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Abstract: We prove some new dynamic inequalities of the Gronwall–Bellman–Pachpatte type on
time scales. Our results can be used in analyses as useful tools for some types of partial dynamic
equations on time scales and in their applications in environmental phenomena and physical and
engineering sciences that are described by partial differential equations.
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1. Introduction

A time scale T is an arbitrary nonempty closed subset of the set of real numbers R.
Throughout the article, we assume that T has the topology that it inherits from the standard
topology on R. We define the forward jump operator σ : T→ T for any τ ∈ T by

σ(τ) := inf{s ∈ T : s > τ},

and the backward jump operator ρ : T→ T for any τ ∈ T by

ρ(τ) := sup{s ∈ T : s < τ}.

In the preceding two definitions, we set inf ∅ = supT (i.e., if τ is the maximum of T,
then σ(τ) = τ) and sup ∅ = infT (i.e., if τ is the minimum of T, then ρ(τ) = τ), where ∅
denotes the empty set.

The set Tκis introduced as follows: If T has a left-scattered maximum ξ1, then Tκ =
T− {ξ1}; otherwise, Tκ = T.

The interval [θ, ϑ] in T is defined by

[θ, ϑ]T = {ξ ∈ T : θ ≤ ξ ≤ ϑ}.

We define the open intervals and half-closed intervals similarly.
Assume χ : T→ R is a function and ξ ∈ Tκ . Then, χ∆(ξ) ∈ R is said to be the delta

derivative of χ at ξ if, for any ε > 0, there exists a neighborhood U of ξ such that, for every
s ∈ U, we have ∣∣[χ(σ(ξ))− χ(s)]− χ∆(ξ)[σ(ξ)− s]

∣∣ ≤ ε|σ(ξ)− s|.

Moreover, χ is said to be delta-differentiable on Tκ if it is delta differentiable at every
ξ ∈ Tκ .

In what follows, we will need the set Tκ , which is derived from the time scale T as
follows: if T has a right-scattered minimum m, then Tκ = T− {m}. Otherwise, Tκ = T.
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We introduce the nabla derivative of a function f : T→ R at a point t ∈ Tκ as follows.
Let f : T → R be a function and let t ∈ Tκ . We define f∇(t) as the real number

(provided that it exists) with the property that, for any ε > 0, there exists a neighborhood
N of t (i.e., N = (t− δ, t + δ)T for some δ > 0) such that∣∣[ f ρ(t)− f (s)]− f∇(t)[ρ(t)− s]

∣∣ ≤ ε|ρ(t)− s| f or every s ∈ N.

We say that f∇(t) is the nabla derivative of f at t.
Time scale calculus with the objective to unify discrete and continuous analysis was

introduced by S. Hilger [1]. For additional subtleties on time scales, we refer the reader to
the books by Bohner and Peterson [2,3].

Gronwall–Bellman-type inequalities, which have many applications in qualitative
and quantitative behavior, have been developed by many mathematicians, and several
refinements and extensions have been applied to the previous results; we refer the reader
to the works [4–14]. For other types of dynamic inequalities on time scales, see [15–23].

Gronwall–Bellman’s inequality [24] in the integral form stated the following. Let υ and
f be continuous and nonnegative functions defined on [a, b], and let υ0 be a nonnegative
constant. Then, the inequality

υ(t) ≤ υ0 +
∫ t

a
f (s)υ(s)ds, for all t ∈ [a, b], (1)

implies that

υ(t) ≤ υ0 exp
( ∫ t

a
f (s)ds

)
, for all t ∈ [a, b].

Baburao G. Pachpatte [25] proved the discrete version of (1). In particular, he proved
the following: if υ(n), a(n), γ(n) are nonnegative sequences defined for n ∈ N0 and a(n) is
non-decreasing for n ∈ N0, and if

υ(n) ≤ a(n) +
n−1

∑
s=0

γ(n)υ(n), n ∈ N0, (2)

then

υ(n) ≤ a(n)
n−1

∏
s=0

[1 + γ(n)], n ∈ N0.

