a model and solution methods for the delivery and a transporta-

tion problem of a glass manufacturing firm. This problem is modeled as an integer

program. Subsequently, an exact algorithm and a heuristic is developed after investi-

gating its mathematical properties.

This problem is summarized as follows: The glass plates will be delivered from the

depot to the customers on time. For the delivery, the glass plates are to be loaded

into the vehicles. This loading operation is very difficult because of the brittleness

structure of the glass. The plates of glasses must be loaded carefully to the vehicles,

otherwise the glasses may be broken or shattered during transportation. In this

operation plates of glasses are arranged in some formulation according to a set of

sequencing rules. The important thing is that if the glass plates are ordered properly

than a lot of customers’ orders can be loaded to a vehicle without exceeding the

available capacity. There are four dimensions in defining the capacity of a vehicle.

These are the length, the width, the height of the vehicle, and the weight capacity

(hauling capacity) of the vehicle. After a truck is loaded, this truck must visit every

customer only once and deliver the plates, and eventually return to the depot.

The problem is modeled as a Vehicle Routing Problem (VRP), more specifically as
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a Capacitated Vehicle Routing Problem (CVRP). The structure of VRP, the types

of VRP models, the solution methods and the parts of the solution methods are

described in Chapter 2. Also the specific case of VRP which is known as Travelling

Salesman Problem (TSP), and the solution methods are explained.

In Section 3.1 the description of the delivery and transportation problem is discussed

to explain all the dimensions and the difficulty of the problem.

As mentioned in Section 3.1 the plates of glasses should be put in an arrangement

properly before being loaded to the vehicle. This ordering operation is done heuristi-

cally by the workers responsible from the delivery and transportation. An algorithm

is developed in Section 3.2 to arrange the glass plates which takes the experience and

the instructions of the workers. This is a very valuable part of this research because

the four dimensions of the glass plates can be obtained by using the Sequencing the

Customers’ Orders Algorithm. The output of this algorithm is used as an input to

the proposed model. The output of Sequencing the Customers’ Orders Algorithm is

an input for the parameters of the model (CVRP).

After obtaining the problem parameters in Chapter 4, an integer program model is

constructed to solve the problem. This model is a kind of VRP known as CVRP. A

four dimensioned and a one dimensioned models are drived. It is known in literature

that VRP is NP-hard. Therefore the solution of the model cannot be obtained for

larger problems. For this reason, alternative solution methods are investigated.

In Chapter 5 the alternative solution methods for the problem are developed. An exact

algorithm is used in Section 5.1. This approach is a set-covering-based algorithm. In
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this algorithm VRP is modeled as a set covering problem and it is assumed that the

distances between three locations satisfies triangular inequality. By using the linear

relaxation of the set covering problem and the dual of this relaxation problem, a lower

bound is obtained for the set covering problem via the column generation method.

Dual of the relaxation of the set covering problem is used to check the optimality of

the relaxation problem. After the column generation procedure, the branch-and-price

algorithm attempts finding an integer solution. The exact algorithm is not fast enough

to solve the model and fails for larger size problems. Thus some other methods are

needed.

One alternative method is developed for the problem and explained in Section 5.2.

This is a heuristic method based on the generalized petal algorithm. Four construction

TSP heuristics are used to determine a TSP tour. After finding a TSP tour, then

an improvement TSP heuristic is applied to the found TSP tour. Then generalized

petal algorithm is used to find all of the feasible petal routes. By the help of a set

partitioning model the best VRP routes are selected from inside the feasible petal

routes. Finally, a VRP improvement heuristic is applied to the solution of the set

partitioning algorithm. After all the solution of the problem is found.

In Chapter 6 the numerical results of the solution methods are given. The proposed

heuristic is tested on twelve benchmark problems described in Christofides, Mingozi

and Toth (1979). After that the proposed model, the exact algorithm and the pro-

posed heuristic is applied to the delivery and transportation problem of the firm.

These solutions are compared with the daily data obtained from the firm. As the re-

sult of the constructed model the same number of trucks are obtained for the delivery

3



and the transportation problem. But the distance travelled is reduced by 98.3 km

when compared to usual implementation of the methods of the firm.
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CHAPTER 2

Related Studies

In this Chapter to understand the structure of the Vehicle Routing problem (VRP) a

brief explanation is described. The constructed models and the solution methods of

VRP in the literature are considered.

2.1 The Vehicle Routing Problem

The distribution of goods to the customers is one of the most important logistics

problem. One of the most popular problem on this subject is the Vehicle Routing

Problem (VRP). There are various applications of this problem; school bus routing,

inventory routing, pickup and delivery, and some scheduling problems. Therefore

there are various names, definitions, models for VRP. Most common names used in the

literature for the problem are VRP, pickup and delivery problems, vehicle scheduling

and truck dispatching problems. The problem may differ in terms of number of

depots that the goods stored, vehicle fleet types, objective, capacity requirements of

the vehicles (weight, volume, length, height), inclusion of time concept. Even more

generalized version such as pickup and delivery problems, inventory routing problems

can be accepted as a part of VRP. Therefore a common definition for the problem

is difficult because of the variety in terms of boundaries of the problem from one
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case to another. But in general VRP is concerned with delivering goods from one

or more depots to a number of customers or cities by means of a fleet of vehicles.

Thus VRP involves the determination of a set of routes for each vehicle where each

vehicle starts from and returns to the depot (Figure 2.1). The objective is obviously

to minimize the total transportation cost (distance). Each vehicle has a capacity,

and each customer has a demand that uses some portion of the vehicle capacity. The

problem with identical vehicle capacities is known as Capacitated Vehicle Routing

Problem (CVRP). Otherwise it is called heterogeneous fix fleet vehicle routing problem

(HVRP). In this thesis, the term ”the cost” and ”the distance” are equivalent and

used interchangeably.

Figure 2.1: An Example of A VRP

There are various VRP models in the literature as summarized by Toth and Vigo

(2002). Some notations are provided in explaining the most common models in the

literature.
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Let G = (N, E) be a complete graph where N = {0, .., n} is the set of nodes and E

is the set of edges for the graph G. Vertices i = 1, .., n are the customers whereas

vertex 0 represents the depot. dij (cij) is the transportation cost corresponding to

the edge (i, j) ∈ E. If cij = cji for every (i, j), then the problem is referred as

symmetric VRP (otherwise asymmetric). In this thesis Euclidean distances are used.

It is assumed that all the costs (distances) are symmetric. Also in most cases, the

triangular inequality is satisfied by any three elements of the set N .

cik + ckj ≥ cij , ∀ i, j, k ∈ N (2.1)

Another important aspect of VRP is the vehicle types. If the vehicles are identical, the

problem is known as Capacitated Vehicle Routing Problem (CVRP). If vehicles are

not identical the problem is known as Heterogeneous Fleet Vehicle Routing Problem

(HFVRP).

One integer programming representation of the problem is the two index vehicle flow

formulation constructed for CVRP (Toth and Vigo (2002)). It uses n2 binary vari-

ables. The decision variables for the model are given next.

xij =





1 if edge i, j ∈ E belongs to the optimal solution

0 otherwise
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Then the mathematical model is given by;

min
∑

i∈N

∑

j∈N

dijxij (2.2)

Subject to

∑

i∈N

xij = 1 ∀ j ∈ C (2.3)

∑

j∈N

xij = 1 ∀ i ∈ C (2.4)

∑

i∈N

xio ≤ m (2.5)

∑

j∈N

x0j ≤ m (2.6)

∑

i/∈S

∑

i∈S

xij ≥ r(s) ∀ S ⊆ C, S 6= ∅ (2.7)

xij ∈ {0, 1} ∀ i, j ∈ N

where m is the fleet size, and C = N\{0}. Constraints (2.3) to (2.6) are known as the

degree constraints. The Constraints (2.3) and (2.4) guarantee that every customer is

visited exactly once (one for entering and one for leaving each customer). Constraints

2.5 and 2.6 imposes a bound on the number of arrivals and departures for the depot.

Naturally this bound is the fleet size for the customers and for the depot. Constraint

(2.7) is known as the capacity cut constraints and guarantees the connectivity (subtour

elimination) of the solution and the vehicle capacity requirements where r(S) is the

minimum number of vehicles required for the set S. In this research, Bin Packing

problem solution is prefered as a lower bound instead of r(S).

Alternatively, capacity cut constraints can be replaced by generalized subtour elim-

ination constraints which is inspired from Travelling Salesman Problem (TSP) as in

the Constraint (2.8).

∑

i∈S

∑

j∈S

xij ≤ |S| − r(S) ∀ S ⊆ C,S 6= ∅ (2.8)
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The number of constraints in both of the capacity cut constraints and the generalized

subtour elimination constraints grow exponentially with parameter n. Therefore the

separation procedure is utilized in most cases. In this procedure the problem starts

with some of these constraints, then if a violation is observed, the violated constraint

is included into the model. These separation problems are also difficult. There are

both exact and heuristic separation algorithms which requires identifying the violated

constraints and then adding these constraints to the previous ones. These type of

procedures are accelerated within a branch and cut (and price) procedure, Fukasawa

et al. (2006), Ralphs et al. (2003), Blasum and Hochstattter (2002), Lysgaard et al.

(2004), Achuthan et al. (2003), Vigo and Toth (2002).

A third approach is to use Miller, Tucker and Zemlin (MTZ) (1964) constraints (Con-

straints 2.9 and 2.10) instead of the generalized subtour elimination constraints. Al-

though with the use of MTZ constraints, Linear Relaxation of CVRP is much weaker

than both the capacity cut constraints and the generalized subtour elimination con-

straints. But the advantage of using MTZ constraints is that the number of such

constraints is polynomial.

ui − uj + CLxij ≤ CL− Li ∀ i, j ∈ C, i 6= j, such that

di + dj ≤ CL

(2.9)

Di ≤ ui ≤ C ∀ i ∈ C (2.10)

The two index vehicle flow problem does not help if one needs the information about

which vehicle is assigned to which route. This is the case when there is more than one

vehicle type (e.g. HVRP). In such cases three-index formulation with n2K variables

is used. The following model (Equations (2.11) to (2.16)) is a well known three-index

representation of the routing problems in the literature.
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yik =





1 if customer i is visited by the vehicle k

0 otherwise

,

xijk =





1 if customer j is immediately visited

after customer i by the vehicle k

0 otherwise

Then the mathematical model is given as follows.

min
∑

i∈N

∑

j∈N

dij

∑

k∈K

xijk (2.11)

Subject to

∑

i∈N

Di yik ≤ Ck k ∈ K (2.12)

∑

k∈K

yik = 1 ∀ i ∈ C (2.13)

∑

k∈K

y0k = m (2.14)

∑

j∈N

xijk =
∑

j∈N

xjik = yik ∀ i ∈ N, ∀ k ∈ K (2.15)

∑

i/∈S

∑

i∈S

xij ≥ yhk ∀ S ⊆ C, h ∈ S, k ∈ K (2.16)

xijk ∈ {0, 1} ∀ i, j ∈ N, k ∈ K

yik ∈ {0, 1} ∀ i ∈ N, k ∈ K

In addition to these, VRP problems can be formulated as a Set Partitioning problem

(SP) which is proposed by Balinski and Quandt, (1964). The advantage of formulating

VRP as set partitioning is this formulation is very tight. However it uses exponential

number of binary variables. The notation for the set partitioning problem is follows;
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αir =





1 if customer i is served in route r

0 otherwise

and the decision variable is;

xr =





1 if route r is in the optimal solution

0 otherwise

Then the mathematical formulation is then as follows.

min
∑

r∈R

dr xr (2.17)

Subject to

∑

r∈R

αir xr = 1 ∀ i ∈ C (2.18)

xr ∈ {0, 1} ∀ r ∈ R

where R is the set of all feasible routes.

2.2 A Specific Case of VRP: The Travelling Salesman Problem

The VRP is a combination of routing and packing problem. Both the travelling

salesman problem (TSP) and the bin packing problem (BPP) are special cases of the

VRP. To be more specific, TSP is equivalent to the VRP with m = 1 and Di = 0,

whereas BBP is equivalent to the VRP when edge costs (distances) equals to 0. Since

BBP and TSP are NP-hard combinatorial problems, VRP is also NP-hard.

In this study we also refer to the TSP literature due to the similarities of VRP and

TSP. To be more specific, we use well known TSP heuristics in our solution method.
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Therefore in this subsection also a brief introduction to TSP and a summary of well

known TSP heuristic in the literature will be given.

Given a graph G = (N, E) a tour that traverses each node exactly once is called

a Hamiltonian tour. TSP can be stated as finding the Hamiltonian tour in which

the minimum distance travelled. There are a lot studies for both exact and heuristic

solution methods proposed in the literature. Besides the sophisticated metaheuristics,

there are very known simple classical heuristics that is tailored for TSP. Some of them

are known as TSP construction heuristics which starts with an incomplete solution

and implement a specific procedure until a complete solution is obtained. The most

common ones are the following ones:

Nearest Neighborhood Heuristics: This is the simplest and the most common

TSP heuristics. The idea is to include the nearest node (customers) to the last

included node at each step.

Insertion Heuristics: It starts with a small tour, and then the tour is extended by

inserting the remaining nodes by using an insertion rule. According to the insertion

rule it has different versions such as (nearest insertion, farthest insertion, cheapest

insertion, random insertion etc.).

Savings Heuristics: It is also known as Clark and Wright (1964) Heuristics. Starting

with n two-node tours connected to the depot, at each iteration the subtours with the

highest savings are merged until a Hamiltonian tour is obtained.

Greedy Heuristics: It is an approximated version of savings. At each step the
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shortest edge is selected and added to the tour until a Hamiltonian tour is obtained.

Another type of TSP heuristics is the improvement heuristics. It starts with a com-

plete solution, and then at each step the solution is improved using some heuristic

rules until there is no possible way to improve the solution. The most common ones

are as follows:

Node Insertion: Starting with an initial tour, a node is removed and reinserted to

the best possible location.

Edge Insertion: Starting with an initial tour, an edge is removed and reinserted to

the best possible location.

2-Opt Exchange: Starting with an initial tour, two edges are eliminated and they

are reconnected in the other way.

k-Opt Exchange: Starting with an initial tour, k edges are eliminated and they are

reconnected in the best possible way out of other 2k − 1 ways.

Lin-Kernighan Type Heuristics: is a variable k-opt algorithm. At each step the

most suitable k value is selected. Although the algorithm is a complicated one, it

is one of the most powerful tools to solve TSP in the literature (Lin and Kernighan

(1973) for further details).
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2.3 Heuristics for VRP

The exact solution for the CVRP is only reasonable for small size problems. As the

size of the problem size increases the only way to deal with such problems is to imple-

ment heuristics procedures. Therefore there are classical heuristics and metaheuristics

proposed for the problem. In this study we are concentrated on the classical heuristics

and in this subsection a brief summary of those heuristics is given. Although there are

different ways to classify these classical heuristics, a common classification is proposed

by Laporte and Semet in Toth and Vigo (2002).Accordingly, classical heuristics are

classified in three groups; construction heuristics, two-phase methods, improvement

heuristics.

2.3.1 Construction Heuristics for the VRP

Similar to the construction heuristics in TSP, VRP construction heuristics involves

savings and insertion heuristics. There are two well known savings algorithms in the

literature as follows:

Clarke and Wright Savings Algorithm: (Clarke and Wright (1964)) The al-

gorithm requires computation of saving for each possible merge using the following

formula:

sij = di0 + d0j − dij ∀ i, j ∈ C (2.19)

At each after step savings are calculated and sorted in nonincreasing order. Starting

from the top the feasibility of each merge is checked one by one and if the correspond-

ing merge is feasible, it is immediately performed. This procedure is continued until
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there is no improvement.

