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Abstract: In this article, we consider a class of nonlinear functional integral equations, motivated
by an equation that offers increasing evidence to the extant literature through replication studies.
We investigate the existence of solution for nonlinear functional integral equations on Banach space
C[0,1]. We use the technique of the generalized Darbo’s fixed-point theorem associated with
the measure of noncompactness (MNC) to prove our existence result. Also, we have given two
examples of the applicability of established existence result in the theory of functional integral
equations. Further, we construct an efficient iterative algorithm to compute the solution of the first
example, by employing the modified homotopy perturbation (MHP) method associated with Adomian
decomposition. Moreover, the condition of convergence and an upper bound of errors are presented.
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1. Introduction

Integral equations play a notable role in applied mathematics. The practical importance of nonlinear
integral equations is increasingly evident from studies that incorporate the same in distinct areas of
knowledge that include biology, traffic theory, the theory of optimal control, economics, acoustic
scattering, etc. [1,2,9,39]. Precisely, extensive studies on these equations are focused on their solutions
by employing the MNC [3, 29, 36, 47]. Besides, other concepts like quasi linearization [35] and



17487

pseudo-spectral methods [52] have also been used in similar studies. In such studies, the existence of
solutions is proved with the theory of fixed points. Verifying the existence of solutions, their behavioral
properties are also extensively studied. For instance, Hu et al. [20] discussed the global attractivity and
asymptotic stability of the solutions, whereas Wang et al. [51] discussed the local attractivity and local
stability, and Aghajani et al. [4] and Alvarez et al. [5] gave globally and uniformly locally attractive
solutions. Notably, Banas et al. [6, 8, 10] and Dhage et al. [12,13, 16, 17] also discussed the attractivity
of solutions. Xu et al. [53] renders radially symmetric solutions and their asymptotic estimates.
Furthermore, systems of equations have been studied and numerical methods to find solutions have
also been proposed [19,22,23,25,38,40,48,49].

In recent times, the fixed point theory (FPT) is applicable in various scientific fields suggested
by Banach [11,21, 26, 37,50]. Also, FPT can be applied to seeking solutions of functional integral
equations. Functional integral equations of variety of forms chair as a extraordinary and prestigious
branch of non-linear analysis and seek various invocations in demonstrating numerous real-life together
with real-world problems (cf. [14,27,28,30-34,41]).

Recently, several research articles have been published in connection:

In 2020, El-Sayeda and Ebeada [18] have studied the solvability of self-reference functional and
quadratic functional integral equations:

x<r>:f(r, f g(s,x<x<s>>)ds),
0

and x(f) = f(t, f F1(s, x(x(s))ds f A, x(x(s)))ds), respectively,
0 0

where x € C[0,T], t € [0,T], and g, fi, f> satisfy Carathéodory condition. To realize the existence
of a solution to those integral equations, they used Schauder’s fixed point theorem in the Banach space
c[o,T].

In 2020, Deep et al. [15] established the existence of solutions of some non-linear functional integral
equations in Banach algebra with applications:

y(r):(f<t,y(t>,y<0(t)>>+F(r, f (2, 5, 9(6(5)ds, f u(t, s,y<a(s>)>ds,y<d(t)>))

0 0
b b
X L(fa j(; p(t, s, y(c(s)))ds, j(: q(t, S,Y(X(S)))ds,)’(n(f))),

for t € [0,b]. Existence result is obtained through the techniques of MNC and Darbo’s fixed point
theorem in [0, b].

In 2021, Rabbani et al. [46] established some generalized non-linear functional integral equations
of two variables via measures of noncompactness and numerical methods to solve it,

s
() = (f (&) + A, y(), Y(a() + P(é (), fo F(), r,y(B(r)))dr, y()/(é)))))

b
x (U(g,y@, Y(9<§>)>+Q(§,y(§>, fo G(. r,y<6(r>)>,y<¢<§>>>)),

where { € [0, b]. To realize the existence of the solution of those integral equations, they have used the
concept of MNC and Petryshyn fixed point theorem for the operators in a Banach algebra C([0, b] X
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[0, ], R), for b > 0 in the form of two operators. They have also discussed an iterative algorithm which
was constructed by modified homotopy perturbation method and Adomian polynomials to compute the
solution of the example.

In 2022, Karmakar et al. [24] have studied the existence of solutions to non-linear quadratic integral
equations via measure of noncompactness:

x(t) = g(t, x(1)) + A f w2, 5)51(s, x(s5))d s f pa(t, )$2(s, x(5))ds,
0 0

for t > 0, where g, u;, (o, 1, 5 are real valued continuous functions defined on R* X R and A is a
positive constant.