Bohner and Peterson [2] unify the integral form (2) and the discrete form (1) by
introducing a dynamic inequality on a time scale T as follows: if υ, ζ are right-dense
continuous functions and γ ≥ 0 is a regressive and right-dense continuous function, then

υ(t) ≤ ζ(t) +
∫ t

t0

υ(η)γ(η)∆η, for all t ∈ T,

which implies

υ(t) ≤ ζ(t) +
∫ t

t0

eγ(t, σ(η))ζ(η)γ(η)∆η, for all t ∈ T,

The authors [26] studied the following result:

Ξ(υ(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)ζ(υ(ς, η))v(υ(ς, η))

+
∫ ς

0
=2(χ, η)ζ(υ(χ, η))v(υ(χ, η))dχ

]
dηdς
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where υ, f , = ∈ C(I1 × I2,R+), a ∈ C(ζ,R+) are nondecreasing functions, I1, I2 ∈ R,
θ ∈ C1(I1, I1), ϑ ∈ C1(I2, I2) are nondecreasing with θ(`) ≤ ` on I1, ϑ(t) ≤ t on I2,
=1, =2 ∈ C(ζ,R+), and Ξ, ζ, v ∈ C(R+,R+) with {Ξ, ζ, v}(υ) > 0 for υ > 0, and

lim
υ→+∞

Ξ(υ) = +∞.

The following theorem was presented by Anderson [27].

ϕ(υ(t, s)) ≤ a(t, s) + c(t, s)
∫ t

t0

∫ ∞

s
ϕ′(υ(τ, η))[d(τ, η)w(υ(τ, η)) + b(τ, η)]∇η∆τ, (3)

where υ, a, c, d are nonnegative continuous functions defined for (t, s) ∈ T×T, and b is a
nonnegative continuous function for (t, s) ∈ [t0, ∞)T × [t0, ∞)T and ϕ ∈ C1(R+,R+) with
ϕ′ > 0 for υ > 0.

Theorem 1 ([10]). (Leibniz Integral Rule on Time Scales) In the following, by Υ∆(r1, r2), we
mean the delta derivative of Υ(r1, r2) with respect to r1. Similarly, Υ∇(r1, r2) is understood. If Υ,
Υ∆ and Υ∇ are continuous, and u, h : T→ T are delta-differentiable functions, then the following
formulas hold ∀r1 ∈ Tκ .

(i)
[∫ h(r1)

u(r1)
Υ(r1, r2)∆r2

]∆

=
∫ h(r1)

u(r1)
Υ∆(r1, r2)∆r2 + h∆(r1)Υ(σ(r1), h(r1)) − u∆(r1)

Υ(σ(r1), u(r1));

(ii)
[∫ h(r1)

u(r1)
Υ(r1, r2)∆r2

]∇
=

∫ h(r1)

u(r1)
Υ∇(r1, r2)∆r2 + h∇(r1)Υ(ρ(r1), h(r1)) − u∇(r1)

Υ(ρ(r1), u(r1));

(iii)
[∫ h(r1)

u(r1)
Υ(r1, r2)∇r2

]∆

=
∫ h(r1)

u(r1)
Υ∆(r1, r2)∇r2 + h∆(r1)Υ(σ(r1), h(r1)) − u∆(r1)

Υ(σ(r1), u(r1));

(iv)
[∫ h(r1)

u(r1)
Υ(r1, r2)∇r2

]∇
=

∫ h(r1)

u(r1)
Υ∇(r1, r2)∇r2 + h∇(r1)Υ(ρ(r1), h(r1)) − u∇(r1)

Υ(ρ(r1), u(r1)).

In this article, by employing the results of Theorems 1, we establish the delayed time
scale case of the inequalities proven in [26]. Further, these results are proven here to extend
some known results in [28–30].

2. Auxiliary Result

We prove the following fundamental lemma that will be needed in our main results.