Matching Based Savings Algorithms: There are three well known matching

based savings algorithms in the literature (Desrochers and Verhoog (1989), Altınkemer

and Gavish (1991), Wark and Holt (1994)). The main idea is to solve a max-weight

matching problem in which weights are the savings obtained by merging of routes. In

this problem maximum weight subset of edges are selected such that for every node,

at most one edge in that subset includes the node as an end point.

Sequential Insertion Heuristics: These algorithms are classified in two groups

such that parallel insertion and sequential insertion. The most common ones are

proposed by Mole and Jameson (1976) and Christofides, Mingozzi and Toth (1979).

The first one has only a sequential version whereas the latter includes the both ver-

sions. In the parallel version at each step an unassigned customer, insertion cost of

the customer to all routes is evaluated. In the sequential case at each step only the

insertion cost of the customer to the current route is evaluated. According to the

insertion costs the unassigned customer with the minimum insertion cost is added to

the corresponding route.

2.3.2 Two Phase Methods for the VRP

As it is mentioned before VRP is a combination of routing and packing problem.

Therefore some researchers propose different heuristics that solves these two subprob-

lems sequentially. So there are are mainly two categories of heuristics in two-phase

methods. One is the cluster first, route second whereas the second one is the opposite,
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route first, cluster second. The most common cluster first, route second methods are

as follows:

Sweep Algorithm: In the order due to rotating a ray around the depot the clusters

are obtained. Then for each cluster a TSP is solved to obtain the optimal routing of

the corresponding cluster (Gillet and Miller (1974)).

Fisher and Jaikumar Algorithm: After selecting seed customers insertion cost

of each customer to each cluster is obtained. Using these costs in a generalized

assignment problem clusters are obtained. Finally a TSP is solved to obtain the

optimal routing of the corresponding cluster (Fisher and Jaikumar (1981)).

Bramel and Simchi-Levi Algorithm: Seed customers are determined by solving a

capacitated location problem, and then the uncovered customers are included into the

clusters centered at the seed customers according to least insertion cost rule (Bramel

and Simchi-Levi (1995)).

Petal Algorithms: It is an extension for the sweep algorithm. Here the routes

which are obtained in the order due to rotating a ray around the depot are called as

petals. Finally out of many petals optimal petal selection is achieved by solving the

set partitioning problem proposed by Balinski and Quandt (1964).

min
∑

p∈S

dp xp (2.20)

Subject to

∑

p∈S

αip xp = 1 ∀ i ∈ C (2.21)

xp ∈ {0, 1} ∀ p ∈ S
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where S is the set of all feasible petals, xp = 1 if and only if route k belongs to the

solution, αip is the binary parameter which equals to 1 if customer i belongs to petal

p and dp is the cost of petal p.

Later some other variants of the petal generation scheme are proposed. They propose

to order the customers in different fashions. For example in the sweep algorithm

customers are ordered in the radial order, but with the help of these variants any

other orderings are also possible. The key point behind the petal algorithms is the

following: If all the routes, that is the set S, are obtained according to an ordering

rule, then the resulting set partitioning problem becomes totally unimodular. In that

case solving set partitioning problem as an LP gives an IP solution. The routes that

are obtained according to other possible rules are called as generalized petals. In this

we utilize generalized petals in the heuristic method proposed (Ryan et al. (1993)

and Renaud et al. (1996) for further details).

There are only a few studies published on the route first, cluster second methods.

These algorithms start with constructing a single giant TSP tour ignoring the capacity

limitation of a truck. Later this tour is decomposed into feasible tours. Consequently

the problem becomes a shortest path problem (Beasley (1983)).

2.3.3 Improvement Heuristics for the VRP

There are two versions of the improvement heuristics for the VRP. In one of them

each route is improved independent of the other routes, whereas in the second one

the improvement procedure is applied simultaneously applied to all routes.

17



Single Route Improvements: Because the procedure is applied to a single route

which is, in fact, a TSP, the TSP heuristics applied to the corresponding route im-

provement. These heuristics are discussed in Subsection 2.2, multiroute improvements

are dscussed separately next.

Multiroute Improvements: There are many multiroute improvement procedures

in the literature. But the most common ones are classified by Van Breedam (1994). A

string definition will be useful for explaining this classification. A string is a chain of

consecutive nodes (e.g. a string of single node is the node itself, whereas a string of two

nodes corresponds to the two nodes and the edge between these nodes). Accordingly

there are three main variants of multiroute improvement heuristics; string cross, string

exchange, and string relocation. In the string cross, two strings of different routes are

exchanged by crossing the endpoints of the corresponding strings, whereas in the string

exchange two strings are exchanged between two routes. In the string relocation a

string is removed from the route it belongs to and attached to another route.

2.4 Exact Methods for the Vehicle Routing Problem

Because there are so many exact algorithms proposed for VRP, it is difficult to classify

and summarize these algorithms. Although there are alternative classifications, the

one proposed by Toth and Vigo (2002) is preferred in this review (Laporte (1992)

gives an alternative classification). Thus these algorithms can be grouped in three

categories as; branch and bound (B & B), branch and cut (B & C) algorithms, and

the set covering based exact methods.
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2.4.1 Branch and Bound Algorithms for VRP

There are different exact B & B algorithms for VRP. These algorithms differ within

themselves in using the lower bounding procedures. In some of these B & B al-

gorithms, the lower bound are obtained by dropping the capacity cut constraints

(Equation (2.7)) or generalized subtour elimination constraints (Equation (2.8)). The

resulting problem is an assignment problem or a b-matching problem, with the loss

of connectivity and capacity requirements in the model. For example Laporte et

al. (1986) proposed a B & B algorithm in which the relaxation for each branch are

obtained by dropping capacity cut constraints (Equation (2.7)) in the model with

Equations (2.2) to (2.7). In an alternative relaxation scheme instead of dropping the

corresponding constraints they are weakened. But at this time outdegree constraints

(Equation (2.4)) are dropped out (Christofides, Mingozzi and Toth (1981) and Fisher

(1994) for this alternative scheme). There are also more sophisticated lower bounding

procedures in the literature based on solving lagrangean relaxation (Fisher (1994)),

dual of the relaxation to set partitioning formulation (Hadjiconstantinou, Christofides

and Mingozzi (1995) and additive bounding procedures (Fischetti et al. (1994)).

2.4.2 Branch and Cut Algorithms for VRP

B & B algorithms are reasonable only if the number of constraints is in tolerable

levels. When the number of constraints is large or in cases where valid inequalities

are known, a different procedure which is known as cutting plane branch and cut (B &

C) algorithm may be very beneficial. At each branch the algorithm starts with solving
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the LP relaxation of the problem. If the solution to this problem gives IP solution,

then this solution is an optimal solution for the IP problem of the overall problem. If

not, cuts (valid inequalities) that are violated are added to the model (as long as these

violated cuts are detected). If the procedure is not terminated with an optimal IP

solution, then branching is performed. The main problem is how to detect those cuts

at each iteration. For this purpose a scheme which is known as separation procedure

is used. Many of the cuts (valid inequalities) of CVRP are well defined and known

in the literature (e.g. capacity cuts, generalized capacity cuts, framed capacity cuts,

valid inequalities for TSP, valid inequalities for BBP etc..). There are both exact and

heuristics separation algorithms to generate the inequalities that are violated (Blasum

and Hochstattler (2002), Ralphs et al. (2003), Achuthan et al. (2003) and Lysgaard

et al. (2004)). A more sophisticated variant of B & C algorithm is the branch and cut

and price (B & C & P) algorithm in which B & C and pricing (column generation)

techniques are combined. B & C & P algorithms are known to be the most powerful

exact algorithms in the literature ( Fukasawa et al. (2006)).

2.4.3 Set Covering Based Algorithms for VRP

As it is mentioned before (Constraints 2.17 and 2.18) VRP can be modeled as a set

covering/partitioning problem (only difference is due to equality becomes an inequal-

ity). In order this set covering model to be valid, the set of all routes, R, should be

complete. However the number of routes grows exponentially. In set covering based

algorithms the idea is to solve the LP relaxation of the set covering model without

enumerating all the routes. Later, the routes that are profitable are generated us-
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ing a column generation scheme. When this procedure is embedded into a branch

and bound algorithm the method is known as branch and price. Although the idea

seems to be simple, solving the corresponding column generation problem is difficult.

Agarwal et al. (1989) proposed a branch and bound algorithm, whereas Bixby et al.

(1997) developed a cutting plane procedure to solve this column generation problem.

Desrochers et al. (1992) used dynamic programming to find a lower bound for the

solution of the column generation problem rather than solving it. In this thesis we use

dynamic programming to solve the column generation problem for our set covering

based exact algorithm.
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CHAPTER 3

Motivation and Problem Definition

In order to understand the delivery and the transportation problem, the definitions

and the specifications of the problem are given in this chapter. Also a proposed

algorithm is described in the previous sections which is used to arrange the glass

plates in an order.

3.1 The Specifications of the Problem

An intermediate glass firm purchases its raw material from a glass manufacturer firm

in standard plates of dimensions. The glass is cut according to the needs of each

individual customer in appropriate dimensions and treated for obtaining heat treated

glass, tempered glass, float glass, float mirror, parapet and faade cladding glass, the

special quality home glasses, the decorative glasses, bricks and parquets made of glass,

glass doors, the security glasses of tempered and counter-assault units.

The firm has a potential of 1000 to 1500 customers for which they cut and treat

glass in a year. Occasionally the number of customers goes up to 5000 in a year.

Most of the customers are located in the vicinity of Ankara. The firm has also some

customers in other cities in Turkey and additionally abroad. The working policy of
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the firm is to receive orders first, then do the cutting and treating the glass according

to the specifications of the customers. The customers orders contain different sizes

and various treatments of the glass. Consequently, there are various sizes and types

of glass to be distributed and delivered.

The cutting problem is solved by using an optimization package specially developed

for glass industry. This is a form of cutting stock problem as known in the literature.

The distribution and timely delivery of the glass cut and treated needs further research

and analysis. The main thrust of this research and thesis is to tackle the distribution

and the delivery of the glass plates to the customers.

This problem has two main parts. One part is to load a vehicle for transport and

delivery. The customers’ orders vary in sizes of length, width and height. This variety

of the size of the glass causes some problems in loading the vehicle for delivery to a

group of customers. The brittleness structure of the glass, makes the sequence of

loading the glasses to the vehicles very important. The stress between the plates

of the glass should be minimized in order to prevent the glass broken or shattered

during the transportation. Subsequently the arrangement of the customer’ orders to

be loaded to a truck creates a loading problem. The Figure 3.1 displays three of a

customer’s orders. Different columns are used to separate a customer’s orders from

the other customers’ orders. In other words each customer’s order is arranged as a

column in the truck and the other customers’ orders are put in separate columns.

The glasses shown in Figure 3.1 are not put in order. If they are loaded to the truck

as shown, there is a risk of glass plates shattered or broken. Thus the plates of the

glass should be put in an order according to their dimensions. The systematic way of
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placing the plates of the glass will be explained in Section 3.2.

Figure 3.1: An Example Of An Order Of A Customer

They put the plates of the glass in some order when they load to a truck. The order

of loading the customers’ orders to the truck affects the routing of the truck during

the delivery and transportation. By the way at same time only two vehicles can be

loaded because of the location of the factory. After completing the loading of those

two trucks, more trucks can be loaded (if needed).

Each vehicle has a hauling capacity. Thus the capacity of the vehicle must be a serious

restriction in loading the glass plates. The capacity of a truck can be expressed in four

different dimensions: the length, the height, the width, and the mass of the glass. In

addition, there is a safety factor of hauling glass by the state. The Figure 3.2 shows

the backside and side views of the truck for loading glass plates the length, height and

width. Consequently loading cargo to a vehicle requires considering all of the four
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capacity dimensions. The length of the total glass plates loaded cannot exceed the

length, their maximum height cannot exceed the height of the truck and the width

of the glass plates put on top of each other cannot exceed the width the truck of

the truck. In addition, the total weight of the glass plates loaded cannot exceed the

hauling capacity of the truck. The firm owns six vehicles and additional vehicles can

be rented for delivering glass plates to the customers if needed.

Figure 3.2: The Backside And Side View Of A Truck

The plates of glass are leaned onto one side of the tripod and then tied by a rope.

Tripod is securely placed in the middle of the cargo deck of the truck. There is a ten

cm safety space left between the columns of two customers’ glass plates. A view of a

tripod is shown in Figure 3.3.

The distance between the storage area and the loading dock is about two or three

meters. A picture of the workers while they are loading the truck is provided in Fig-

ure 3.4. The firm has six trucks for the delivery and transportation of the customers.
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Figure 3.3: The View Of A Tripod

Table 3.1 shows the capacities of these six vehicles. Even though there are two differ-

ent types of vehicles, modelling and solving the loading problem, it is assumed that

all the vehicles shave identical features in terms.

An important aspect of transportation problem is to deliver the customers’ orders on

time. The aim of delivering customers’ demands is to minimize the distance travelled

and/or if possible to minimize the number of trucks used.

In literature this kind of distribution problems are called the Capacitated Vehicle

Routing Problem (CVRP). Each day they have to distribute lots of customers’ de-

mands. The loading portion of the problem is a Bin Packing Problem (BPP) and

the routing part of the problem is known to be Vehicle Routing Problem (VRP)in the

literature.

We need to know the length, the width, the height and the weight of each customer
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Table 3.1: Capacity of the vehicles

Capacity

Trucks Length (m) Height (m) Width (m) Mass (tone)

1 6 2.5 0.7 8

2 6 2.5 0.7 8

3 6 2.5 0.7 8

4 6 2.5 0.7 8

5 6 2.5 0.7 8

6 5 2.3 0.6 6

Figure 3.4: A View Of Truck When Loading

in order to construct the model discussed in Chapter 4. The algorithm in Section

3.2 explains the way of knowing these four aspects values by the use of ordering the

plates of glass algorithm.
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3.2 Glass Plates Arranging Algorithm

Glass transportation differs from transporting the other goods because of the brittle-

ness structure of the glass. That’s why loading the plates of the glass to the vehicles is

an important problem as mentioned in Section 3.1. The stress that each glass brings

to the other plates is a static problem to be taken care of while ordering the plates of

the glass onto each other.

This ordering glass plates problem is important for the model of Chapter 4. This

forms the data for the length, height, width and the mass of the columns of the glass

plates. In other words the output data of the glass ordering problem is going to be

used as the input data of the proposed model. If the dimensions of the customer glass

packages should be found, then the capacities of each customers can be determined.

The ordering of the glasses are completely/fully intuitional. The exact way of ordering

glasses cannot be found because of the variety of the glass sizes. By the way while

loading the glasses one should be careful for the type of the glasses. This means that

heat treated glasses, tempered glasses and float glasses would be loaded separately.

Because all of these types of glasses have different characteristics. The load and stress

for different types of glasses varies from each other. In general, customers want only

one type of glass such as heat treated glass or tempered glass or some other type, but

sometimes they demand different types of glasses in a single order. Subsequently the

workers try to put the glasses in order by looking without the type of the glass in an

order of tempered glass first, heat treated glass second and float glass third. But they

take measures/precautions for not to brake the glasses by putting special papers and
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foams between the glasses. As observed by the management, the loss of glass during

transportation is a lot less than the loss in production. The firms statistics tells us

that in a year approximately five plates of glasses are broken during transportation.