In our work, we study an existence result for the solution of the following nonlinear functional
integral equation:

1 0
w(g)zf(@, @(0), g0, @) fo Wo,n, o)), w(o) fo u(g,n,wm))dn), (1)

where o € I = [0,1]. In this work, our main work aims to obtain the existence result of Eq (1.1)
on Banach space C[0, 1] by applying the technique of the generalized Darbo’s fixed-point theorem
associated with the MNC, and also, work to obtain the analytic solution of it by applying the semi-
analytic method. Now, we describe the importance of why we study Eq (1.1) and what is the perfection
of our findings. The first one is that the conditions estimated in several research articles will be analyzed
and the second one is that this manuscript affiliate the relevant work in this area. The third one is the
bounded condition implies that the “sublinear condition” that has been identified in various literature
works does not have a relevant appearance here. Our findings generalized, extended, and complement
several results existing in the literature.

The estimate of our work is organized as follows: In Section 2, some notations, definitions and
auxiliary facts are given. In Section 3, we prove the existence of solution by using the generalized
Darbo fixed point theorem associated with the MNC on C[0, 1]. Also, we present two examples to
illustrate our theorem. In Section 4, we state an algorithm to find the solution by using MHP and
Adomian decomposition method. Correspondingly, we apply the algorithm to one of the examples for
finding an approximate solution and tabulate the errors. Also, we show the graphs of v(0) and @w(o). In
Section 5, we analyze the errors and provide an upper bound of the errors. Our conclusion is presented
in Section 6.

2. Preliminaries

In this section, we organize some notations, definitions and auxiliary facts which we need
throughout the paper.

Let A be a nonempty subset of a Banach space X. We use A and Conv A to denote the closure and
convex closure of A respectively. Also, we use Py to denote the class of nonempty bounded subsets
of X and Qyx to denote the subclass of relatively compact sets of Px. Let C(I) denotes the set of all
continuous real valued functions on [0, 1], a classical Banach space.

Definition 2.1. [7] A function u : Pxy — R" is called a MNC on X if the following conditions are
satisfied:
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(i) The kernel of the function, keru = {A € Px : u(A) =0} #0 & keru C Qy.
(ii) AC B = u(A) < u(B), YA, B € Px.
(iii) u(A) = u(Conv A) = u(A), VA € Py.
(iv) u(AA + (1 = )B) < Au(A) + (1 — Du(B), for 2 € [0, 1].
(v) If {A, )2, is a sequence of closed sets in Px such that A1 € A,,Yn € IN and u(A,) — 0, then

n=1
NS A, = Aw # 0.
Definition 2.2. Define ¥ = {y/ : R* — R*} such that each /' satisfies the following:

(i) ¥’ is an upper semi-continuous function from the right.

(ii) ¥'(0) <o,Yo €[0,1].
Definition 2.3. We recall the definition of MNC in C(I) as defined in [8]. Let A C C(I) such that A
is nonempty, bounded, and let @ € A together with € > 0, then the modulus of continuity of @ in I is
defined as
w(@, €) = sup {|@(0) — @)l : lo — 1l < €}.

o.nel
Let w(A,e) =supw(wm,e) and wy(A) = lin(} w(A,e).
wEA €=
Define i(w) = sup {lm(e) — | - llw(o) —wMm)ll :n <o} and i(A) = Sup (@).
one wE

Now, MNC is defined as
H1(A) = wo(A) +i(A).

Theorem 2.1. [16] Let A be a nonempty, closed, bounded together with convex subset of a Banach
space, and let T : A — A be a continuous function satisfying

w(TB) < (u(B)), VB CA(B #0), 2.1)

Jor some MNC u and some ' € Y. Then, there exist at least one fixed pointin T.
This theorem is known as the generalized Darbo fixed point theorem.

3. Main result

In this section, we prove the nonlinear equation (1.1) has a solution in the Banach space C(/), with

the supremum norm.
The nonlinear equation (1.1) is studied with the following assumptions:

(A1) The function f : I X RXIR xR — R is continuous such that f : I x R* x R* xIR" — IR". Also,
there exists a function ¢ : R* — IR" such that ¢(0) = 0 and y(0) < 5 together with (o) + (1) <

Y(o + n) satisfying
|f(0, ur, vi,wi) = f(0, uz, vo, wo)| < ¥(|luy — us]) + [vi — val + Wy — wol. (3.1)

For u,v,w € R*, o — f(o,u,v,w) is increasing on I and forp € I and u € R™, v — f(o,u,v,w)
and w — f(o,u,v,w) are increasing on I and for some N > 0, f(0,0,0,0) < N.
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(A2) The function g : I X R — IR is continuous and there exists «’, k > 0 such that
g0, 0)l < k" and |g(o,y1) — &(0, y2)| < kly1 — yal. (3.2)

(A3) The functions u : IXIXIR — R andv : IXIXIR — IR are continuous such that u : IX/xR"* — R"
and v : I xIxIR" — IR". For arbitrarily fixed € I (= w(n) is also fixed), o — u(o,n, w(n)) and
o — v(o,n, @(n)) are increasing in /. Also, there exists a constant / € [0, %) such that

1 0
fo v(o,n,@(n)dn <1 and fo u(o,n, @(n))dn < 1. (3.3)

(A4) There exists ro > 0 such that
Y(ro) + (rok + 1) + )l + N < ry. (3.4)

(AS5) The constant xl < 1/4.