Lemma 1. Suppose T1, T2 are two times scales and a ∈ C(Ω = T1 ×T2,R+) is nondecreasing
with respect to (℘, t) ∈ Ω. Assume that =, z, f ∈ C(Ω,R+), `1 ∈ C1(T1,T1) and `2 ∈
C1(T2,T2) are nondecreasing functions with `1(℘) ≤ ℘ on T1, `2(t) ≤ t on T2. Furthermore,
suppose that Ξ, ζ ∈ C(R+,R+) are nondecreasing functions with {Ξ, ζ}(z) > 0 for z > 0, and

lim
z→+∞

Ξ(z) = +∞. If z(℘, t) satisfies

Ξ(z(℘, t)) ≤ a(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=(ς, η) f (ς, η)ζ(z(ς, η))∆η∇ς (4)

for (℘, t) ∈ Ω, then

z(℘, t) ≤ Ξ−1
{

G−1
[

G(a(℘, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=(ς, η) f (ς, η)∆η∇ς

]}
(5)
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for 0 ≤ ℘ ≤ ℘1, 0 ≤ t ≤ t1, where

G(v) =
∫ v

v0

∇ς

ζ(Ξ−1(ς))
, v ≥ v0 > 0, G(+∞) =

∫ +∞

v0

∇ς

ζ(Ξ−1(ς))
= +∞ (6)

and (℘1, t1) ∈ Ω is chosen so that(
G(a(℘, t)) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

)
∈ Dom

(
G−1

)
.

Proof. Suppose that a(℘, t) > 0. Fixing an arbitrary (℘0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ(℘, t) by

ψ(℘, t) = a(℘0, t0) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=(ς, η) f (ς, η)ζ(z(ς, η))∆η∇ς, (7)

for 0 ≤ ℘ ≤ ℘0 ≤ ℘1, 0 ≤ t ≤ t0 ≤ t1, then ψ(℘0, t) = ψ(℘, t0) = a(℘0, t0) and

Ξ(z(℘, t)) ≤ ψ(℘, t),

We obtain
z(℘, t) ≤ Ξ−1(ψ(℘, t)). (8)

Taking the ∇-derivative for (7) while employing Theorem 1 (iv), we have

ψ∇℘(℘, t) = `∇1 (℘)
∫ `2(t)

t0

=(`1(℘), η) f (`1(℘), η)ζ(z(`1(℘), η))∆η

≤ `∇1 (℘)
∫ `2(t)

t0

=(`1(℘), η) f (`1(℘), η)ζ
(

Ξ−1(ψ(`1(℘), η))
)

∆η

≤ ζ
(

Ξ−1(ψ(`1(℘), `2(t)))
)
`∇1 (℘)

∫ `2(t)

t0

=(`1(℘), η) f (`1(℘), η)∆η (9)

Inequality (9) can be written in the form

ψ∇℘(℘, t)
ζ(Ξ−1(ψ(℘, t)))

≤ `∇1 (℘)
∫ `2(t)

t0

=(`1(℘), η) f (`1(℘), η)∆η. (10)

Taking the ∇-integral for Inequality (10) obtains

G(ψ(℘, t)) ≤ G(ψ(℘0, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=(ς, η) f (ς, η)∆η∇ς

≤ G(a(℘0, t0)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=(ς, η) f (ς, η)∆η∇ς.

Since (℘0, t0) ∈ Ω is chosen to be arbitrary,

ψ(℘, t) ≤ G−1
[

G(a(℘, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=(ς, η) f (ς, η)∆η∇ς

]
. (11)

From (8) and (11), we obtain the desired result (5). We carry out the above procedure
with ε > 0 instead of a(℘, t) when a(℘, t) = 0 and subsequently let ε→ 0.

Remark 1. If we take T = R, ℘0 = 0 and t0 = 0 in Lemma 1, then Inequality (4) becomes the
inequality obtained in [26] (Lemma 2.1).
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3. Main Results

In the following theorems, with the help of the Leibniz integral rule on time scales,
Theorem 1 (item (iv)), and employing Lemma 1, we establish some new dynamics of the
Gronwall–Bellman–Pachpatte type on time scales.