The methods that the firm use for putting the order of the plates of the glasses while

loading is based on sequencing the glasses according to the sizes. They load the

largest glass first then the next largest glass. There is one important rule that at

least one of the sides should be loaded one on the top of the other. The other rule is

to load the plates of glasses vertically if the ratio of the height of the glass and the

length of the glass does not exceed 1.75. If that ratio exceeds 1.75 then they load the

plates of glasses horizontally. This ratio is determined intuitively by the experience

of the workers. The plates of glasses longer than the tripod can be loaded easily by

increasing the height of the tripod by assembling an extension at the top of the tripod.

If the width of a customer’s demand exceeds the truck’s width, a new column would

be opened up to the next of the column customer’s glasses.

In our model, we take the workers’ experience in to consideration on of height, length,

width and mass. We assume the following instructions for the arranging of glass plates:

• Glasses are loaded vertically.

• Wider glass plates are loaded first.

• A longer glass plate with less width than some other plate, is loaded in front of

the other one.

• Different columns are used for each customer.
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• If the customers’ demands exceed truck’s width, then a new column is opened

for the customer. Then both columns’ length are added together in determining

the length of each customer.

The algorithm is coded in Matlab and an Intel Centrino 1.7 processor computer is

used for solving the algorithm. The code for this algorithm is given in Appendix A.

An example of the glass plate arranging algorithm is shown below.

The customers in Table 3.2 demand a total of 10 glass plates all in different sizes.

The above algorithm will put them in an order for loading. As a result the glasses

in the Table 3.2 are sequenced as 5-1-2-6-3-7-8-4 (5th glass is in front of all of the

glasses and 4th glass is behind all of the glasses), with a length of 1074 mm, width of

180 mm, height of 1241 mm and a total mass of 0.1218 tone. This means that the

data needed for the model is determined as the length, height, width and mass of the

customer. This data is used for constructing the capacity constraints of the model.

In Figure 3.5 the front view of the ordering of the glasses are shown.
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Table 3.2: An Example Of A Demand Of A Customer

Dimensions

Glasses Length(mm) Height(mm) Width(mm) Mass(tone) Unit

1 194 1241 18 0.004738 1

2 471 1111 18 0.010298 1

3 601 1091 18 0.012904 1

4 1074 1194 18 0.050474 2

5 198 609 18 0.002325 1

6 574 609 18 0.006879 1

7 704 609 18 0.008438 1

8 1074 609 18 0.025744 2

Figure 3.5: The Front View Of The Ordered Glasses In Table 3.2
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CHAPTER 4

A Model for the Glass Transportation Problem

An integer linear programming model is developed to solve the problem described in

the previous chapter. The model is a variation of the Capacitated Vehicle Routing

Problem (CVRP).

Let n = is the number of customers, and C = {1, 2, 3, ....., n} represent the set of

customers and the depot location by 0. Then G = (N, E) be a complete directed graph

representing the Vehicle Routing network where N = C ∪ {0} = {0, 1, 2, 3, ....., n} is

the set of nodes and E = {(i, j) : i, j ∈ N, i 6= j} is the set of edges (arcs). The

additional notations of the mathematical model are listed below;

m = number of delivery vehicles, and the index set K = {1, 2, ....., m} represents

the m vehicles.

CWk = the width of the vehicle k ∈ K,

CLk = the length of the vehicle k ∈ K,

CHk = the height of the vehicle k ∈ K,

CMk = the hauling capacity in tonnes of the vehicle k ∈ K,
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dij = distance from customer i to customer j for (i, j) ∈ E

Wi = the width of the plates of the customer i ∈ C,

Li = the length of the plates of the customer i ∈ C,

Hi = the height of the plates of the customer i ∈ C,

Mi = the weight of the customer i ∈ C

The distance matrix is obtained from a map of Ankara, and it is symmetric. Thus we

deal with a symmetric vehicle routing problem, and note that, dii = ∞ for all i ∈ N .

yik =





1 if customer i is visited by the vehicle k

0 otherwise

,

xijk =





1 if customer j is immediately visited

after customer i by the vehicle k

0 otherwise

and

uik = the load of the vehicle after visiting customer i by the vehicle k.
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Then the mathematical model of the firm’s problem is given by as follows.

min
∑

i∈N

∑

j∈N

dij

∑

k∈K

xijk (4.1)

Subject to

Wi yik ≤ CWk ∀ i ∈ N, ∀ k ∈ K (4.2)

∑

i∈N

Li yik ≤ CLk ∀ k ∈ K (4.3)

∑

i∈N

Mi yik ≤ CMk ∀ k ∈ K (4.4)

Hi yik ≤ CHk ∀ i ∈ N, ∀ k ∈ K (4.5)

∑

k∈K

yik = 1 ∀ i ∈ C (4.6)

∑

k∈K

y0k = m (4.7)

∑

j∈N

xijk =
∑

j∈N

xjik = yik ∀ i ∈ N, ∀ k ∈ K (4.8)

uik − ujk + CLk ∗ xijk ≤ CLk − Li ∀ i, j ∈ C, i 6= j, such that

di + dj ≤ CLk, ∀ k ∈ K

(4.9)

Li ≤ uik ≤ CLk ∀ i ∈ C, ∀ k ∈ K (4.10)

xijk ∈ {0, 1} ∀ i, j ∈ N, ∀ k ∈ K

yik ∈ {0, 1} ∀ i ∈ N, ∀ k ∈ K

The objective (4.1) of the model is to minimize the total distance travelled by all

the vehicles. The constraints of (4.2) to (4.5) are the vehicle capacity constraints.

Expression (4.2) for each k forms each vehicle’s width constraint. Expression(4.3)

is a vehicle’s length constraint. Expression(4.4) is the vehicle height constraint.

Expression(4.5) is a vehicle’s mass constraint. Expression(4.6) and Expression(4.7)
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ensure that every customer is assigned to only one truck, with the exception of the

depot to be visited by all of the m vehicles. The set of constraints (4.8) imply that

a vehicle visits a customer and leaves that customer.The set of constraints(4.9) and

(4.10) are the subtour elimination constraints of the travelling Salesman Problem

(TSP). That set of constraints imposes both the capacity and the connectivity of

CVRP as proposed by Miller, Tucker and Zemlin (1960).

In this model, the capacity constraints are based on four dimensions. These are the

length, the height, the width and weight constraints. The length constraint dominates

the other capacity constraints, based on the experience in the glass industry the length

turns out to be the most important restriction in loading a vehicle. As discussed in

Section 3.2, if a plate of glass is longer than the height of the tripod, the workers

can increase the height of the tripod by adding some more cushions. Also width of

any customer’s orders is discussed in the ordering algorithm, the instruction is that

if a customer’s demands exceeds the truck’s demand then a new column is allocated

next to previous and the lengths are added together. Therefore, the width and the

height constraints turn out to have larger slacks. In addition, the weight constraint

has a large slack value, too. The government regulation is that the cargo of a vehicle

cannot exceed its hauling capacity of a truck. Past experience of the firm indicates

that the total weight of the glass plates cannot exceed the hauling capacity of a truck.

Consequently, the height, the width and the weight constraints become redundant.

Thus the problem is reduced to one dimensioned (length) capacity constraint instead

of four dimensional capacity constraints. The model above now can be restated by
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using only one capacity constraint.

min
∑

i∈N

∑

j∈N

dij

∑

k∈K

xijk (4.11)

Subject to

∑

i∈N

Li yik ≤ CLk ∀ k ∈ K (4.12)

∑

k∈K

yik = 1 ∀ i ∈ C (4.13)

∑

k∈K

y0k = m (4.14)

∑

j∈N

xijk =
∑

j∈N

xjik = yik ∀ i ∈ N, ∀ k ∈ K (4.15)

uik − ujk + CLkxijk ≤ CLk − Li ∀ i, j ∈ C, i 6= j, such that

di + dj ≤ CLk, ∀ k ∈ K

(4.16)

Li ≤ uik ≤ CLk ∀ i ∈ C, ∀ k ∈ K (4.17)

xijk ∈ {0, 1} ∀ i, j ∈ N, ∀ k ∈ K

yik ∈ {0, 1} ∀ i ∈ N, ∀ k ∈ K

Note that the vehicles are assumed to be identical, then the decision variable for the

constructed model above is revised and the model can be reconstructed as in (4.18)

to (4.24).

Let

xij =





1 if customer j is immediately visited after customer i

0 otherwise

,
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ui = the load of the vehicle after visiting customer i.

and the mathematical formulation for the revised model is;

min
∑

i∈N

∑

j∈N

dijxij (4.18)

Subject to

∑

i∈N

xij = 1 ∀ j ∈ C (4.19)

∑

j∈N

xij = 1 ∀ i ∈ C (4.20)

∑

i∈N

xi0 ≤ m (4.21)

∑

j∈N

x0j ≤ m (4.22)

ui − uj + CLxij ≤ CL− Li ∀ i, j ∈ C, i 6= j, such that

di + dj ≤ CL

(4.23)

Li ≤ ui ≤ CL ∀ i ∈ C (4.24)

xij ∈ {0, 1} ∀ i, j ∈ N

The model above (4.11) to (4.17) is solved by the help of GAMS 20.2 optimizer tool

on a computer with an Intel Centrino 1.7 processor. The GAMS model is provided

in Appendix B.
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CHAPTER 5

Solution Methods

In order to solve the proposed model of Chapter 4 an optimizer tool is needed. GAMS

20.2 is used for an optimizer tool and tried to solve the integer problem. The resource

limitations of the GAMS optimization tool and the structure of the loading problem

unfortunately cannot allow solving the larger size problems. Therefore alternative

methods for solving the proposed model are required for tackling the large sizes prob-

lems. Therefore, an exact algorithm (Section 5.1) and a heuristic method (Section

5.2) are proposed.

5.1 An Exact Algorithm for the Problem

Each day the delivery and transportation problem needs to be solved for the transport

and delivery of daily customers’ orders. An alternative method to solve the problem

is the proposed exact algorithm. When the number of customers increase, the con-

structed model of Chapter 4 cannot be solved. An alternative method is an exact

algorithm which is a kind of set-covering-based algorithm for the CVRP suggested

by Balinski and Quandt (1964). Also for a detailed review of the set-covering-based

algorithms for the CVRP, one can refer to Bramel and Simchi-Levi (2002).
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Other set-covering-based methods are summarized as follows. First step is to solve

the linear relaxation of the set covering problem by using column generation (CG)

procedure without enumerating all possible routes. The solution of the relaxation

problem is then used as a lower bound on the optimal integer problem. Finally,

in the space of the columns generated an integer solution is obtained by using the

branch-and-price algorithm.

Set Covering Problem

Let C = the set of customers, C = {1, 2, 3,.....,n}

R = the set of all feasible routes, R = {1, 2,...., R}

dr = the total distance travelled of route r, r ∈ R

k = number of delivery vehicles, K = {1, 2,...., m}

αir =





1 if customer i is served in route r

0 otherwise

where i ∈ C, r ∈ R and the decision variable is;

xr =





1 if route r is in the optimal solution

0 otherwise
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where r ∈ R. The set covering mathematical formulation is as follows;

min
∑

r∈R
dr xr (5.1)

Subject to

∑

r∈R
αir xr ≥ 1 ∀ i ∈ C (5.2)

∑

r∈R
xr ≤ k (5.3)

xr ∈ {0, 1} ∀ r ∈ R

The objective function (5.1) of the set covering problem is to select a minimum-

distance set of feasible routes. Constraint (5.2) each customer is served in one route

and Constraint (5.3) refers at most k number of delivery vehicles can be used. Since

our distance matrix dij satisfies the triangular inequality, each customer is visited

exactly ones in the optimal solution whether the Constraint (5.2) is an inequality

constraint.

Linear Programming Relaxation of the Set Covering Problem

Without enumerating all the routes, the column generation algorithm is used to

solve the LP relaxation of the set covering problem. The solution to this LP relaxation

is then used to obtain if there are any routes not included in the formulation. This is

the column generation step. To understand if there is a route that should be included

in the formulation a simpler optimization problem is solved by using the optimal dual

variable values. Then the LP relaxation problem is resolved. This procedure stops

when no additional routes are found which can reduce the objective function. After

all an optimal solution to the relaxation problem is found.

First a partial set of routes are enumerated where R′ ⊆ R. The linear relaxation of
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the set covering problem is formulated as;

min
∑

r∈R′
dr xr (5.4)

Subject to

∑

r∈R′
αir xr ≥ 1 ∀ i ∈ C (Πi) (5.5)

∑

r∈R′
xr ≤ k (θ) (5.6)

xr ≥ 0 ∀ r ∈ R′

Let x∗ be the optimal solution to the LP relaxation problem of the set covering

problem, and Π∗ be the corresponding optimal dual variables associated with the

Constraint (5.5) as shown in the model where Π∗ = {Π∗1, Π∗2, ....,Π∗n}. Also θ∗ be the

corresponding optimal dual variable associated with the Constraint 5.6.

The dual of the linear relaxation of the set covering problem is;

min
∑

i∈C

Πi −Kθ (5.7)

Subject to

∑

i∈C

αir Πi − θ ≤ dr ∀ r ∈ R (5.8)

Πi ≥ 0 ∀i ∈ C

θ ≥ 0

If the dual prices (variables) of the LP relaxation problem satisfies the constraints

of the dual of the LP relaxation, then the LP relaxation of the set covering problem

is optimal. So we are looking whether optimal (Π∗, θ∗) is dual feasible. As long as

the dual feasibility is satisfied, the optimal solution for the LP relaxation of the set

covering (primal) problem with set of routes R′ is also optimal for the one with the set

of routes R. In order to check the dual feasibility, it is enough to find a column (route)
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r ∈ R\R′. So if we can find a column which violates Constraint 5.7 one should add

the corresponding column (or route) to set R′ and should continue the CG procedure.

After all the CG algorithm is utilized to identify a feasible route r ∈ R that violates

5.7.

Column Generation Algorithm

Lets define d∗r to be the reduced cost of column r, and

d∗r = dr + θ∗ −
∑

i∈Sr

Π∗i (5.9)

for each r ∈ R where S is the set of nodes. Also define L(S) =
∑

i∈S Li for any

S ⊆ C. Then the column generation problem is;

d∗min = min { d∗r : L(Sr) ≤ CL} (5.10)

In order to solve CG, the problem is modelled as a shortest path problem. At each

step updated distances (du
ij) are used for the corresponding shortest path problem

rather then using the original ones (dij). Then the distances are updated by using

the following expression;

du
ij = dij + Π∗i /2 + Π∗j/2 (5.11)

So in terms of edge distances dr can be represented as follows;

dr =
∑

(i,j)∈r

dij (5.12)

similarly, d∗r

d∗r =
∑

(i,j)∈r

du
ij (5.13)

Note that, with this formulation d∗r = dr −
∑

i∈Sr
Π∗i . This is a slight modification of

the Expression (5.9). Since θ is a fixed cost added to each route while selecting the
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minimum distance route (5.10), θ can be eliminated. But when we are looking for

the optimality we have to consider it. The elimination of θ allows modeling the CG

problem as a shortest path problem (otherwise we should distribute the fixed cost to

each edge which is meaningless).

The corresponding shortest path problem may have negative cycles which is known

to be NP-hard. We are going to solve this problem by using a kind of dynamic

programming approach (DP). Note that Desrochers et all. (1992) proposed a branch-

and-bound algorithm to solve the CG problem. To generate a lower bound for the CG

they used dynamic programming. Our dynamic programming approach is different

from their algorithm in the sense that we used DP to solve the CG rather than

obtaining a lower bound for CG. Another note for the reader is the following; we used

branch-and-bound (price) to solve the set covering problem. But, they use branch-

and-bound only for to solve CG. The dynamic programming recursion is as follows.

fn(j) = min
i
{fn − 1(i) + d(i, j) : L(n− 1, i) + L(j) ≤ L} (5.14)

where fn(j) is the minimum distance of visiting customer j as the nth customer, and

L(n, j) is the length of the total load of a truck which visits customer j in the nth

order with minimum distance. Also we should keep the information of the predecessor

customers that achieves the minimum distance routes. The information about the

predecessors are stored by the Expression (5.15).