Theorem 3.1. Under the above assumptions, the nonlinear equation (1.1) has at least one solution
in C(I).

Proof. Let T : C(I) — C(I) be an operator defined as

1 0
(Tw)) = f (Q,w(g),g(Q,W(Q)) L v(o,n, w(n))dn, (o) fo M(Q,U,W(n))dn)-

The operator 7' having a fixed point in C(/) is equivalent to the nonlinear equation (1.1) having a
solution in C(/). Hence, we prove T has a fixed point by using Theorem 2.1.

By applying system of Eq (1.1) and imposed postulates (A1-AS5), we estimate for every o € [
such that

|(T@)(0)l

1
f (Q,W(Q),g(Q,W(Q)) fo v(o,n, @(n))dn, @(0) f: u(Q,n,W(n))dn)—f(Q,O,O,O)

< +1f(0,0,0,0)|

1 0
<y(l@(0))) + |g(0, @(0))| fo [v(o. n, w(m))dn| + |=(0)] fo |u(o, n, @@))dn| + 1£(0,0,0,0)|

<y (| (o)) + (Iglo, @) + [@(0))] + | f(0,0,0,0)|

<y(l@ (o)) + (Ig(o, @(0)) — g(0, )| + 1g(0, 0)| + [@ (o)) + | f(0, 0,0, 0)|
<Y(l@(0)]) + (kl@(o)| + K" + |@())l + | f(0,0,0,0)|

<Y(lwl) + (Il (« + 1) + £)] + N.

Therefore,
1T < y(l@l) + (o]l (k + 1) + &) + N.

For ry > 0 such that ||@]| < ry, by assumption (A4), ||T@|| < ry, 1.e. T maps B, into itself. Now, we
prove T is continuous. Let {w,} | be a sequence in B, such that @, — @, we obtain
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|(Tw)(0) - (Tw)0)|

1 0
='f (Q, @,(0), g(0, @.(0)) fo v(0,n, @, (1)dn, @,(0) fo u(g,n,wn(n))dn)
1
-f (Q, @(0), g0, @(0)) fo v(o,n, w(m))dn, @ (o) fog M(Qaﬂ’w(ﬂ))dﬂ)‘

< yY(lw,(0) — w(o)l) +

1 1
g(0, @,(0)) fo v(0,n, @, (1))dn — g(o, @(0)) fo V(Q,U,W(n))dn|

+

0

Let us now consider
1 1
‘g(g,wn(g)) fo v(0, 1, @,(7))dn — g(o, @(0)) fo v(o, n,wm))dn‘

1
<|g(0, @.(0))| fo V(Q,n,wn(n))—V(Q,n,zrf(n))‘dn

1
+ |s(0. w(0)) — glo, @(0))| ﬁ V(0. . w(m)|dn

<|s(0 @u(0))| Vi (€) + kl|ma(0) - (o))
<k ll@all + KWV, (€) + Kl ||, — I,

and
0
@,(0) fo u(o, 1, @,(n))dn — @ (o) fog M(Q,U,W(U))dﬂ‘
0 0
<|@,.(0) fo u(o,n, @,(n)dn — @,(0) fo u(o, n,W(n))dn'
0 0
- fo u(o.n w(n)dn — w(o) fo o, @)
<@l Uy (e) + U@, — @l
where
Vin(€) = sup {|vio,n, @) = vio,n, y()| : @,y € B, &lw — y| < €},
o<
and

Un(€) = sup {{uto. n, () — u(o, n,y()| : @,y € B, &lw — yl < €.

S

Ase —0,V,, —» 0and U,, — 0. We are enabled to obtain

IT@, - Twl < y(llo, — @) + lk+ 1) |lw, — @,

AIMS Mathematics Volume 7, Issue 9, 17486—-17506.
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ie., Tw, - Tw. Hence, we have proved that T is continuous in B,,. Clearly T(B;)) C B, , where
Bl ={we B, :w() 20, VYoell

Further, we suppose A C B,, such that A is nonempty and @ € A. Also, let € > 0 and o;, 0, € I such
that |o; — 02| < €. Without loss of generality, let us also assume that o, > 0;, we estimate

[(T®)(02) - (Tw)(0))|

S‘f(@z, @(02), 802, @ (02)) fO | v(02, 1, w(m)dn, w(02) fo ) u(02, 1, w(1))dn)

= f(02. @(01), 8(02, @(02)) fo | v(02, 1, w(m))dn, @(02) f; 2 u(@z,n,wm))dn)’

+ ‘f(@z, @(01), 8(02, W(02)) fo | v(02, 1, w()dn, @(02) fo ) u(02, 1, w(n))dn)