Theorem 2. Let z, a, f , `1 and `2 be as in Lemma 1. Let =1,=2 ∈ C(Ω,R+). If z(℘, t) satisfies

Ξ(z(℘, t)) ≤ a(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)ζ(z(ς, η))

+
∫ ς

℘0

=2(χ, η)ζ(z(χ, η))∆χ

]
∆η∇ς (12)

for (℘, t) ∈ Ω, then

z(℘, t) ≤ Ξ−1
{

G−1
(

p(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

)}
(13)

for 0 ≤ ℘ ≤ ℘1, 0 ≤ t ≤ t1, where G is defined by (6) and

p(℘, t) = G(a(℘, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

(∫ ς

℘0

=2(χ, η)∆χ

)
∆η∇ς (14)

and (℘1, t1) ∈ Ω is chosen so that(
p(℘, t) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

)
∈ Dom

(
G−1

)
.

Proof. By the same steps in the proof of Lemma 1, we can obtain (13), with suitable
changes.

Remark 2. If we take =2(℘, t) = 0, then Theorem 2 reduces to Lemma 1.

Corollary 1. Let the functions z, f , =1, =2, a, `1 and `2 be as in Theorem 2. Further suppose that
q > p > 0 are constants. If z(℘, t) satisfies

zq(℘, t) ≤ a(℘, t) +
q

q− p

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)zp(ς, η)

+
∫ ς

℘0

=2(χ, η)zp(χ, η)∆χ

]
∆η∇ς (15)

for (℘, t) ∈ Ω, then

z(℘, t) ≤
{

p(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

} 1
q−p

(16)

where

p(℘, t) = (a(℘, t))
q−p

q +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

(∫ ς

℘0

=2(χ, η)∆χ

)
∆η∇ς.

Proof. In Theorem 2, by letting Ξ(z) = zq, ζ(z) = zp, we have

G(v) =
∫ v

v0

∇ς

ζ(Ξ−1(ς))
=
∫ v

v0

∇ς

ς
p
q
≥ q

q− p

(
v

q−p
q − v

q−p
q

0

)
, v ≥ v0 > 0
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and

G−1(v) ≥
{

v
q−p

q
0 +

q− p
q

v
} 1

q−p

We obtain Inequality (16).

Theorem 3. Under the hypotheses of Theorem 2, suppose Ξ, ζ, v ∈ C(R+,R+) are nondecreasing
functions with {Ξ, ζ, v}(z) > 0 for z > 0 and z(℘, t) satisfies

Ξ(z(℘, t)) ≤ a(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)ζ(z(ς, η))v(z(ς, η))

+
∫ ς

℘0

=2(χ, η)ζ(z(χ, η))∆χ

]
∆η∇ς (17)

for (℘, t) ∈ Ω, then

z(℘, t) ≤ Ξ−1
{

G−1
(

F−1
[

F(p(℘, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
(18)

for 0 ≤ ℘ ≤ ℘1, 0 ≤ t ≤ t1, where G and p are as in (6) and (14), respectively, and

F(v) =
∫ v

v0

∇ς

v(Ξ−1(G−1(ς)))
, v ≥ v0 > 0, F(+∞) = +∞ (19)

and (℘1, t1) ∈ Ω is chosen so that[
F(p(℘, t)) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]
∈ Dom

(
F−1

)
.

Proof. Assume that a(℘, t) > 0. Fixing an arbitrary (℘0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ(℘, t) by

ψ(℘, t) = a(℘0, t0) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)ζ(z(ς, η))v(z(ς, η))

+
∫ ς

℘0

=2(χ, η)ζ(z(χ, η))∆χ

]
∆η∇ς, (20)

for 0 ≤ ℘ ≤ ℘0 ≤ ℘1, 0 ≤ t ≤ t0 ≤ t1, then ψ(℘0, t) = ψ(℘, t0) = a(℘0, t0) and

z(℘, t) ≤ Ξ−1(ψ(℘, t)). (21)

Taking the ∇-derivative for (20) and employing Theorem 1 (iv) gives

ψ∇℘(℘, t) = `∇1 (℘)
∫ `2(t)

t0

=1(`1(℘), η)[ f (`1(℘), η)ζ(z(`1(℘), η))v(z(`1(℘), η))