Pn(j) = arg min
i
{fn−1(i) + d(i, j)} (5.15)

At each stage the value of Pn(j) is stored as soon as fn(j) is updated.
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Note that, L(n, j) is also updated in each step the following identity.

L(n, j) = L(n− 1, Pn(j)) + Lj (5.16)

Branch-and-Price Algorithm

We solved the LP relaxation of the set covering problem by using CG algorithm until

now. In order to obtain an optimal integer solution, we have to use the branch-

and-price algorithm. Solving the LP relaxation of the set covering problem for each

subproblem (branch) in a branch-and-bound procedure yields an integer solution for

the set covering problem.

A branch-and bound procedure in which additional columns are generated/added at

each subproblem of the branch-and-bound tree is proposed which is known as branch-

and-price algorithm. As in Desrochers et all. (1992), we branch on the edge variables

(e.g. xij = 0 or 1 in the model 4.18 to 4.24 below). When xij = 1, dij in the dynamic

programming algorithm is set to −∞. When xij = 0, dij in the dynamic programming

algorithm is taken as ∞.

The flow chart of the set-covering-based exact algorithm is shown in Figure 5.1. The

algorithm is coded in MATLAB 6.5 and GAMS 20.2 on a computer with an Intel

Centrino 1.7 processor. The source code of the exact algorithm is given in Appendix

C. Also the GAMS code of the set covering model solved in the exact algorithm is

given in Appendix D. The numerical results are presented in Chapter 6.
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Figure 5.1: The Flow Chart Of The Set-Covering-Based Exact Algorithm
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5.2 A Heuristic Approach for the Problem

On further proposed method for solving the model of Chapter 4 is a heuristic, namely

the Generalized Petal Algorithm. This algorithm is divided into two parts. First

part of the Generalized Petal Algorithm consists of The Generalized Petal Heuristics

(Section 5.1.1). The second part consists of The Improvement Heuristics (Section

5.1.2).

5.2.1 The Generalized Petal Heuristics

The proposed heuristic generates a set of good vehicle routes by using the generalized

petal procedure. Then the optimal route of all these routes is selected by using the

set partitioning algorithm.

The petal procedure begins with selecting an initial sequence. The proposed heuristic

generates 1-petals using Traveling Salesman Heuristics (TSP) which is referred to as

generalized petals (Foster and Ryan,1976). TSP heuristics are applied by starting

with an arbitrary customer to assign all customers a number from 1 to n representing

a sequenced TSP tour. Each feasible subsets taken from this order is a petal. A petal

is feasible if the length of plates of glasses delivery on the routes does not exceed the

length of the vehicle. Such a TSP route for a petal is called a petal route (Ryan et all

(1993)).

Given a set of petals, an optimal combination can be selected by solving a set par-

titioning problem. If petals are constructed by following a certain sequence, then
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the LP relaxation of the set partitioning problem is totally unimodular. This means

the optimal integer solution can be found just solving the LP relaxation of the set

partitioning problem (Foster and Ryan (1976) and Ryan et all (1993)).

One of the reason of using TSP heuristics to generate petal routes instead of radial

order or sweep procedure is to create good and various sequences. Also in general the

cost of a petal route is defined by using the corresponding TSP petal routes if radial

order or sweep procedure applied first. But if a TSP procedure is first applied the

cost of a petal route is known directly from the petal itself. This is one other reason

for applying TSP first.

Four TSP heuristics are used to generate petal routes by combining them together.

These are Nearest Neighborhood Heuristic (NNH), Nearest Insertion Heuristic (NIH),

Farthest Insertion Heuristic (FIH), Cheapest Insertion Heuristic (CIH). they are all

known to be construction heuristics. The construction heuristics stop when a solution

is found and never try to improve the solution. A brief explanation of these heuristics

are given next.

Nearest Neighborhood Heuristic (NNH)

NNH is perhaps the simplest and most straightforward TSP heuristic. The logic for

that algorithm is always to visit the nearest city. This heuristic runs in O(n2). First

a random city is selected to start. Then an unvisited city is found and visited. It

stops when there are no unvisited cities remaining.
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Nearest Insertion Heuristic

In this heuristic, a node with the shortest distance to a tour node is inserted.

Farthest Insertion Heuristic

The node is inserted to a tour node whose minimal distance is maximum.

Cheapest Insertion Heuristic

In the CIH, any city is selected first to start and its closest neighbor is found. Then

a subtour is created to join those two cities. Next an arc is replaced in the subtour

by combining those two arcs. This procedure is repeated until a tour is obtained.

2-Opt Heuristic

We used 2-Opt Heuristics method is implemented immediately after applying the four

construction TSP heuristics to improve the sequence obtained. 2-Opt Heuristic is an

improvement heuristic. The improvement heuristics attempt improving a solution

which was generated by some construction heuristic.

Given an initial tour, 2-Opt heuristic eliminates two edges and reconnects the two

resulting subpaths in some other way. The 2-Opt heuristic runs in O(n2). A scheme

for 2-Opt heuristic is shown in Figure 5.2.

Figure 5.2 shows how easily the savings for the distance of nodes (i, k) can easily be

calculated as;

Payoff (i, k) = dij + dlk − dik − djl (5.17)
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Figure 5.2: 2-Opt

The logic is to swap the corresponding edges and to calculate all of the swapped

edges’ payoffs by using the Equation (5.17). The swaps with the maximum gains are

exchanged.

Set Partitioning Algorithm

After finding and improving the TSP route, all the feasible petals are found. Then

all feasible petal routes are enumerated. A feasible petal is a feasible route starts and

ends at the depot. Since TSP is solved first, subsequently the distances of the petals

are calculated. In order to select an optimal tour, the problem is reformulated as a set

partitioning problem. The parameters of the set partitioning problem are as follows.

Let

C = the set of customers, C = {1, 2, 3,.....,n}

P = the set of all feasible petals, P = {1, 2,...., P}

dp = the distance travelled of petal p
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k = number of delivery vehicles, K = {1, 2,...., m}

αip =





1 if customer i is served in petal p

0 otherwise

where i ∈ C, p ∈ P, and the decision variable is;

xp =





1 if petal p is in the optimal solution

0 otherwise

where p ∈ P. The set partitioning mathematical formulation is as follows;

min
∑

p∈P
dp xp (5.18)

Subject to

∑

p∈P
αip xp = 1 ∀ i ∈ C (5.19)

∑

p∈P
xp ≤ k (5.20)

xp ∈ {0, 1} ∀ p ∈ P

The objective function (5.18) of the set partitioning problem selects a minimum-

distance set of feasible petals. Constraint (5.19) implies each customer is served in

one route and Constraint (5.20) requires that at most k number of delivery vehicles

can be used. The solution of the set partitioning problem gives the optimal petals, in

other words optimal vehicle routes and their distances.

To solve the set partitioning problem MATGAMS is utilized to obtain the VRP

solutions. For each TSP sequences, the proposed heuristic finds one VRP solution.

There is one TSP sequence immediately after applying the improvement heuristic
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(2-Opt) to, for instance, NNH. Then petal algorithm is applied to the improved TSP

sequence which comes from NNH to find all feasible petal routes. Then the set

partitioning problem is run to find the VRP solution of the found petal routes. This

is done for all of the four construction heuristics. Finally, the best VRP solution of

all is selected.

5.2.2 The Improvement Heuristic for VRP

In Section 5.2.1 the generalized petal heuristic approach is explained. In this Section

an improvement VRP heuristic is applied to the best found optimal VRP obtained in

Section 5.2.1.

A variation of Multi-route improvement heuristic is used to improve the preceding

vehicle routes instead of Single-route improvements in the previous subsection. Multi-

route improvement heuristics provide descriptions of multi-route edge exchanges for

the VRP. String Exchange (SE) performs better than the other multi-route improve-

ment heuristics in the literature (Toth and Vigo, (2002)). Thus, the selected String

Exchange method is preferred for our proposed heuristic to improve the VRP.

String Exchange Heuristic

Figure 5.3 shows how String Exchange is applied to a VRP. Two strings (or chains)

of at most k vertices are exchanged between two routes where k represents the string

length, k = 1 for our problem.

Let’s exchange i from one route and j from the other route in Figure 5.3. Then the
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Figure 5.3: String Exchange
payoff matrix can be calculated as;

Payoff (i, j) = dik + dli + djm + dnj − dim − din − djk − dlj (5.21)

The logic for the string exchange is to first evaluate all possible swapped nodes’ payoffs

between a pair of routes by using the Expression (5.21), and then select the maximum

payoff for the exchange procedure.

The steps of generalized petal heuristic algorithm is shown below;

Step 1 : Initialization of system parameters

Demand and coordinates of the customers, capacity of the trucks, maximum number

of trucks.

The distance matrix is calculated using the coordinates of the customers. (All the

distances are Euclidean distances)

Step 2 : For each TSP construction heuristic (NNH, NIH, FIH, CIH) do the following

(outer loop)
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Step 3 : For each i ∈ C do the following: (inner loop)

Step 3.1 : Apply NNH starting from i ∈ C to find a TSP solution.

Step 3.2 : Apply 2-Opt procedure to improve the TSP tour of Step 2.1.

Step 3.3 : Apply the generalized petal heuristic. Note that the TSP solution

of Step 3.2 is used as the sequence to be followed during the generalized petal

procedure.

Step 3.4 : Solve a set partitioning problem to select the optimal petal routes

using the solution of Step 3.3. Note that this is the first time in the algorithm

that a (feasible, probably a good) VRP solution is obtained.

Step 3.5 : Apply string exchange procedure to improve the VRP solution of

Step 3.4.

Step 4 : Stop when the inner and outer loops are completed.

The flow chart of the generalized petal algorithm is shown in Figure 5.4.The source

code of the generalized petal heuristic can be seen in Appendix E. Also the GAMS

code of set partitioning model solved in the generalized petal heuristic is given in

Appendix F.

The results of numerical experimentations and the comparisons of the proposed heuris-

tic to others are presented in Chapter 6.
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Figure 5.4: The Flow Chart Of The Generalized Petal Heuristic
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CHAPTER 6

Numerical Experimentation

This Chapter presents the numerical results of the solutions of these following three

methods; The IP model of Chapter 4, the exact solution method (Section 5.1) and the

proposed heuristic (Section 5.2). The benchmark problems described by Christofides

et al. are used to test the performance of the exact algorithm and the proposed

heuristic. After that the algorithms are used to find the solution of the problem.

Intel Centrino 1.7 processor computer is used to find the solutions of all of the proposed

methods. For the optimization, parts of the GAMS 20.2 is used as an optimization

tool. MATLAB 6.5 is used for the coding part of all of the methods described.

The disadvantage of using the MATLAB and MATGAMS is they use CPU so much,

thus the CPU times for the methods are increasing, and this directly affects the

performance of the solution methods.

Even for the proposed IP models, Equations (4.1) to (4.10) and the other model

Equations (4.11) to (4.17), upto ten (10) customers can be solved by using the GAMS

model in Appendix B because of the structure of the CVRP. Thus it is clear that

CVRP models and its solution methods cannot satisfy the requirements for the firm’s

problem. For this reason we need alternative solution methods to solve the problem.
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An alternative solution method described in Section 5.1 is an exact solution method.

This exact method is a variant of set-covering-based algorithm with branch-and-price

algorithm to solve the proposed model. By using the benchmark problem it seen

that exact algorithm can solve the problems upto twenty one (21) customers. It is

observed that the exact algorithm cannot solve more than 21 customers and when the

CPU times are based on it is seen that this algorithm performs very slow. The com-

putational comparison of the benchmark problems solutions and the exact algorithm

solutions and the CPU times in seconds are summarized in Table 6.1.

Table 6.1: Comparison Of The Exact Algorithm With The Optimum

Christofides et al. Exact Algorithm

Prob. Set Customer Optimal Routes Optimal Routes CPU Time

E-n13-k4 12 247 4 247 4 104.03

E-n22-k4 21 375 4 375 4 310.2

Consequently, another alternative method is proposed to solve the problem, hence a

heuristic method is tested. In Section 5.2, the generalized petal algorithm is mentioned

which solves TSP first and after finds all of the feasible routes, finally improves the

VRP solution obtained by applying set partitioning model to the petal routes. The

computational comparison of the generalized petal algorithm to the optimal twelve

benchmark problems are given in Table 6.2.

As seen from the Table 6.2 the generalized petal algorithm solves the problem with

100 customers and more. Also in this table the CPU times in seconds of the proposed

heuristic is provided. In the TSP heuristic column of the table the TSP construction
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Table 6.2: Comparison Of The Gen.Petal Algorithm With The Optimum Solution

Christofides et al. Generalized Petal Algorithm

Prob. Set Optimal Routes Solution Routes CPU Time TSP Heu.

E-n13-k4 247 4 249 4 27.90 NNH

E-n22-k4 375 4 377 4 39.85 NNH

E-n23-k3 569 3 576 3 48 NNH, FIH

E-n30-k3 534 3 571 3 67.71 FIH

E-n33-k4 835 4 856 4 76.09 NNH

E-n51-k5 521 5 557 6 153.06 NNH

E-n76-k7 682 7 735 7 479.31 NNH,FIH

E-n76-k8 735 8 805 10 371.16 FIH

E-n76-k10 830 10 901 11 278.22 CIH

E-n76-k14 1021 14 1101 16 215.31 FIH

E-n101-k8 817 8 898 8 1473.7 NNH

E-n101-k14 1071 14 1171 14 567.42 NNH

heuristics are shown with the best VRP solution.

The solutions of the proposed heuristic are far from the optimal solutions even from

the other heuristic solutions. The reason for that is to use the MATLAB for cod-

ing. Also the Sweep method (Gillet and Miller (1974)) uses 3-opt, 1-petal (Foster

and Ryan (1976)) and 2-petal (Renaud et all (1996)) method uses 4-opt improvement

heuristics. Note that in our heuristic 2-opt improvement heuristic is used instead of

3-opt or 4-opt. In Table 6.3 some of the heuristic solutions are given in km to compare

the solutions with generalized petal heuristic in kilometers.
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Table 6.3: Best Solution Comparison Of The Gen.Petal With Other Heuristics

Prob. Set Clark&Wright Sweep 1-Petal 2-Petal Gen.Petal Optimum

E-n51-k5 578.64 532 531.90 524 557 524

E-n76-k10 900.26 884 885.02 854.09 901 830

E-n101-k8 886.83 851 836.34 830.40 898 817

In Table 6.4 the comparison of the CPU times in seconds for the heuristics are shown.

Table 6.4: CPU Time Comparisons Of The Gen.Petal With The Other Heuristics

Prob. Set Sweep 1-Petal 2-Petal Gen.Petal

E-n51-k5 0.12 0.1 0.76 153.06

E-n76-k10 0.17 0.07 0.52 278.22

E-n101-k8 1.18 0.32 3.84 1473.7

After the comparisons of the exact algorithm and the proposed heuristics to the

benchmark problems in the literature, the daily delivery and transportation problem

of the firm is solved both using the methods described in Chapter 4 and 5.

For a given daily data, the solutions are tested by comparing our solutions with the

solution given from the firm. It is known from the given data that there are 21

customers for delivery. The height, the length and the width of each glass is known

for any customer. Before loading the vehicles the sequencing the customers’ orders

algorithm is applied to all of the customers and obtained the length, the height, the

width and the weight of the customers. The solutions of all customers can be seen in

Appendix G. This is the data (Section 3.2) input for the model to be solved. The
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distance matrix in km is calculated by the help of a map, and this matrix satisfies the

triangular inequality and is given in Appendix H.