= flo1, @(o1), (02, @(02)) fo | v(02, 1, w(m))dn, @(02) foe 2 M(Qz,ﬂ,w(ﬂ))dﬂ)‘

+ ‘f(Ql, @(01), 8(02, W(02)) j; | v(02, 11, w()dn, @(02) fo ) u(02, 9, w(1))dn)

= f(o1, @(o1), (02, @(02)) fo | v(or, n, w(m)dn, @(02) jj | (02,1, W(n))dn)‘

|rter e, sten ey [ o wdn, (o) [ stz

- flor, o). sler o) | v wdn, (@) [ uter. . wtman)
<Y(l@(e2) - (o)) + w(f. ©) + (o2, m(e2)| fo | Vo2, n, @) = v, 1, @(m)|dn

+ @ (02l f: 2 |uto2. n. w(®)|dn + |8(02. w(02)) — glo1, w(on)| fo 1 Vo1, n. w(m))|dn

01 01
+‘W(92) fo u(02,n, @w(n))dn — @ (o) fo u(Ql,n,W(n))dn‘

< Y(|@(02) -~ (o)) + (£, €) + |8(02, W(2))|w(v, €) + [@(02)lle

1
+|g(02, @(02)) - glo1, @(o1)| fo [v(or. 7, @(p))dn|
01 01
+‘W(Q2) fo u(02, 1, @w(n))dn — @(o1) fo u(Ql,n,W(n))dn‘,

wherein,

1
|8(02. @(02)) — glo1, w(01))| fo Vo1, n, @(®))|dn

<{|g(02, @(02)) — glo1, @(02))| + |glo1, @(02)) — glo1. w01}
<lw(g. €) + kl|w(0) — w(oy)),
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and

1 01
‘W(Qz) f: u(02,n, w(n))dn — @(01) fo u(Ql,n,w(n))dn'

1 01

S‘W(Qz) f: ez )iy - (o) u(gl,n,wm))dn'
01 01

+‘W(92) fo u(o1, 1, w(m))dn — w(o1) fo u(Ql,n,W(n))dn’

01 01
<|w(o2)| L |u(o2.n. @) — ulor, n, @w())|dn + |w(02) — w(o))| f; |utor, n, w(m))dn|

<l@(2)lw(u, €) + l|@(0>) — w(o1)

b

together with

w(f.€) = sup {|f(o1,u,v,w) = f(02, 1, v, W)| : o1 — 02l < €,

01,0261

w(u,€) = sup {|u(or,n, @) — ulor,n,@)| : lor — 02| < €,

o1,02€1

w(v,€) = sup {{v(o1,n, @) — (o2, n,@)| : lo1 — 02 < €,
01,026l

w(g, €) = sup {|g(02, x) — g(01, %) : lox — 01| < €}.

01,02€1

Then, we can find

(T@)(02) — (To)o))|
<Y(|@(02) = @(0)]) + (£, ) + |g(02, W(@))|w(v, €) + le|w(02)| + lw(g, €)
+ kl|@(02) — w(o))| + l@(0)lw(u, €) + l|@(0s) — (o)
<Y(w(w, €)) + w(f, €) + (k||w|| + K )w(v, €) + le||w]|| + lw(g, €) + (kI + Dw(w, €) + ||w]| w(u, €).
Now, applying uniform continuity of the function f(o, u, v, w), u(o, n, @), v(o,n, @) and g(o, @) on
the set I X [—rg, ro] X [—ro, ro] X [—ro,r0) s I X I X [—ro, rol, I X I X [—rg, rol, I X [—ro, ro], respectively.

We are enabled to deduce that w(f,e) — 0, w(u,e) — 0, w(v,€) — 0, and w(g,€) — 0, when € — O.
Thus, we can find

wo(TA) < Y(wo(A)) + (kI + Dwo(A)
< (¥ + (k + DD)(wo(A)). (3.5)

Suppose @ € A, and o1, 0, € I, together with o, < 0,, we estimate that
[(T®)(02) — (T@)o1)| - [I(TD)(02) - (Tw)(01)l]

1 2
='f(gz, @(02), 8(02, @(02)) j; v(02, 17, w(n))dn, @ (02) f M(Qz,n,wm))dn)
1 01
_f(Ql’ @(01), g(o1,@(01)) fo v(o1,1, w(1))dn, @(o1) i ”(QI’U’W(U))‘IU)’

AIMS Mathematics Volume 7, Issue 9, 17486—-17506.
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1 02

—Hf(gz, @(02), 8(02, @(02)) fo v(02, 1, @(1)))dn, @w(02) fo u(@z,n,wm))dn)
1 01

_f(Ql’ @(01), g(o1, @(01)) ) v(or, n, w(m))dn, w(o) i M(Ql,n,fU(n))dn)H

1 2
(Qz, @(02), 802, @(02)) j; v(02, 1, @(n))dn, @(02) fog M(Qz,n,W(n))dn)