+
∫ `1(℘)

℘0

=2(χ, η)ζ(z(χ, η))∆χ

]
∆η

≤ `∇1 (℘)
∫ `2(t)

t0

=1(`1(℘), η)
[

f (`1(℘), η)ζ
(

Ξ−1(ψ(`1(℘), η))
)

v
(

Ξ−1(ψ(`1(℘), η))
)

+
∫ `1(℘)

℘0

=2(χ, η)ζ
(

Ξ−1(ψ(χ, η))
)

∆χ

]
∆η (22)

≤ `∇1 (℘).ζ
(

Ξ−1(ψ(`1(℘), `2(t)))
)
×∫ `2(t)

t0

=1(`1(℘), η)

[
f (`1(℘), η)v

(
Ξ−1(ψ(`1(℘), η))

)
+
∫ `1(℘)

℘0

=2(χ, η)∆χ

]
∆η
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From (22), we have

ψ∇℘(℘, t)
ζ(Ξ−1(ψ(℘, t)))

≤ `∇1 (℘)
∫ `2(t)

t0

=1(`1(℘), η)
[

f (`1(℘), η)v
(

Ξ−1(ψ(`1(℘), η))
)

+
∫ `1(℘)

℘0

=2(χ, η)∆χ

]
∆η. (23)

Taking the ∇-integral for (23) gives

G(ψ(℘, t)) ≤ G(ψ(℘0, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς

≤ G(a(℘0, t0)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς.

Since (℘0, t0) ∈ Ω is chosen arbitrarily, the last inequality can be rewritten as

G(ψ(℘, t)) ≤ p(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)v
(

Ξ−1(ψ(ς, η))
)

∆η∇ς. (24)

Since p(℘, t) is a nondecreasing function, an application of Lemma 1 to (24) gives us

ψ(℘, t) ≤ G−1
(

F−1
[

F(p(℘, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])
. (25)

From (21) and (25), we obtain the desired inequality (18).
Now, we take the case a(℘, t) = 0 for some (℘, t) ∈ Ω. Let aε(℘, t) = a(℘, t) + ε,

for all (℘, t) ∈ Ω, where ε > 0 is arbitrary, and let aε(℘, t) > 0 and aε(℘, t) ∈ C(Ω,R+)
be nondecreasing with respect to (℘, t) ∈ Ω. We carry out the above procedure with
aε(℘, t) > 0 instead of a(℘, t), and we obtain

z(℘, t) ≤ Ξ−1
{

G−1
(

F−1
[

F(pε(℘, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
where

pε(℘, t) = G(aε(℘, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

(∫ ς

℘0

=2(χ, η)∆χ

)
∆η∇ς.

Letting ε→ 0+, we obtain (18). The proof is complete.

Remark 3. If we take T = R, ℘0 = 0 and t0 = 0 in Theorem 3, then Inequality (17) becomes the
inequality obtained in [26] (Theorem 2.2(A_2)).

Corollary 2. Let the functions z, a, f , =1, =2, `1 and `2 be as in Theorem 2. Further suppose that
q, p and r are constants with p > 0, r > 0 and q > p + r. If z(℘, t) satisfies

zq(℘, t) ≤ a(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)zp(ς, η)zr(ς, η)

+
∫ ς

℘0

=2(χ, η)zp(χ, η)∆χ

]
∆η∇ς (26)
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for (℘, t) ∈ Ω, then

z(℘, t) ≤
{
[p(℘, t)]

q−p−r
q−p +

q− p− r
q

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

} 1
q−p−r

(27)

where

p(℘, t) = (a(℘, t))
q−p

q +
q− p

q

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

(∫ ς

℘0

=2(χ, η)∆χ

)
∆η∇ς

Proof. An application of Theorem 3 with Ξ(z) = zq, ζ(z) = zp, and v(z) = zr yields
the desired inequality (27).