The CVRP model described in Chapter 4 is used, but it cannot be solved for the

larger customer numbers. Unfortunately the exact algorithm cannot solve larger size

problems. The proposed heuristic finds a solution in 45.297 seconds (CPU time).

The total distance travelled is 233.6 km and only 2 vehicles are needed to load the

customer orders. There are many alternative solutions. Two of the alternative routes

are given below.

Vehicle 1 : 0-3-2-12-10-11-16-6-5-9-7-4-0

Vehicle 2 : 0-20-19-18-8-1-14-13-17-21-15-0

or

Vehicle 1 : 0-9-7-4-16-6-5-2-11-12-10-3-0

Vehicle 2 : 0-15-21-17-13-14-20-19-18-8-1-0

They enumerate the customers first and then load to the vehicles from the first cus-

tomer on the list to the last. Any clustering or routing operation is not applied for the

delivery and transportation problem. The solution of the firm is to load the customer

orders into two vehicles. The vehicles travel a total distance of 331.9 km. The routes

for the firm are given below;

Vehicle 1 : 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-0
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Vehicle 2 : 0-17-18-19-20-21-0

The difference between the solution of the firm and the proposed heuristic is 98.3

km. This means there is a savings of 98.3 km by the generalized petal algorithm in

comparison to the firm’s current strategy.
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CHAPTER 7

Conclusion

This thesis attempts solving a delivery and a transportation problem of a glass man-

ufacturing firm. The problem of the firm is to deliver the customer orders to the

customers on time. The customers orders are various sizes of plates of treated glass.

They first need to load the glass plates into the delivery vehicles. The glass plates

must be loaded carefully because of the brittleness structure of the glass. An impor-

tant aspect for loading is the capacity of a vehicle. The customer orders should not

exceed the capacity of a vehicle. In this problem, the capacity of a vehicle’s expressed

in four dimension. These are the length, the width and the height of a vehicle. Also

the weight capacity of the vehicle is the fourth dimensions. The total load of a vehicle

should satisfy all of these restrictions.

This problem is modelled as a CVRP. The length, the width, the height and the

weight of each customer should be known for checking the capacity constraints. Each

customer’s order is arranged in some fashion by a sequencing algorithm for loading.

This heuristic algorithm is developed using the workers’ experiences. The importance

of this algorithm is the output of this algorithm for each customer is used as an input

of CVRP and the other solution methods. The output of the glass plates arranging

algorithm gives the length, the width, the height and the weight of each customer.
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And this data are used for the demand data of the customers or for the capacity

constraints of the vehicles.

After finding the capacities of each customers the CVRP model is constructed and

attempted solving by using an optimizer tool. This optimizer tool is selected as GAMS

20.2, and used for to solve this problem. Because of the structure of the problem and

the resource limits of the GAMS, the model cannot be solved. Unfortunately upto

ten customers can be solved. For this reason other methods are needed to solve the

problem.

An alternative solution method used to solve the delivery and the transportation

problem is an exact algorithm which is a set-covering-based algorithm. Briefly in this

algorithm the CVRP is modelled as a set-covering problem. By using the branch-and-

price algorithm the set-covering problem is used to solve. The relaxation of the set

covering problem is used and tried to solve by using the column generation algorithm

to find a lower bound on the set-covering problem. The branch-and-price algorithm

is used to find and integer solution to the found the solution of the set-covering

relaxation problem. This algorithm is coded by using MATLAB 6.5 and by using

MATGAMS. Because of using MATLAB the algorithm performs worse. Upto twenty

one customers can be solved in a long time period. Thus an other alternative method

is proposed.

The other alternative method is an heuristic approach. This heuristic approach is a

generalized petal algorithm. Four TSP construction heuristics are used at the same

time to find a TSP tour to start the generalized petal algorithm. These heuristics are
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Nearest Neighborhood, Nearest Insertion, Farthest Insertion, and Cheapest Insertion.

They are used to find the starting order to the petal algorithm. After finding the

TSP tour then a TSP improvement heuristic (2-Opt) is applied to improve the TSP

tour after the improvement the petal algorithm is applied to find all feasible petals.

The set-partitioning algorithm finds the VRP routes among them the best is chosen.

Then an VRP improvement heuristic (String Exchange) is applied to improve the VRP

route. Four heuristics are utilized simultaneously. Subsequently, the algorithm selects

the best VRP. The best VRP can come from either NNH or FIH or any of them. This

heuristic is also coded by using MATLAB 6.5 and MATGAMS. Unfortunately, using

MATLAB causes the heuristic performing worse than the proposed other heuristics in

the literature. A number of hundred customers can be solved by using the proposed

heuristic in a longer period of time than the other heuristics in the literature.

The exact algorithm and the proposed heuristic is tested by using a benchmark prob-

lems described by Christofides et al. The performance of the exact algorithm and the

proposed heuristic are worse than the exact and heuristic methods in the literature.

One of the reasons of this is to use MATGAMS for coding. The other reason is that

the heuristics in the literature used 3-opt or 4-opt improvement heuristics, but we

used only 2-opt improvement heuristic in this thesis.

Then the proposed model of delivery and the transportation problem is solved by

using, the exact algorithm and the proposed heuristic. A daily given data is used

which they have to deliver twenty one customers in that day. First of all the length,

the width, the height and the weight of each customer is determined by using the glass

plate arranging algorithm. Then the constructed CVRP model is used but cannot
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solve the problem. After the exact method is applied and it cannot solve the problem.

Then the proposed heuristic is used and finds a solution with two vehicles at a total

traveling distance of 233.6 km. The firm uses currently also two vehicles at a total

distance of 331.9 km to transport and distribute the customer orders. Therefore, the

proposed model to the problem reduces the total traveling distance by 98.3 km by

using the generalized petal heuristics. This is a considerable daily savings for the firm

in terms of traveling distances and consequently, the fuel expenses.
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APPENDIX A

The Source Code Of Arranging The Glass

Plates Algorithm

clear;

parameteritem=[194 1241 18 471 1111 18 601 1091 18 1074 1194 36 194 609

18 574 609 18 704 609 18 1074 609 36 ];

widthcapacity=700;

item=parameteritem(:,1:2);

itemsize=size(item);

sequence=[1];

sequencesize=size(sequence);

width=parameteritem(1,3);

for i=2:itemsize(1,1);

j=1;

true=1;
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while (j<=sequencesize(1,1))*true;

item1=i;

item2=sequence(j,1);

if max(item(item1,:))>max(item(item2,:));

if min(item(item1,:))<min(item(item2,:));

sequence=[sequence(1:j-1,:)

item1

sequence(j:sequencesize(1,1),:)];

true=0;

end

end

if max(item(item1,:))<max(item(item2,:));

if min(item(item1,:))<min(item(item2,:));

if (max(item(item1,:))== max(item(item2,:)))+ (min(item(item1,:))<=

min(item(item2,:)))<2;

sequence=[sequence(1:j-1,:)

item1

sequence(j:sequencesize(1,1),:)];

true=0;

end

end

end

if max(item(item1,:))==max(item(item2,:));

if min(item(item1,:))<min(item(item2,:));
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if (max(item(item1,:))== max(item(item2,:))) + (min(item(item1,:))<=

min(item(item2,:))) < 2;

sequence=[sequence(1:j-1,:)

item1

sequence(j:sequencesize(1,1),:)];

true=0;

end

end

end

if min(item(item1,:))==min(item(item2,:));

if max(item(item1,:))<max(item(item2,:));

if (max(item(item1,:))== max(item(item2,:)))+ (min(item(item1,:))<=

min(item(item2,:)))<2;

sequence=[sequence(1:j-1,:)

item1

sequence(j:sequencesize(1,1),:)];

true=0;

end

end

end

j=j+1;

end

if true==1;

sequence=[sequence
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item1];

end

sequencesize=size(sequence);

width=width+parameteritem(item1,3);

end

load=0;

sequenceditem=item(sequence(1,1),:);

r=1;

for i=2:sequencesize(1,1);

if load<=widthcapacity

Part(r).sequenceditem=sequenceditem;

Part(r).width=load;

else

r=r+1;

sequenceditem=item(sequence(i-1,1),:);

Part(r).sequenceditem=sequenceditem;

load=parameteritem(sequence(i-1,1),3);

Part(r).width=load;

end

sequenceditem=[sequenceditem

item(sequence(i,1),:)];

load=load+parameteritem(sequence(i,1),3);

end if load<=widthcapacity

Part(r).sequenceditem=sequenceditem;
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Part(r).width=load;

else

r=r+1;

sequenceditem=item(sequence(i,1),:);

Part(r).sequenceditem=sequenceditem;

load=parameteritem(sequence(i,1),3);

Part(r).width=load;

end

overalllength=0;

for i=1:r

sequenceditem=Part(i).sequenceditem;

height(i)=max(max(sequenceditem’));

length(i)=max(min(sequenceditem’));

overalllength=length(i)+overalllength;

end

overallheight=max(height);

overall=[overalllength overallheight];
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APPENDIX B

The Gams Model Of The Capacitated Vehicle

Routing Problem (CVRP)

SETS

i customers /0*21/

k vehicle /1*6/

alias(i,j) ;

SCALAR

m /6/

CWk /1500/

CLk /12000/

CMk /8/

CHk /3000/ ;

PARAMETERS

WIDTH(i) / 1 180, 2 1156, 3 912, 4130, 5 20, 6 96, 7 80, 8 120, 9 24, 10 48,
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11 22, 12 110, 13 8, 14 32, 15 12, 16 648, 17 620, 18 456, 19 180, 20 324, 21 1416/

LENGHT(i) / 1 1074, 2 1100, 3 1194, 4 1830, 5 498, 6 508, 7 459, 8 535, 9

775, 10 377, 11 683, 12 994, 13 445, 14 390, 15 970, 16 654, 17 1127, 18 1180, 19

679, 20 799, 21 2159/

MASS(i) / 1 0.12179, 2 0.61248, 3 0.36913, 4 0.44837, 5 0.00917, 6 0.02808, 7

0.01847, 8 0.02443, 9 0.01853, 10 0.010947, 11 0.027286, 12 0.141719, 13 0.00426,

14 0.02047, 15 0.05134, 16 0.13715, 17 0.33348, 18 0.33807, 19 0.07667, 20 0.12049,

21 1.39296/

HEIGHT(i) / 1 1214, 2 1825, 3 912, 4 2770, 5 936, 6 1051, 7 804, 8 925, 9

1215, 10 1107, 11 2030, 12 1440, 13 490, 14 860, 15 2990, 16 1136, 17 1997, 18

1480, 19 954, 20 1034, 21 2609/ ;

TABLE

DISTANCE(i,j)

Use the distance matrix in Appendix H.

VARIABLES

Z

u(i,k)

u(j,k);

BINARY VARIABLES

x(i,j,k)

y(i,k) ;

EQUATIONS

obj

wid(i,k)
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heig(i,k)

leng(k)

mas(k)

customer(i)

totalvehicle(i)

c7(j,k)

c8(i,k)

c11(i,j,k)

c12(i,k)

c13(i,k) ;

obj..Z=e=sum((i,j,k),DISTANCE(i,j)*x(i,j,k));

wid(i,k).. WIDTH(i)*y(i,k)=l=CWk;

heig(i,k)..HEIGHT(i)*y(i,k)=l=CHk;

leng(k)..sum((i),LENGHT(i)*y(i,k))=l=CLk;

mas(k).. sum((i),MASS(i)*y(i,k))=l=CMk;

customer(i)§(ord(i)¿1)..sum(k,y(i,k))=e=1;

totalvehicle(i)§(ord(i) eq 1)..sum(k,y(i,k))=l=m;

c7(i,k)..sum((j),x(i,j,k))-y(i,k)=e=0;

c8(i,k)..sum((j),x(j,i,k))-y(i,k)=e=0;

c9(i,j,k)$(ord(i)>1 and ord(j)> 1 and ord(i) ne ord(j)

(LENGHT(i)+ LENGHT(j)¡CLk))..u(i,k) - u(j,k) + CLk*x(i,j,k) =l=

CLk - LENGHT(j) ;

c10(i,k)$(ord(i)>1)..LENGHT(i)- u(i,k)=l=0;

c11(i,k)$(ord(i)>1)..u(i,k)- CLk =l=0;
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MODEL tez /ALL/;

SOLVE tez MINIMIZING z USING MIP;

display x.l;

display y.l;
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APPENDIX C

The Source Code Of Exact Algorithm

clear all;

format long;

t=cputime;

X=[266 235 295 272 301 258 309 260 217 274 218 278 282 267 242 249 230

262 249 268 256 267 265 257 267 242 259 265 315 233 329 252 318 252 329 224

267 213 275 192 303 201 208 217 326 181];

[x1 x2]=size(X);

for i=1:x1

for j=1:x1

if i==j

Distance(i,j)=1000000;

else

Distance(i,j)=round(sqrt((X(i,1)-X(j, 1))2+(X(i,2)-X(j, 2))2));

end
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end

end

t=cputime;

Demand=[1074 1630 1728 1830 498 508 459 535 775 377 683 994 445 390 970

654 1127 1180 679 799 4253];

Demand0=[0 Demand];

capacity=12000;

nt=2; [vertexsize,v1] = size(Distance);

vertexsize=vertexsize-1;

branch=1;

solve=1;

fathom=0;

UB=1000000;

count=1;

Demandforsweeper=Demand0;

Demandforsweeper(1,1)=1000000;

i=1;

totaldemand=0;

mindemand=0;

while count<vertexsize+1

j=1;

Pathset(i,j)=1;

while (totaldemand <=capacity)*(mindemand < 1000000)

j=j+1;
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[mindemand mindex]=min(Demandforsweeper);

totaldemand=totaldemand+Demand0(1,mindex);

if totaldemand <=capacity

Pathset(i,j)=mindex;

Demandforsweeper(1,mindex)=1000000;

count=count+1;

PathsetLoad(i,1)=totaldemand;

end

end

Pathset(i,j)=1;

totaldemand=0;

i=i+1;

end

SP(1).zeroelements=[ ];

SP(1).oneelements=[ ];

SP(1).zeroidentifier=zeros(vertexsize+1,1);

SP(1).oneidentifier=zeros(vertexsize+1,1);

SP(1).branchingidentifier=zeros(vertexsize+1);

while solve <=branch

zeroelements=SP(solve).zeroelements;

oneelements=SP(solve).oneelements;

minpath=-1000000;

[s11 s12]=size(oneelements);

FakeDistance=Distance;
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for i=1:s11

FakeDistance(oneelements(i,1),oneelements(i,2))=0;

FakeDistance(oneelements(i,2),oneelements(i,1))=0;

end

[s01 s02]=size(zeroelements);

for i=1:s01

FakeDistance(zeroelements(i,1),zeroelements(i,2))=1000000000;

FakeDistance(zeroelements(i,2),zeroelements(i,1))=1000000000;

end

[setsize,setsize1] = size(Pathset);

Cost=zeros(setsize,1);

for i=1:setsize

for j=1:setsize1-1

if Pathset(i,j+1)>0

Cost(i)=Cost(i)+FakeDistance(Pathset(i,j),Pathset(i,j+1));

end

end

end

for i=1:setsize

j=2;

while 1-(Pathset(i,j)==1)

TechnologyCoefficientMatrix(i,Pathset(i,j)-1)=1;

j=j+1;

end
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end

iteration=0;

loop=0;

u2=0;

while (1-loop)*(minpath+u2 <=0.01)

gamsoutput = ’std’;

p.name = ’p’;

p.val = num2str(setsize);

ci.name = ’ci’;

ci.val = num2str(vertexsize);

c.name = ’c’;

c.val = Cost;

c.labels = cellstr(num2str([1:setsize]’));

c.labels = cellstr(num2str([1:setsize]’));