1 02
—f(Qz, @(01), g(02, @(02)) fo v(02, 1, w())dn, w(0,) fo u(02, 1, W(n))dn)‘

1 2
+'f(92, @(01), g(02, @(02)) j; v(02, 1, w(m))dn, @ (02) fog u(@z,n,wm))dn)

02

1
—f(Ql, @(01), 8(02, @ (02)) fo v(02,n, @(m))dn, @(02) ; M(Qz,n,wm))dn)‘

1 2
+'f(@1, @(01), g(02, @(02)) j; v(02,n, @(1))dn, @(02) f u(02,1, W(n))dn)

01

1
—f(gl, @(01), 8(02, @(02)) fo v(o1,n, @w(m))dn, @(02) ; M(Qz,ﬂ’w(ﬂ))dﬂ)’

1 1
+'f(91, @(01), 8(02, @(02)) fo v(o1,n, @(1))dn, @(02) fog u(@z,n,wm))dn)

01

1
—f(gl, @(01), glo1, @(01)) fo v(o1,n, @w(m)dn, w(or) u(@nn,wm))dn)‘

1
- Hf(@z, @(02), 8(02, @ (02)) fo v(02, 17, w(1))dn, w(@z) u(Qz 7 W(n))dn)

1 02
—f(gz, @(01), (02, @(02)) fo v(02, 1, w(1)))dn, w(02) u(o2,1, W(n))dn)H

02

1
—Hf(gz, @(01). 802 T(02)) fo ves 1. @)y, w(ea) | ulonn. w()dn)

02 ‘

_f(Qla @(01), §(02, W (02)) IV(Qz,Ua @w(m)dn, @(oy) | u(02,m, W(n))dn)]
‘f Ql @(01), 8(02, @ (02)) f v(02, 1, w(m)dn, w(02) f (02,1, W(n))dn)
—f(m @(01), §(02, W(02)) f v(or, n, w(m)dn, @w(,) f (02,1, W(n))dn)H
‘f Q1 @(01), 8(02, W (02)) f v(or, 1, w(m)dn, w(02) f (02,1, W(n))dn)

—f(&n @(01), g(o1,@(01)) f v(o1, 1, w(1))dn, w(o) f u(or,n, W(n))dn)H

< Y(lw(o2) — w(0))]) + kl|lw(02) — w(01)| + llw(02) — w(0))|
—y(llw(o2) — w(e)l) — «l([lw(ez) — w(o)I]) — [[lw(e:) — w(01)]
<Y + (k + D)(lw(02) — w(o)| = [l@(02) — w(o1)l]).
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Now, we are enabled to write

i(Tw) < (Y + (k + D) (i(w)).
Thus, we can find
i(TA) < (¥ + (k + DI)(i(A)). 3.6)

From inequalities (3.5) and (3.6), together with the definition of MNC u, we can write

(T A) = wo(TA) + i(TA) < ¢ (wo(A) + i(A)) <Y (u(A)),

where ' =y + (k + 1), ¥ € Y.
Hence, by the generalized Darbo fixed point theorem, 7" has a fixed point in C(/), i.e., the nonlinear
equation (1.1) has at least one solution in C[0, 1]. O

Further, we give two examples with a verification of all the five assumptions of our main theorem.

Example 3.1. In the first example, we consider the following nonlinear integral equation:

1 0

0 on on
N NCY
7 = T w P\ + |, ot o | oy

Qo Q
—— + Vv + d , T = —
4(1 + u?) v+ wand glo.wle) 41 + @?)
assumptions (A1) and (A2) respectively such that

Herein, we have f(o,u,v,w) = satisfying the

o 0
41+ 401 +d)

< Y(luy — wal) + vy — val + [wy — wal,

+ Vi —va| + Wy —wy

|f (0, ur,vi,wi) = f(0, uz,v2, wp)| < ‘

where y(0) = ¢ and

:K,

FN

o
’0—_<
g(Q )_4—

) 1
lg(o,y1) — g0, y2)| < Zlyl -yl < Zb’l — Y2l = «kly1 = yol.

16(19_"_7 = ﬁ satisfy the assumption (A3)

1
such that [ = T Thus «l < 1 and for ry = 1, the assumption (A4) is fulfilled as

Also, the functions u(o,n, @) = and v(o,n, @) =

ro (51’0 1) 1 1
4 4

1 MN+N=— — + = <.
Y(ro) + (ro(k + 1) + ) + 4+ 16+4_r0
Now, we are enabled to observe that the last inequality admit a positive solution, for ry = 1. Hence,
all assumptions (A1)—(AS5) of Theorem 3.1 are fulfilled. Thus, we are enabled to conclude that the

nonlinear integral equation (3.7) admits at least one solution in the space C([).
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Example 3.2. Consider the following nonlinear integral equation:

Inw(e) cos(ow(o)) [ + arctan w( )
@) = —2— + 220 (0@ (0)) e an+ @) | ’7 dn. (3.8)
1+0 1+o0 2(1 + o) o 16(1 + exp(—w@(n))) 4(1

We have f(o,u,v,w) = e + Inu + v + w and g(o,w(0)) = M satisfying the
1+ 0% 2(1 +0)

assumptions (A1) and (A2) respectively such that (o) = 1Q6 K = =3 and xk = T Also, the functions
o+n arctan @w(n) .

u(o,n, @) = and v(o,n, w) = ——— = fulfill the assumption (A3) such that

CPT T 6T rexp(—am) T 41 +7) P

[ = 3 Thus, «/ < 7 and for ry = 1, the assumption (A4) is fulfilled. Thus, our second example also

fulfills all the five assumptions (A1)—(AS) of Theorem 3.1 and hence by the same theorem, Eq (3.8)
has at least one solution in the space C(1).

4. Algorithm to find the solution

In this section, we rephrase and solve Eq (3.7) by using MHP and Adomian decomposition
method. The Homotopy perturbation method is a coupling of the idea of homotopy and perturbation
methods to eliminate the limitation of traditional perturbation methods. It is also a powerful concept
in perturbations theory and topology. In the proposed method, we alter problems of the nonlinear
functional equation to some simpler problems and to be free of non-linearity, we apply a linear
combination of Adomian polynomials [42]. Thus, we present an iterative algorithm to solve Eq (3.7).

Let us consider the general form of Eq (3.7) as follows:

Do, w(0)) — flo,w(E) =0, 0 €[0,1]. 4.1)

Here, D is a nonlinear operator and f is some known function. We divide the operator 9 according

to [43—-45] into operators M and N to some linear or nonlinear operators. We also divide the function

finto fi and f>. Then Eq (4.1) can be rewritten as M(o, @) — fi(0, @) + N(o, @) — f2(0, @) =0
Now, we are enabled to define a MHP as follows:

H(p7 V) = M(Q7 V) - fl(g’ V) + p(N(Q’ V) - fZ(Q’ V)) = ’ (42)

and V(o) = Z pvi(0) together with lim v(o) = @ (o). (4.3)
i=0

Herein, p = [0, 1] and is called an embedding parameter. Letting p = 0 to p = 1, we are enabled to
find M(o,v) = fi(o,v) to N(o,v) = f2(0,v). Further, in Eq (3.7), we choose the operators as follows:

Mo, w(0)) = (o),

1 0

0 on on

N(o, w(0)) = - = o
(. () 4(1+w(g)2)f0 16(1+ @) w(g)fo 16(1+ w2y

fi(o, (w(0)) =0 and f>(0,@w(p)) = m

_Q'
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For our ease in calculation, we further divide the operator N into N’ and N”* and approximate them
by using Adomian decomposition as

, _ 0 b o N i
N'(o,v(0)) = —4(1+v(g)2)f0 16(1+v(n)2)dn— —;pﬂi(g),

— = _dp=- ‘A (0), 4.4
TR 2, P e @

N"(0,v(0)) = —v(0) fg

fao.v(0) = Z p'A0),
i=0

wherein the Adomian polynomials are given as follows:

d 0
ﬂi = | . - ’
0= alali (Zieo P/v)) o).

, d' 0 fl on
ﬂ[(@):_ )
itldp’ (4(1+(2,0pfv,(g>)) 0 16(1+(2,opfv,<n>)) )]0

R |
A = 5|75 dp (Zp J(Q))f 16(1+(Z,0pfvj(n))) )]

Putting Eqgs (4.3) and (4.4) in Eq (4.2), we get

M( i pivi(g)) — fi(0) + p( - i P'A0) - i pA (o) - i piﬂi(Q)) =

i=0 i=0 i=0 i=0

Equating the coeflicients of powers of p to zero and solving for v;, i = 0, 1,2, ..., we are now enabled
to find an iterative algorithm for the numerical solution of Eq (3.7) as follows:

vo(0) = M7 (fi(0)), @)
vi@) = MT(Aj1(0) + AL (@ + A7 (0) j=1,2,... ‘
Applying the algorithm to the same example, we get vy(0) = 0. For the case j = 1, we have
1 In2/ o o*
_ A/ - = 12 - &
1+92) o Ao 128(1+Q2)’ 0@ = BTy

d th (0) = M'(Ag(0) + A} (0) + Al (0)) ! (_1n2 2,8 +—Q4)
an S = = = — 0.
us vi(o oo olo o0 T+ 0 3¢ T3t 33) ¢

Aolo) = g(

Now, let us consider the case j = 2, we have

6 3

1 ln2 o o 0
Ai(o) = L9y, _@o
10 = +g2)3( 256° 8 64)+ 21 + 02’
, 1 n2 , In2 52 2, 0.079851905316338950°
AI(Q) = 2 3(_ Q - ) 2 ZQ + 2 ’
1+02°\ 20489 ~ 8192¢ ~256° ) T 64(1 + o) 3201+ )
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and
ot (B3In2 + 60)98 +O9In2 + 180)@6 +O9In2 + 180)@4 +31In20* + 600?%) arctan o