A.name = ’A’;

A.val=TechnologyCoefficientMatrix;

A.labels = cellstr(num2str([1:setsize]’)) cellstr(num2str([1:vertexsize]’));

[x,z,u1,u2,s]=gams(’setpartitioningtrace’,c,ci,nt,A,p);

Pay=[0 u1’];

z

for i=1:vertexsize+1

for j=1:vertexsize+1

if i==j

Cbar(i,j)=FakeDistance(i,j);
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else

Cbar(i,j)=FakeDistance(i,j)-Pay(1,i)/2-Pay(1,j)/2;

end

end

end

C(1,:)=Cbar(1,:);

P(1,:)=ones(1,vertexsize+1);

P(1,1)=0;

Load=Demand0;

for v=1:vertexsize-1

clear C1;

for i=2:vertexsize+1

for j=1:vertexsize+1

C1(i,j)=C(v,i)+Cbar(i,j);

cycle=0;

cyclic=0;

if Load(v,i)+Demand0(1,j)> capacity

C1(i,j)=1000000;

else

m=i;

r=1;

while (r < =v)*(1-cyclic)

(1-cyclic);

if P(v-r+1,m)==j
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cycle=cycle+1;

end

if j==1

cyclic=(cycle > 1);

else

cyclic=(cycle >0);

end

m=P(v-r+1,m);

r=r+1;

end

if cyclic>0

C1(i,j)=1000000;

end

end

end

end

C2=C1(2:vertexsize+1,:);

[C(v+1,:) P(v+1,:)]=min(C2);

P(v+1,:)=P(v+1,:)+1;

for i=1:vertexsize+1

Load(v+1,i)=Load(v,P(v+1,i))+Demand0(1,i);

end

end

[minpath minpath1]=min(C(:,1));
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if minpath+u2<=0.01

vertex=P(minpath1,1);

newpath=[vertex 1];

pathincomplete=1;

g=1;

while vertex>1

vertex=P(minpath1-g,vertex);

newpath=[vertex newpath];

g=g+1;

end

[newpathsize1 newpathsize]=size(newpath);

sizedifference=setsize1-newpathsize;

if sizedifference >0

for i=1:abs(sizedifference)

newpath=[newpath 0];

end

end

if Pathset(setsize,:)==newpath

loop=1;

else

if sizedifference <0

for i=1:abs(sizedifference)

Pathset=[Pathset zeros(setsize,1)];

end
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end

Pathset=[Pathset

newpath];

end

[setsize,setsize1] = size(Pathset);

i=setsize;

Cost(i,1)=0;

for j=1:setsize1-1

if Pathset(i,j+1)> 0

Cost(i)=Cost(i)+FakeDistance(Pathset(i,j),Pathset(i,j+1));

end

end

j=2;

while 1-(Pathset(i,j)==1)

TechnologyCoefficientMatrix(i,Pathset(i,j)-1)=1;

j=j+1; end

end

iteration=iteration+1;

end

SP(solve).x=x;

infeasibility=0;

if z>=100000

infeasibility=1;

end
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CostR=zeros(setsize,1);

for i=1:setsize

for j=1:setsize1-1

if Pathset(i,j+1)>0

CostR(i)=CostR(i)+Distance(Pathset(i,j),Pathset(i,j+1));

end

end

end

z=sum((x’)*CostR);

SP(solve).z=z;

integer=1;

i=1;

while integer*(i<setsize)

integer=integer*((x(i)==1)+(x(i)==0));

i=i+1;

end

if (integer==1)*(z<UB)

UB=z;

optimal=x;

optimalset=Pathset;

end

SP(solve).UB=UB;

SP(solve).pathset=Pathset;

SP(solve).iteration=iteration;
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if (1-(integer==1))*(1-infeasibility)*(z<UB)

true=1;

k=1;

q=1;

while true

if x(q,k)==((x(i)==1)+(x(i)==0))

q=q+1;

else

true2=1;

while true2

if SP(solve).branchingidentifier(Pathset(q,k),Pathset(q,k+1))==1

true2=1;

k=k+1;

true=1;

else

branchingindex=[Pathset(q,k) Pathset(q,k+1)];

branchingidentifier1=Pathset(q,k);

branchingidentifier2=Pathset(q,k+1);

true2=0;

true=0;

end

if Pathset(q,k+1)==1

true2=0;

true=1;
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end

end

q=q+1;

end

k=1;

end

branch=branch+1;

SP(branch).oneelements=SP(solve).oneelements;

SP(branch).oneidentifier=SP(solve).oneidentifier;

SP(branch).zeroelements=[SP(solve).zeroelements

branchingindex];

SP(branch).zeroidentifier=SP(solve).zeroidentifier;

SP(branch).zeroidentifier(branchingindex,1)=1;

SP(branch).branchingidentifier=SP(solve).branchingidentifier;

SP(branch).branchingidentifier(branchingidentifier1,branchingidentifier2)=1;

SP(branch).branchingidentifier(branchingidentifier2,branchingidentifier1)=1;

branch=branch+1;

SP(branch).zeroelements=SP(solve).zeroelements;

SP(branch).zeroidentifier=SP(solve).zeroidentifier;

SP(branch).oneelements=[SP(solve).oneelements

branchingindex];

SP(branch).oneidentifier=SP(solve).oneidentifier;

SP(branch).oneidentifier(branchingindex,1)=1;

SP(branch).branchingidentifier=SP(solve).branchingidentifier;
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SP(branch).branchingidentifier(branchingidentifier1,branchingidentifier2)=1;

SP(branch).branchingidentifier(branchingidentifier2,branchingidentifier1)=1;

else

if integer

SP(solve).fathom=1;

fathom=fathom+1;

end

if infeasibility

SP(solve).fathom=2;

fathom=fathom+1;

end

if z>=UB

SP(solve).fathom=3;

fathom=fathom+1;

end

end

solution=[ ];

[optsize optsize1]=size(Pathset);

for i=1:setsize

if x(i,1)>0

solution=[solution

Pathset(i,:)];

end

end
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SP(solve).solution=solution;

SP(solve).s=s;

solve=solve+1;

UB

end CPUTIME=cputime-t
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APPENDIX D

The Gams Model Of The Set Covering Problem

For The Exact Algorithm

$ setglobal p 2

$ setglobal ci 8

$ if exist matglobs.gms $ include matglobs.gms

sets i paths/ 1*p/

j city / 1*ci/;

Parameters

c(i) /1 115.2 2 104/;

Table A(i,j) Technology table

1 2 3 4 5 6

1 0 1 1 0 1 0

2 0 1 0 1 0 1

;

scalar nt /2/;
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variable z;

positive variable x(i);

equation

obj

cover(j)

truck;

obj.. z=e=sum(i,x(i)* c(i));

cover(j) .. sum(i, x(i)*A(i,j)) =e= 1 ;

truck .. sum(i, x(i)) =l= nt ;

MODEL setpartitioningtrace /ALL/;

$ if exist matdata.gms $ include matdata.gms

SOLVE setpartitioningtrace MINIMIZING z USING LP;

display c,A;

set stat /modelstat,solvestat/;

parameter returnStat(stat);

returnStat(’modelstat’) = setpartitioningtrace.modelstat;

returnStat(’solvestat’) = setpartitioningtrace.solvestat;

$ libinclude matout x.l I

$ libinclude matout z.l

$ libinclude matout cover.m J

$ libinclude matout truck.m

$ libinclude matout returnStat stat
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APPENDIX E

The Source Code Of Generalized Petal Heuristic

clear all

We can start this first step where we sequence the customers using simple

TSP heurisitics.

format long;

initialization of system parameters

X=[30 40 37 52 49 49 52 64 20 26 40 30 21 47 17 63 31 62 52 33 51 21 42 41

31 32 5 25 12 42 36 16 52 41 27 23 17 33 13 13 57 58 62 42 42 57 16 57 8 52 7 38

27 68 30 48 43 67 58 48 58 27 37 69 38 46 46 10 61 33 62 63 63 69 32 22 45 35 59

15 5 6 10 17 21 10 5 64 30 15 39 10 32 39 25 32 25 55 48 28 56 37];

Euclidean distances [x1 x2]=size(X);

for i=1:x1

for j=1:x1

if i==j

Distance(i,j)=1000000;
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else

Distance(i,j)=round(sqrt((X(i,1)-X(j, 1))2+(X(i,2)-X(j, 2))2));

end

end

end

Demand=[7 30 16 9 21 15 19 23 11 5 19 29 23 21 10 15 3 41 9 28 8 8 16 10 28

7 15 14 6 19 11 12 23 26 17 6 9 15 14 7 27 13 11 16 10 5 25 17 18 10];

capacity=160;

nt=7;

t=cputime;

Demand2=[Demand Demand];

[vertexsize,v1] = size(Distance);

vertexsize=vertexsize-1;

Nearest Neighborhood Heuristic

for h=1:vertexsize

currentptnnh=h;

Distancennh=Distance(2:vertexsize+1,2:vertexsize+1);

Distancennh(:,currentptnnh)=1000000*ones(vertexsize,1);

Sequencedvertexset=[currentptnnh];

for i=1:vertexsize-1;

[min1 min2]=min(Distancennh(currentptnnh,:));

currentptnnh=min2;

Sequencedvertexset=[Sequencedvertexset currentptnnh];

Distancennh(:,currentptnnh)=1000000*ones(vertexsize,1);
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end

tsp=[Sequencedvertexset(1,1:vertexsize) Sequencedvertexset(1,1)];

improvement=1;

while improvement

for i=1:vertexsize

sequence(tsp(1,i))=i;

end

for i=1:vertexsize

for j=i+1:vertexsize

if (sequence(1,i)-sequence(1,j)>1)+ (sequence(1,i)- sequence(1,j)<-

1)+(sequence(1,i)- sequence(1,j)<9)+(sequence(1,i)-sequence(1,j)>-9)

swapgain(i,j)=Distance(i+1,tsp(sequence(1,i)+1)+1)+

Distance(j+1,tsp(sequence(1,j)+1)+1)- Distance(i+1,j+1)-

Distance(tsp(sequence(1,i)+1)+1,tsp(sequence(1,j)+1)+1);

end

end

end

[z11 z1]=max(swapgain);

[z22 z2]=max(max(swapgain));

z1=z1(1,z2);

if z22>0.001

if sequence(1,z1)>sequence(1,z2)

z=z2;

z2=z1;
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z1=z;

end

newpath=[tsp(1,1:sequence(1,z1)) z2 ];

for i=1:(sequence(1,z2)-sequence(1,z1)-1)

newpath=[newpath tsp(1,sequence(1,z2)-i)];

end

newpath=[newpath tsp(1,sequence(1,z2)+1:vertexsize+1)];

tsp=newpath;

else

improvement=0;

end

end

Sequencedvertexset=tsp(1,1:vertexsize);

Sequencedvertexset=[Sequencedvertexset Sequencedvertexset];

iter=1;

for i=1:vertexsize

true=1;

set=[ ];

setcapacity=0;

j=0;

while true

if setcapacity + Demand2(1,Sequencedvertexset(1,i+j))<=capacity

if j==0

Petal(iter,1)=Sequencedvertexset(1,i+j);
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Pathset(iter,1)=Sequencedvertexset(1,i+j)+1;

setcapacity=setcapacity+Demand2(1,Sequencedvertexset(1,i+j));

iter=iter+1;

j=j+1;

else

if j>0

Petal(iter,:)=Petal(iter-1,:);

Pathset(iter,:)=Pathset(iter-1,:);

Petal(iter,j+1)=Sequencedvertexset(1,i+j);

Pathset(iter,j+1)=Sequencedvertexset(1,i+j)+1;

setcapacity=setcapacity+Demand2(1,Sequencedvertexset(1,i+j));

iter=iter+1;

j=j+1;

end

end

else

true=0;

end

end

end

[Petalsize1 Petalsize2]=size(Petal);

Pathset=[ones(Petalsize1,1) Pathset];

[Pathsetsize1 Pathsetsize2]=size(Pathset);

for i=1:Petalsize1
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[min1 min2]=min(Pathset(i,:));

if min1==0

Pathset(i,min2)=1;

else

Pathset(i,Pathsetsize2+1)=1;

Pathsetsize2=Pathsetsize2+1;

end

end

Cost=zeros(Pathsetsize1,1);

for i=1:Pathsetsize1

for j=1:Pathsetsize2-1

if Pathset(i,j+1)>0

Cost(i)=Cost(i)+Distance(Pathset(i,j),Pathset(i,j+1));

end

end

end

for i=1:Pathsetsize1

j=2;

while 1-(Pathset(i,j)==1)

TechnologyCoefficientMatrix(i,Pathset(i,j)-1)=1;

j=j+1;

end

end

gamsoutput = ’std’;
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p.name = ’p’;

p.val = num2str(Pathsetsize1);

ci.name = ’ci’;

ci.val = num2str(vertexsize);

c.name = ’c’;

c.val = Cost;

c.labels = cellstr(num2str([1:Pathsetsize1]’));

A.name = ’A’;

A.val=TechnologyCoefficientMatrix;

A.labels = cellstr(num2str([1:Pathsetsize1]’))

cellstr(num2str([1:vertexsize]’));

[x,z,u1,u2,s]=gams(’petalpartitioning’,c,ci,nt,A,p);

solution=[ ];

[optsize optsize1]=size(Pathset);

for i=1:Pathsetsize1

if x(i,1)>0

solution=[solution

Pathset(i,:)];

end

end

[so1 so2]=size(solution);

Load=zeros(so1,1);

for i=1:so1

for j=2:so2-1
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if solution(i,j+1)>0

Load(i)=Load(i)+Demand(solution(i,j)-1);

end

end

end

for i=1:so1

for j=2:so2

if solution(i,j)>1

dim1(solution(i,j))=i;

dim2(solution(i,j))=j;

end

end

end

m=1;

while m>0.01

iter=0;

for i=2:vertexsize

for j=i+1:vertexsize+1

if (Load(dim1(i))-Demand(i-1)+Demand(j-1)<capacity)*(Load(dim1(j))-

Demand(j-1)+Demand(i-1)<capacity)

exchangegain(i,j)=Distance(i,solution(dim1(i),dim2(i)+1))+

Distance(i,solution(dim1(i),dim2(i)-1))+

Distance(j,solution(dim1(j),dim2(j)+1))+ Distance(j,solution(dim1(j),dim2(j)-

1))- Distance(j,solution(dim1(i),dim2(i)+1))-
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Distance(j,solution(dim1(i),dim2(i)-1))-

Distance(i,solution(dim1(j),dim2(j)+1))-

Distance(i,solution(dim1(j),dim2(j)-1));

end

end

end

[m m1]=max(max(exchangegain’));

[m m2]=max(max(exchangegain));

if m>0

solution(dim1(m1),dim2(m1))=m2;

solution(dim1(m2),dim2(m2))=m1;

mm2=dim2(m2);

mm1=dim1(m2);

dim1(m2)=dim1(m1);

dim2(m2)=dim2(m1);

dim1(m1)=mm1;

dim2(m1)=mm2;

z=z-exchangegain(m1,m2);

exchangegain=zeros(vertexsize);

end

end

HS(1,h).solution=solution;

HS(1,h).z=z;

clear Petal;
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clear Pathset;

clear Cost;

clear TechnologyCoefficientMatrix;

h

z

end

Nearest Insertion Heuristic for h=1:vertexsize

i=1;

currentptnih=h;

Distancenih=Distance(2:vertexsize+1,2:vertexsize+1);

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent=[Distancenih(currentptnih,:)];

Sequencedvertexset=[currentptnih];

[min1 min2]=min(Distancenihcurrent);

currentptnih=min2;

Sequencedvertexset=[Sequencedvertexset currentptnih];

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent(:,currentptnih)=1000000*ones(i,1);

Distancenihcurrent=[Distancenihcurrent

Distancenih(currentptnih,:)];

[s1 s2]=size(Distancenihcurrent);

for i=2:vertexsize-1;

[min1 min2]=min(min(Distancenihcurrent));

currentptnih=min2;
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clear insertioncost;

insertioncost(1,1)=-Distance(Sequencedvertexset(1,1)+1,1)+

Distance(currentptnih+1,Sequencedvertexset(1,1)+1)+

Distance(currentptnih+1,1);

for j=2:s1

insertioncost(1,j)=-Distance(Sequencedvertexset(1,j-

1)+1,Sequencedvertexset(1,j)+1)+

Distance(currentptnih+1,Sequencedvertexset(1,j-1)+1)+

Distance(currentptnih+1,Sequencedvertexset(1,j)+1);

end

insertioncost(1,s1+1)=-Distance(Sequencedvertexset(1,s1)+1,1)+

Distance(currentptnih+1,Sequencedvertexset(1,s1)+1)+

Distance(currentptnih+1,1);

[z1 z2]=min(insertioncost);

Sequencedvertexset=[Sequencedvertexset(1,1:z2-1) currentptnih

Sequencedvertexset(1,z2:s1)];

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent(:,currentptnih)=1000000*ones(i,1);

Distancenihcurrent=[Distancenihcurrent

Distancenih(currentptnih,:)];

[s1 s2]=size(Distancenihcurrent);

end

tsp=[Sequencedvertexset(1,1:vertexsize) Sequencedvertexset(1,1)];

improvement=1;
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while improvement

for i=1:vertexsize

sequence(tsp(1,i))=i;

end

for i=1:vertexsize

for j=i+1:vertexsize

if (sequence(1,i)-sequence(1,j)>1)+ (sequence(1,i)-sequence(1,j)<-1)+

(sequence(1,i)-sequence(1,j)<9)+ (sequence(1,i)-sequence(1,j)>-9)

swapgain(i,j)=Distance(i+1,tsp(sequence(1,i)+1)+1)+

Distance(j+1,tsp(sequence(1,j)+1)+1)- Distance(i+1,j+1)-

Distance(tsp(sequence(1,i)+1)+1,tsp(sequence(1,j)+1)+1);

end

end

end

[z11 z1]=max(swapgain);

[z22 z2]=max(max(swapgain));

z1=z1(1,z2);

if z22>0.001

if sequence(1,z1)>sequence(1,z2)

z=z2;

z2=z1;

z1=z;

end

newpath=[tsp(1,1:sequence(1,z1)) z2 ];
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for i=1:(sequence(1,z2)-sequence(1,z1)-1)

newpath=[newpath tsp(1,sequence(1,z2)-i)];

end

newpath=[newpath tsp(1,sequence(1,z2)+1:vertexsize+1)];

tsp=newpath;

else

improvement=0;

end

end

Sequencedvertexset=tsp(1,1:vertexsize);

Sequencedvertexset=[Sequencedvertexset Sequencedvertexset];

iter=1;

for i=1:vertexsize

true=1;

setcapacity=0;

j=0;

while true

if setcapacity + Demand2(1,Sequencedvertexset(1,i+j))<=capacity

if j==0

Petal(iter,1)=Sequencedvertexset(1,i+j);

Pathset(iter,1)=Sequencedvertexset(1,i+j)+1;

setcapacity=setcapacity+Demand2(1,Sequencedvertexset(1,i+j));

iter=iter+1;

j=j+1;
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else

if j>0

Petal(iter,:)=Petal(iter-1,:);

Pathset(iter,:)=Pathset(iter-1,:);

Petal(iter,j+1)=Sequencedvertexset(1,i+j);

Pathset(iter,j+1)=Sequencedvertexset(1,i+j)+1;

setcapacity=setcapacity+Demand2(1,Sequencedvertexset(1,i+j));

iter=iter+1;

j=j+1;

end

end

else

true=0;

end

end

end

[Petalsize1 Petalsize2]=size(Petal);

Pathset=[ones(Petalsize1,1) Pathset];

[Pathsetsize1 Pathsetsize2]=size(Pathset);

for i=1:Petalsize1

[min1 min2]=min(Pathset(i,:));

if min1==0

Pathset(i,min2)=1;

else
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Pathset(i,Pathsetsize2+1)=1;

Pathsetsize2=Pathsetsize2+1;

end

end

Cost=zeros(Pathsetsize1,1);

for i=1:Pathsetsize1

for j=1:Pathsetsize2-1

if Pathset(i,j+1)>0

Cost(i)=Cost(i)+Distance(Pathset(i,j),Pathset(i,j+1));

end end

end

for i=1:Pathsetsize1

j=2;

while 1-(Pathset(i,j)==1)

TechnologyCoefficientMatrix(i,Pathset(i,j)-1)=1;

j=j+1;

end

end

gamsoutput = ’std’;

p.name = ’p’;

p.val = num2str(Pathsetsize1);

ci.name = ’ci’;

ci.val = num2str(vertexsize);

c.name = ’c’;
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c.val = Cost;

c.labels = cellstr(num2str([1:Pathsetsize1]’));

A.name = ’A’;

A.val=TechnologyCoefficientMatrix;

A.labels = cellstr(num2str([1:Pathsetsize1]’))

cellstr(num2str([1:vertexsize]’));

[x,z,u1,u2,s]=gams(’petalpartitioning’,c,ci,nt,A,p);

solution=[ ];

[optsize optsize1]=size(Pathset);

for i=1:Pathsetsize1

if x(i,1)>0

solution=[solution

Pathset(i,:)];

end

end

[so1 so2]=size(solution);

Load=zeros(so1,1);

for i=1:so1

for j=2:so2-1

if solution(i,j+1)>0

Load(i)=Load(i)+Demand(solution(i,j)-1);

end

end

end
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for i=1:so1

for j=2:so2

if solution(i,j)>1

dim1(solution(i,j))=i;

dim2(solution(i,j))=j;

end

end

end

m=1;

while m>0.01

for i=2:vertexsize

for j=i+1:vertexsize+1

if (Load(dim1(i))-Demand(i-1)+Demand(j-1)<capacity)*(Load(dim1(j))-

Demand(j-1)+Demand(i-1)<capacity)

exchangegain(i,j)=Distance(i,solution(dim1(i),dim2(i)+1))+

Distance(i,solution(dim1(i),dim2(i)-1))+

Distance(j,solution(dim1(j),dim2(j)+1))+ Distance(j,solution(dim1(j),dim2(j)-

1))- Distance(j,solution(dim1(i),dim2(i)+1))-

Distance(j,solution(dim1(i),dim2(i)-1))-

Distance(i,solution(dim1(j),dim2(j)+1))-

Distance(i,solution(dim1(j),dim2(j)-1));

end

end

end
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[m m1]=max(max(exchangegain’));

[m m2]=max(max(exchangegain));

if m>0

solution(dim1(m1),dim2(m1))=m2;

solution(dim1(m2),dim2(m2))=m1;

mm2=dim2(m2);

mm1=dim1(m2);

dim1(m2)=dim1(m1);

dim2(m2)=dim2(m1);

dim1(m1)=mm1;

dim2(m1)=mm2;

z=z-exchangegain(m1,m2);

exchangegain=zeros(vertexsize);

end

end

HS(2,h).solution=solution;

HS(2,h).z=z;

clear Petal;

clear Pathset;

clear Cost;

clear TechnologyCoefficientMatrix;

h

z

end
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Farthest Insertion Heuristic

for h=1:vertexsize

i=1;

Notincludedset=ones(1,vertexsize);

currentptnih=h;

Notincludedset(1,currentptnih)=0;

Distancenih=Distance(2:vertexsize+1,2:vertexsize+1);

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent=[Distancenih(currentptnih,:)];

Sequencedvertexset=[currentptnih];

Notincludedsetdummy=Notincludedset;

clear insertion;

for k=1:vertexsize-1

[currentptnih1 currentptnih]=max(Notincludedsetdummy);

insertion(k,1)=-Distance(Sequencedvertexset(1,1)+1,1)+

Distance(currentptnih+1,Sequencedvertexset(1,1)+1)+

Distance(currentptnih+1,1);

Notincludedsetdummy(1,currentptnih)=0;

end

[z11 z1]=min(insertion);

u=0;

sum=0;

while sum<z1

u=u+1;
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sum=sum+Notincludedset(1,u);

end

currentptnih=u;

Notincludedset(1,currentptnih)=0;

Sequencedvertexset=[Sequencedvertexset currentptnih];

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent(:,currentptnih)=1000000*ones(i,1);

Distancenihcurrent=[Distancenihcurrent

Distancenih(currentptnih,:)];

[s1 s2]=size(Distancenihcurrent);

for i=2:vertexsize-1;

Notincludedsetdummy=Notincludedset;

clear insertioncost;

for k=1:vertexsize-s1

[currentptnih1 currentptnih]=max(Notincludedsetdummy);

insertioncost(k,1)=-Distance(Sequencedvertexset(1,1)+1,1)+

Distance(currentptnih+1,Sequencedvertexset(1,1)+1)+

Distance(currentptnih+1,1);

for j=2:s1

insertioncost(k,j)=-Distance(Sequencedvertexset(1,j-

1)+1,Sequencedvertexset(1,j)+1)+

Distance(currentptnih+1,Sequencedvertexset(1,j-1)+1)+

Distance(currentptnih+1,Sequencedvertexset(1,j)+1);

end
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insertioncost(k,s1+1)=-Distance(Sequencedvertexset(1,s1)+1,1)+

Distance(currentptnih+1,Sequencedvertexset(1,s1)+1)+

Distance(currentptnih+1,1);

Notincludedsetdummy(1,currentptnih)=0;

end

[zz1 z2]=min(insertioncost’);

[z22 z1]=max(min(insertioncost’));

z2=z2(1,z1);

u=0;

sum=0;

while sum<z1 u=u+1;

sum=sum+Notincludedset(1,u);

end

currentptnih=u;

Sequencedvertexset=[Sequencedvertexset(1,1:z2-1) currentptnih

Sequencedvertexset(1,z2:s1)];

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent(:,currentptnih)=1000000*ones(i,1);

Distancenihcurrent=[Distancenihcurrent

Distancenih(currentptnih,:)];

[s1 s2]=size(Distancenihcurrent);

Notincludedset(1,currentptnih)=0;

end

tsp=[Sequencedvertexset(1,1:vertexsize) Sequencedvertexset(1,1)];
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improvement=1;

while improvement

for i=1:vertexsize

sequence(tsp(1,i))=i;

end

for i=1:vertexsize

for j=i+1:vertexsize

if (sequence(1,i)-sequence(1,j)>1)+( sequence(1,i)- sequence(1,j)<-1)+

(sequence(1,i)- sequence(1,j)<9)+ (sequence(1,i)- sequence(1,j)>-9)

swapgain(i,j)=

Distance(i+1,tsp(sequence(1,i)+1)+1)+ Distance(j+1,tsp(sequence(1,j)+1)+1)-

Distance(i+1,j+1)- Distance(tsp(sequence(1,i)+1)+1,tsp(sequence(1,j)+1)+1);

end

end

end

[z11 z1]=max(swapgain);

[z22 z2]=max(max(swapgain));

z1=z1(1,z2);

if z22>0.001

if sequence(1,z1)>sequence(1,z2)

z=z2;

z2=z1;

z1=z;

end
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newpath=[tsp(1,1:sequence(1,z1)) z2 ];

for i=1:(sequence(1,z2)-sequence(1,z1)-1)

newpath=[newpath tsp(1,sequence(1,z2)-i)];

end

newpath=[newpath tsp(1,sequence(1,z2)+1:vertexsize+1)];

tsp=newpath;

else

improvement=0;

end

end

Sequencedvertexset=tsp(1,1:vertexsize);

Sequencedvertexset=[Sequencedvertexset Sequencedvertexset];

iter=1;

for i=1:vertexsize

true=1;

set=[ ];

setcapacity=0;

j=0;

while true if setcapacity + Demand2(1,Sequencedvertexset(1,i+j))<=capacity

if j==0

Petal(iter,1)=Sequencedvertexset(1,i+j);

Pathset(iter,1)=Sequencedvertexset(1,i+j)+1;

setcapacity=setcapacity+Demand2(1,Sequencedvertexset(1,i+j));

iter=iter+1;
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j=j+1;

else

if j>0

Petal(iter,:)=Petal(iter-1,:);

Pathset(iter,:)=Pathset(iter-1,:);

Petal(iter,j+1)=Sequencedvertexset(1,i+j);

Pathset(iter,j+1)=Sequencedvertexset(1,i+j)+1;

setcapacity=setcapacity+Demand2(1,Sequencedvertexset(1,i+j));

iter=iter+1;

j=j+1;

end

end

else

true=0;

end

end

end [Petalsize1 Petalsize2]=size(Petal);

Pathset=[ones(Petalsize1,1) Pathset];

[Pathsetsize1 Pathsetsize2]=size(Pathset);

for i=1:Petalsize1

[min1 min2]=min(Pathset(i,:));

if min1==0

Pathset(i,min2)=1;

else
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Pathset(i,Pathsetsize2+1)=1;

Pathsetsize2=Pathsetsize2+1;

end

end

Cost=zeros(Pathsetsize1,1);

for i=1:Pathsetsize1

for j=1:Pathsetsize2-1

if Pathset(i,j+1)>0

Cost(i)=Cost(i)+Distance(Pathset(i,j),Pathset(i,j+1));

end

end

end

for i=1:Pathsetsize1

j=2;

while 1-(Pathset(i,j)==1)

TechnologyCoefficientMatrix(i,Pathset(i,j)-1)=1;

j=j+1;

end

end

gamsoutput = ’std’;

p.name = ’p’;

p.val = num2str(Pathsetsize1);

ci.name = ’ci’;

ci.val = num2str(vertexsize);
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c.name = ’c’;

c.val = Cost;

c.labels = cellstr(num2str([1:Pathsetsize1]’));

A.name = ’A’;

A.val=TechnologyCoefficientMatrix;

A.labels = cellstr(num2str([1:Pathsetsize1]’))

cellstr(num2str([1:vertexsize]’));

[x,z,u1,u2,s]=gams(’petalpartitioning’,c,ci,nt,A,p);

solution=[ ];

[optsize optsize1]=size(Pathset);

for i=1:Pathsetsize1

if x(i,1)>0

solution=[solution

Pathset(i,:)];

end

end

[so1 so2]=size(solution);

Load=zeros(so1,1);

for i=1:so1

for j=2:so2-1

if solution(i,j+1)>0

Load(i)=Load(i)+Demand(solution(i,j)-1);

end

end
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end

for i=1:so1

for j=2:so2

if solution(i,j)>1

dim1(solution(i,j))=i;

dim2(solution(i,j))=j; end

end

end

m=1;

while m>0.01

for i=2:vertexsize

for j=i+1:vertexsize+1

if (Load(dim1(i))-Demand(i-1)+Demand(j-1)<capacity)*(Load(dim1(j))-

Demand(j-1)+Demand(i-1)<capacity)

exchangegain(i,j)= Distance(i,solution(dim1(i),dim2(i)+1))+

Distance(i,solution(dim1(i),dim2(i)-1))+

Distance(j,solution(dim1(j),dim2(j)+1))+ Distance(j,solution(dim1(j),dim2(j)-

1))- Distance(j,solution(dim1(i),dim2(i)+1))-

Distance(j,solution(dim1(i),dim2(i)-1))-

Distance(i,solution(dim1(j),dim2(j)+1))-

Distance(i,solution(dim1(j),dim2(j)-1));

end

end

end
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[m m1]=max(max(exchangegain’));