O =505 ) 2457605 + 7137280* + 7372802 + 24576
_ (14080 + (31n2 — 132)0” ~ 1152¢° — (81n2 + 1600’ ~ (31n2 + 60)°)
+2457605 + 737280" + 7372802 + 24576

Thus, we have
3

1 ( In2 ., o @ 1n2 In*2 5)+ 1 ( In2 _Q_)
1+ 649 72

20 =G\ " 20082 " 6d 8 128°  8192°
1
L 2(0.03125Q4 + 0.002495372041192)

((31n2 + 60)0® + (91n2 + 180)0° + (9 In2 + 180)0* + 3 In 20? + 600?) arctan o
- 2457605 + 737280* + 7372802 + 24576
_ (1408 + (3102 — 132)0” ~ 1152¢° ~ (81n2 + 160)0° ~ (31n2 + 60)0")
+2457605 + 737280* + 7372802 + 24576

By Eq (4.3), we get an approximated solution,

! (hl_22+@+@_‘*)

©) 1 ( In2 , o° In%2 s 1n2 )) 1 (ln2 N 93)
w = — - = _ e 4 & o

1 (¢* In2
(9 + =207 + 2 40.031250" + 0.002495372041 1Q2)

TTr\32 T128Y T2
((3In2+60)0" + (912 + 180)0° + (9In2 + 180)* + 31n 20* + 600 arctan 0

2457605 + 737280* + 737280 + 24576
= 140808 + (3In2 — 132)0” — 11520° — (81n2 + 160)0° — (31n2 + 60)0° )
+245760° + 737280* + 737280% + 24576

Thus, by putting @ (o) together with @,(p) in Eq (3.7) and equating the both sides, we are enabled
to obtain the absolute errors of @;(0) together with w@,(p) as shown in Table 1. In this way, we
are now enabled to observe that increasing the number of cases in the algorithm (4.5), we get better

approximations of @w(o). The graphs of v(0) and @(p) are shown in Figure 1.
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Table 1. Absolute errors.

1

0.8 || —m—vi(0)

0.6
04
0.2
< oy
0.2
-04
-0.6

-0.8 -

o Absolute error of wy(0) Absolute error of @, (o)
0 0 1.61 x 1072
0.1 3x107* 1.59 x 1072
0.2 1.9x 1073 1.42 x 1072
0.3 59x%x1073 1.01 x 1072
0.4 1.3x 1072 3.8%x 1073
0.5 2.34 %1072 42x1073
0.6 3.68 x 1072 1.29 x 1072
0.7 53 %1072 2.12x 1072
0.8 7.15 % 1072 2.82 %1072
0.9 9.18 x 1072 3.42 %1072
1.0 1.135x 107! 3.91 x 1072
1 T Wu(g)‘
—a—@1(0)
—4— (o)

1 I I I
0 01 02 03

5. Error analysis

0.4

0.5

o

07 08 09

0.8

0.6

0.1 0.2 0.3

Figure 1. Plots of v(0) and @ (o).

04 05 06 07 08 09 1
e

In this section, we give the following two theorems and prove that they also concur with our

functional integral equation (1.1).

Theorem 5.1. Let w(0) = Zf:o vi(0), k € IN and M" be a linear operator. Then the following
equation is equivalent to the algorithm (4.5):

Proof. Given that

AIMS Mathematics

@1 = M (f) + M7 (falo, @) = N(@y)).

@,+1(0) = vo(0) + vi(0) + v2(0) + ...vps1(0).

(5.1)

Volume 7, Issue 9, 17486—-17506.
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By using algorithm (4.5) , we are enabled to find

@a1(0) = M7 (f1(0)) + M (A(0) + Ay(0) + A (0)) + M (A1(0) + Aj(0) + AV (0))
+ oo+ MU (A(0) + AL(0) + AL (0))

= M (fil0)) + M“( Z Ao) + Z A0) + Z ﬂ?’(g))
i=0 i=0 i=0

= M (fi(0)) + M“(fz(g, Z Vi(Q)) -N ’(Q, Z Vi(Q)) -N ”(Q, ZO: Vi(Q)))

i= i= =

= M) + M (e D v@) - M. 2 i)

= M'(fi(@) + M (f(0, @.(0)) — N(o, @.(0))).

Now, we prove the equivalence by using induction. By using assumption, we know that @y = vy.

@ = M'(fi) + M (= N(@o) + folwy))
= M (f) + M7 (= N(vo) + fa(v))
= M) + M7 (= N (wo) = N (vo) + fo(wo)),
ie., mi(0) = M'(fi(0)) + M (Aj(0) + Af (0) + Ao(0)) = vo(0) + vi(0).

Therefore,
vi(e) = M7 (Aj(0) + A7 (@) + Ao(0)).
Hence, the equivalence is satisfied for v;. We now verify for v,.