[m m2]=max(max(exchangegain));

if m>0

solution(dim1(m1),dim2(m1))=m2;

solution(dim1(m2),dim2(m2))=m1;

mm2=dim2(m2);

mm1=dim1(m2);

dim1(m2)=dim1(m1);

dim2(m2)=dim2(m1);

dim1(m1)=mm1;

dim2(m1)=mm2;

z=z-exchangegain(m1,m2);

exchangegain=zeros(vertexsize);

end

end

HS(3,h).solution=solution;

HS(3,h).z=z;

clear Petal;

clear Pathset;

clear Cost;

clear TechnologyCoefficientMatrix;

h

z

end
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Cheapest Insertion Heuristics

for h=1:vertexsize

i=1;

Notincludedset=ones(1,vertexsize);

currentptnih=h;

Notincludedset(1,currentptnih)=0;

Distancenih=Distance(2:vertexsize+1,2:vertexsize+1);

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent=[Distancenih(currentptnih,:)];

Sequencedvertexset=[currentptnih];

Notincludedsetdummy=Notincludedset;

clear insertion;

for k=1:vertexsize-1

[currentptnih1 currentptnih]=max(Notincludedsetdummy);

insertion(k,1)=-Distance(Sequencedvertexset(1,1)+1,1)+

Distance(currentptnih+1,Sequencedvertexset(1,1)+1)+

Distance(currentptnih+1,1);

Notincludedsetdummy(1,currentptnih)=0;

end

[z11 z1]=min(insertion);

u=0;

sum=0;

while sum<z1

u=u+1;
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sum=sum+Notincludedset(1,u);

end

currentptnih=u;

Notincludedset(1,currentptnih)=0;

Sequencedvertexset=[Sequencedvertexset currentptnih];

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent(:,currentptnih)=1000000*ones(i,1);

Distancenihcurrent=[Distancenihcurrent

Distancenih(currentptnih,:)];

[s1 s2]=size(Distancenihcurrent);

for i=2:vertexsize-1;

Notincludedsetdummy=Notincludedset;

clear insertioncost;

for k=1:vertexsize-s1

[currentptnih1 currentptnih]=max(Notincludedsetdummy);

insertioncost(k,1)=-Distance(Sequencedvertexset(1,1)+1,1)+

Distance(currentptnih+1,Sequencedvertexset(1,1)+1)+

Distance(currentptnih+1,1);

for j=2:s1

insertioncost(k,j)=-Distance(Sequencedvertexset(1,j-

1)+1,Sequencedvertexset(1,j)+1)+

Distance(currentptnih+1,Sequencedvertexset(1,j-1)+1)+

Distance(currentptnih+1,Sequencedvertexset(1,j)+1);

end
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insertioncost(k,s1+1)=-Distance(Sequencedvertexset(1,s1)+1,1)+

Distance(currentptnih+1,Sequencedvertexset(1,s1)+1)+

Distance(currentptnih+1,1);

Notincludedsetdummy(1,currentptnih)=0;

end

[z11 z1]=min(min(insertioncost’));

[z22 z2]=min(min(insertioncost));

u=0;

sum=0;

while sum<z1

u=u+1;

sum=sum+Notincludedset(1,u);

end

currentptnih=u;

Sequencedvertexset=[Sequencedvertexset(1,1:z2-1) currentptnih

Sequencedvertexset(1,z2:s1)];

Distancenih(:,currentptnih)=1000000*ones(vertexsize,1);

Distancenihcurrent(:,currentptnih)=1000000*ones(i,1);

Distancenihcurrent=[Distancenihcurrent

Distancenih(currentptnih,:)];

[s1 s2]=size(Distancenihcurrent);

Notincludedset(1,currentptnih)=0;

end

tsp=[Sequencedvertexset(1,1:vertexsize) Sequencedvertexset(1,1)];
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improvement=1;

while improvement

for i=1:vertexsize

sequence(tsp(1,i))=i;

end

for i=1:vertexsize

for j=i+1:vertexsize

if (sequence(1,i)-sequence(1,j)>1)+(sequence(1,i)-sequence(1,j)<-

1)+(sequence(1,i)-sequence(1,j)<9)+(sequence(1,i)-sequence(1,j)>-9)

swapgain(i,j)=

Distance(i+1,tsp(sequence(1,i)+1)+1) + Distance(j+1,tsp(sequence(1,j)+1)+1)

- Distance(i+1,j+1) - Distance(tsp(sequence(1,i)+1)+1,tsp(sequence(1,j)+1)+1);

end

end

end

[z11 z1]=max(swapgain);

[z22 z2]=max(max(swapgain));

z1=z1(1,z2);

if z22>0.001

if sequence(1,z1)>sequence(1,z2)

z=z2;

z2=z1;

z1=z;

end
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newpath=[tsp(1,1:sequence(1,z1)) z2 ];

for i=1:(sequence(1,z2)-sequence(1,z1)-1)

newpath=[newpath tsp(1,sequence(1,z2)-i)];

end

newpath=[newpath tsp(1,sequence(1,z2)+1:vertexsize+1)];

tsp=newpath;

else improvement=0;

end

end

Sequencedvertexset=tsp(1,1:vertexsize);

Sequencedvertexset=[Sequencedvertexset Sequencedvertexset];

iter=1;

for i=1:vertexsize

true=1;

set=[ ];

setcapacity=0;

j=0;

while true

if setcapacity + Demand2(1,Sequencedvertexset(1,i+j))<=capacity

if j==0

Petal(iter,1)=Sequencedvertexset(1,i+j);

Pathset(iter,1)=Sequencedvertexset(1,i+j)+1;

setcapacity=setcapacity+Demand2(1,Sequencedvertexset(1,i+j));

iter=iter+1;
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j=j+1;

else

if j>0

Petal(iter,:)=Petal(iter-1,:);

Pathset(iter,:)=Pathset(iter-1,:);

Petal(iter,j+1)=Sequencedvertexset(1,i+j);

Pathset(iter,j+1)=Sequencedvertexset(1,i+j)+1;

setcapacity=setcapacity+Demand2(1,Sequencedvertexset(1,i+j));

iter=iter+1;

j=j+1;

end

end

else

true=0;

end

end

end

[Petalsize1 Petalsize2]=size(Petal);

Pathset=[ones(Petalsize1,1) Pathset];

[Pathsetsize1 Pathsetsize2]=size(Pathset);

for i=1:Petalsize1

[min1 min2]=min(Pathset(i,:));

if min1==0

Pathset(i,min2)=1;
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else

Pathset(i,Pathsetsize2+1)=1;

Pathsetsize2=Pathsetsize2+1;

end

end

Cost=zeros(Pathsetsize1,1);

for i=1:Pathsetsize1

for j=1:Pathsetsize2-1

if Pathset(i,j+1)>0

Cost(i)=Cost(i)+Distance(Pathset(i,j),Pathset(i,j+1));

end

end

end

for i=1:Pathsetsize1

j=2;

while 1-(Pathset(i,j)==1)

TechnologyCoefficientMatrix(i,Pathset(i,j)-1)=1;

j=j+1;

end

end

gamsoutput = ’std’;

p.name = ’p’;

p.val = num2str(Pathsetsize1);

ci.name = ’ci’;
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ci.val = num2str(vertexsize);

c.name = ’c’;

c.val = Cost;

c.labels = cellstr(num2str([1:Pathsetsize1]’));

A.name = ’A’;

A.val=TechnologyCoefficientMatrix;

A.labels = cellstr(num2str([1:Pathsetsize1]’))

cellstr(num2str([1:vertexsize]’));

[x,z,u1,u2,s]=gams(’petalpartitioning’,c,ci,nt,A,p);

solution=[ ];

[optsize optsize1]=size(Pathset);

for i=1:Pathsetsize1

if x(i,1)>0

solution=[solution Pathset(i,:)];

end

end

[so1 so2]=size(solution);

Load=zeros(so1,1);

for i=1:so1

for j=2:so2-1

if solution(i,j+1)>0

Load(i)=Load(i)+Demand(solution(i,j)-1);

end

end
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end

for i=1:so1

for j=2:so2

if solution(i,j)>1

dim1(solution(i,j))=i;

dim2(solution(i,j))=j;

end

end

end

m=1;

while m>0.01

for i=2:vertexsize

for j=i+1:vertexsize+1

if (Load(dim1(i))-Demand(i-1)+Demand(j-1)<capacity)*(Load(dim1(j))-

Demand(j-1)+Demand(i-1)<capacity)

exchangegain(i,j)=Distance(i,solution(dim1(i),dim2(i)+1))+

Distance(i,solution(dim1(i),dim2(i)-1))+

Distance(j,solution(dim1(j),dim2(j)+1))+

Distance(j,solution(dim1(j),dim2(j)-1))-Distance(j,solution(dim1(i),dim2(i)+1))-

Distance(j,solution(dim1(i),dim2(i)-1))-Distance(i,solution(dim1(j),dim2(j)+1))-

Distance(i,solution(dim1(j),dim2(j)-1));

end

end

end
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[m m1]=max(max(exchangegain’));

[m m2]=max(max(exchangegain));

if m>0

solution(dim1(m1),dim2(m1))=m2;

solution(dim1(m2),dim2(m2))=m1;

mm2=dim2(m2);

mm1=dim1(m2);

dim1(m2)=dim1(m1);

dim2(m2)=dim2(m1);

dim1(m1)=mm1;

dim2(m1)=mm2;

z=z-exchangegain(m1,m2);

exchangegain=zeros(vertexsize);

end

end

HS(4,h).solution=solution;

HS(4,h).z=z;

clear Petal;

clear Pathset;

clear Cost;

clear TechnologyCoefficientMatrix;

h

z

end for i=1:4

A63



for j=1:vertexsize

obj(j,i)=HS(i,j).z

end

end CPUTIME=cputime-t;
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APPENDIX F

The Gams Model Of The Set Covering Problem

For The Generalized Petal Heuristic

$ setglobal p 2

$ setglobal ci 10

$ if exist matglobs.gms $ include matglobs.gms

sets i paths/ 1*p/

j city / 1*ci/;

Parameters

c(i) /1 115.2 2 104/ ;

Table A(i,j) Technology table

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 1 0 1 0 1

;

scalar nt /2/;
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variable z;

positive variable x(i);

equation

obj

cover(j)

truck;

obj.. z=e=sum(i,x(i)* c(i));

cover(j) .. sum(i, x(i)*A(i,j)) =e= 1 ;

truck .. sum(i, x(i)) =l= nt ;

MODEL setpartitioningtrace /ALL/;

$ if exist matdata.gms $ include matdata.gms

SOLVE setpartitioningtrace MINIMIZING z Using LP;

display c,A;

set stat /modelstat,solvestat/;

parameter returnStat(stat);

returnStat(’modelstat’) = setpartitioningtrace.modelstat;

returnStat(’solvestat’) = setpartitioningtrace.solvestat;

$ libinclude matout x.l I

$ libinclude matout z.l

$ libinclude matout cover.m J

$ libinclude matout truck.m

$ libinclude matout returnStat stat
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APPENDIX G

The Solution Of The Arranging Algorithm For

A Given Data
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Variable Length (mm) Height (mm) Width (mm) Weight (tone)

X1 1074 1241 180 0.121799874

X2 1630 1825 700 0.61248096

X3 1728 1864 700 0.369139433

X4 1830 2770 130 0.44837928

X5 498 936 20 0.009173399

X6 508 1051 96 0.02808092

X7 459 804 80 0.018472356

X8 535 925 120 0.024435003

X9 775 1215 24 0.01853118

X10 377 1107 48 0.010947945

X11 683 2030 22 0.027286123

X12 994 1440 110 0.141719222

X13 445 490 8 0.00426933

X14 390 860 32 0.020471136

X15 970 2990 12 0.051341184

X16 654 1136 648 0.137151475

X17 1127 1997 620 0.333488778

X18 1180 1480 432 0.338074179

X19 679 954 180 0.076671017

X20 799 1034 324 0.120491745

X21 4253 2609 700 1.392962621

Total 21588 4.30536716
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APPENDIX H

The Distance Matrix For The Given Data
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 210 M 52 50 47 52 54 54 52 52 52 52 50 52 35 35 32 54 35 52 52 52 351 52 M 9.6 8 2.4 3 3 2.4 0 2.4 11 9.6 11 19.5 18 32 3 19.5 0 0 0 19.52 50 9.6 M 1.6 10 10.6 10.6 10 9.6 10 1.4 0 1.4 23 21.5 29.1 10.6 23 9.6 9.6 9.6 233 47 8 1.6 M 9 9.6 9.6 9 8 9 3 1.6 3 21.4 19.9 27.5 9 21.4 8 8 8 21.44 52 2.4 10 9 M 1.6 1.6 0 2.4 0 11.4 10 11.4 21 20 34 1.6 21 2.4 2.4 2.4 215 54 3 10.6 9.6 1.6 M 0 1.6 3 1.6 13 11.6 13 22.6 21.6 35.6 0 22.6 3 3 3 22.66 54 3 10.6 9.6 1.6 0 M 1.6 3 1.6 13 11.6 13 22.6 21.6 35.6 0 22.6 3 3 3 22.67 52 2.4 10 9 0 1.6 1.6 M 2.4 0 11.4 10 11.4 21 20 34 1.6 21 2.4 2.4 2.4 218 52 0 9.6 8 2.4 3 3 2.4 M 2.4 11 9.6 11 19.5 18 32 3 19.5 0 0 0 19.59 52 2.4 10 9 0 1.6 1.6 0 2.4 M 11.4 10 11.4 21 20 34 1.6 21 2.4 2.4 2.4 2110 52 11 1.4 3 11.4 13 13 11.4 11 11.4 M 1.4 0 24.4 22.9 31.3 13 24.4 11 11 11 24.411 50 9.6 0 1.6 10 11.6 11.6 10 9.6 10 1.4 M 1.4 23 21.5 29.1 10.6 23 9.6 9.6 9.6 2312 52 11 1.4 3 11.4 13 13 11.4 11 11.4 0 1.4 M 24.4 22.9 31.3 13 24.4 11 11 11 24.413 35 19.5 23 21.4 21 22.6 22.6 21 19.5 21 24.4 23 24.4 M 1 15 22.6 0 19.5 19.5 19.5 014 35 18 21.5 19.9 20 21.6 21.6 20 18 20 22.9 21.5 22.9 1 M 13.5 21.6 1 18 18 18 13.515 32 32 29.1 27.5 34 35.6 35.6 34 32 34 31.3 29.1 31.3 15 13.5 M 35.6 15 32 32 32 1516 54 3 10.6 9 1.6 0 0 1.6 3 1.6 13 10.6 13 22.6 21.6 35.6 M 22.6 3 3 3 22.617 35 19.5 23 21.4 21 22.6 22.6 21 19.5 21 24.4 23 24.4 0 1 15 22.6 M 19.5 19.5 19.5 018 52 0 9.6 8 2.4 3 3 2.4 0 2.4 11 9.6 11 19.5 18 32 3 19.5 M 0 0 19.519 52 0 9.6 8 2.4 3 3 2.4 0 2.4 11 9.6 11 19.5 18 32 3 19.5 0 M 0 19.520 52 0 9.6 8 2.4 3 3 2.4 0 2.4 11 9.6 11 19.5 18 32 3 19.5 0 0 M 19.521 35 19.5 23 21.4 21 22.6 22.6 21 19.5 21 24.4 23 24.4 0 13.5 15 22.6 0 19.5 19.5 19.5 M
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