@y = MT(f) + M (= N(@)) + folw))
= MTU(f) + M7= N'(wo +v1) = N”(vg + vi) + fo(vo + 1)),
Le., wy(0) = M'(fi(0)) + MT'(A(0) + Al(0) + Af (0) + AT (0) + Ao(0) + A (0))
= M\ (f1(0)) + M7 (A} () + Af (o) + Ao(0)) + M (A} (0) + A7 (0) + Ai(0))
= v9(0) + vi(0) + v2(0).

Therefore,

v2(0) = M7 (A}(0) + A7 (0) + Ai(0)).

By using induction hypothesis, let us assume that the statement is true for v, and we prove that
Eq (5.1) gives rise to v, as in the algorithm (4.5).

@i1(0) = M7 (f1(0)) + M7 (oo, ma(0)) — N(o, @4(0)))

= M (filo) + M_l(fz(Qa Z vi(@) = N(e, Z Vi(Q)))

i=0 i=0

= M\ (fil0) + M“( Z Ao + Z Ai0) + Z ﬂ,"(g))
i=0 i=0 i=0
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= M (f1(0)) + M“( Zn: Ai(o) + Zn: Ai(o) + Zn: ﬂ;’(g))
i=0 i=0 =0

= M) + ) (M (o) + i) + A/ ()

i=0
n n+1
= 0(0) + ) vil0) + M (A,(0) + AL0) + A47(0)) = D vilo).
i=1 i=0
Therefore,
Va1 (@) = M7 (An(0) + AL(0) + A (0)).
Hence, the algorithm is proved. O

Theorem 5.2. Let (C[0, 1], ||wll., ) be a Banach space and let w,(0) = Y.\, vi(0), n € N such that
Villeo < @||Vi-illeo» Yi € IN, where 0 < a < 1, then:

(o)

(i) The sequence {w,} ", is convergent.
(ii) The limit of the sequence say lim,,_,., @, = @" fulfills the algorithm (4.5) and Eq (4.1).

Proof. (1) Itis enough to show the sequence is Cauchy.
Let m,n € IN with m > n and let € > 0. Then, for o € I, with the above assumptions, we estimate

m

D @) = i@+ 302(@) + .+ (o)

i=n+1

< Masilleo + o + [Vmnlleo

|@n(0) — @a(0)| =

1 2
< @ olles + @ ol + e + @ [Vl
1 _ a,m—n 1
- (—)a Volle
1—-a

n+1

)||vo||m <e
-

ey [ — @ll < ( 1

(5]

Hence, the sequence {w@,}’, is Cauchy in (C[0,1],||l@l), ie., lim,o@,(0) =
lim,, e 2120 Vi(0) = 220 vi(0) = @ ().

(i) We first prove that the limit of the sequence fulfills the algorithm (4.5). Let {w,} — @*, we
estimate

lim @, (¢) = lim (M‘l(fl ©) + M7 (= Nio.@,-1(0)) + fale, wn_lw))))

—

n— n—1

= lim (M (o) + M7= Mo, ) wi@)) + (e, ) vi@))

i=0

— o
—_

S o~

n—

= M(fit@) + M= Tim (o, Y vit@) - Tim (0. Y vio)

i=0 i

1l
[«
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n—

+ lim fz(g, Z Vi(Q)))

1
i=0

—_

n—

n—1 n—1
= M(fi@) + M lim ) () + lim > A7(0) + lim > A o)
i=0 i=0

n—oo

Il
[«

i

(o)

=M%mm+M%Zﬂ@+iM@+iﬂ@)
i i=0 i=0

=
(9] (o) [oe]

i, lim @,0) = M (fi@) + M= Mo, Y n(@) - N[0, D vt@) + £(e. Y vi@)))
i=0 i=0 i=0
In other words,
@ (0) = M7'(fi0)) + M' (= N0, @"(0)) + fo(0, @"(0))). (5.2)

Hence, the algorithm is proved. Now for proving the Eq (4.1), we apply the operator M to the
above equation as

M@") = filo) - N(@") + fo(@") = M(@") + N(@") = fi(o) + (@) = A(@") = f(w"),

and the proof is completed.

The following corollary gives upper bound of the errors.

n+1

Corollary 5.1. Under the assumptions of the above theorem, ||o* — @,||,, < ( )II fille, Y € IN.

1-«a

6. Conclusions

We have thus verified and proved the existence result of the considered nonlinear functional integral
equation on the Banach space C[0, 1]. The result is obtained by the applications of the generalized
Darbo fixed point theorem associated with the MNC in the Banach space. Our result is demonstrated
with the two examples. Also, we have introduced a numerical algorithm by using the MHP approach
along with the Adomian decomposition method to find the approximate solution with relevant accuracy.
Moreover, an error analysis with the upper bound of errors and the condition of convergence are
presented. In this paper, the MATLAB program has been used for computations and programming.
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