Theorem 4. Under the hypotheses of Theorem 3, if z(℘, t) satisfies

Ξ(z(℘, t)) ≤ a(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)ζ(z(ς, η))v(z(ς, η))

+
∫ ς

℘0

=2(χ, η)ζ(z(χ, η))v(z(χ, η))∆χ

]
∆η∇ς (28)

for (℘, t) ∈ Ω, then

z(℘, t) ≤ Ξ−1
{

G−1
(

F−1
[

p0(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
(29)

for 0 ≤ ℘ ≤ ℘1, 0 ≤ t ≤ t1 where

p0(℘, t) = F(G(a(℘, t))) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

(∫ ς

℘0

=2(χ, η)∆χ

)
∆η∇ς

and (℘1, t1) ∈ Ω is chosen so that[
p0(℘, t) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]
∈ Dom

(
F−1

)
.

Proof. Assume that a(℘, t) > 0. Fixing an arbitrary (℘0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ(℘, t) by

ψ(℘, t) = a(℘0, t0) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)ζ(z(ς, η))v(z(ς, η))

+
∫ ς

℘0

=2(χ, η)ζ(z(χ, η))v(z(χ, η))∆χ

]
∆η∇ς

for 0 ≤ ℘ ≤ ℘0 ≤ ℘1, 0 ≤ t ≤ t0 ≤ t1, then ψ(℘0, t) = ψ(℘, t0) = a(℘0, t0), and

z(℘, t) ≤ Ξ−1(ψ(℘, t)). (30)

By the same steps as in the proof of Theorem 3, we obtain

ψ(℘, t) ≤ G−1
{

G(a(℘0, t0)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

℘0

=2(χ, η)v
(

Ξ−1(ψ(χ, η))
)

∆χ

]
∆η∇ς

}
.
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We define a nonnegative and nondecreasing function v(℘, t) by

v(℘, t) = G(a(℘0, t0)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)
[[

f (ς, η)v
(

Ξ−1(ψ(ς, η))
)]

+
∫ ς

℘0

=2(χ, η)v
(

Ξ−1(ψ(χ, η))
)

∆χ

]
∆η∇ς

then v(℘0, t) = v(℘, t0) = G(a(℘0, t0)),

ψ(℘, t) ≤ G−1[v(℘, t)] (31)

and then, employing Theorem 1 (iv), we have

v∇℘(℘, t) ≤ `∇1 (℘)
∫ `2(t)

t0

=1(`1(℘), η)
[

f (`1(℘), η)v
(

Ξ−1
(

G−1(v(`1(℘), t))
))

+
∫ `1(℘)

℘0

=2(χ, η)v
(

Ξ−1
(

G−1(v(χ, t))
))

∆χ

]
∆η

≤ `∇1 (℘)v
(

Ξ−1
(

G−1(v(`1(℘), `2(t)))
)) ∫ `2(t)

t0

=1(`1(℘), η)[ f (`1(℘), η)

+
∫ `1(℘)

℘0

=2(χ, η)∆χ

]
∆η

or

v∇℘(℘, t)
v(Ξ−1(G−1(v(℘, t))))

≤ `∇1 (℘)
∫ `2(t)

t0

=1(`1(℘), η)[ f (`1(℘), η)

+
∫ `1(℘)

℘0

=2(χ, η)∆χ

]
∆η.

Taking the ∇-integral for the above inequality gives

F(v(℘, t)) ≤ F(v(℘0, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

[
f (ς, η) +

∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς

or

v(℘, t) ≤ F−1
{

F(G(a(℘0, t0))) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)

+
∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς

}
. (32)

From (30)–(32), and since (℘0, t0) ∈ Ω is chosen arbitrarily, we obtain the desired
inequality (29). If a(℘, t) = 0, we carry out the above procedure with ε > 0 instead of
a(℘, t) and subsequently let ε→ 0. The proof is complete.

Remark 4. If we take T = R and ℘0 = 0 and t0 = 0 in Theorem 4, then Inequality (28) becomes
the inequality obtained in [26] (Theorem 2.2(A3)).

Corollary 3. Under the hypotheses of Corollary 2, if z(℘, t) satisfies

zq(℘, t) ≤ a(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)[ f (ς, η)zp(ς, η)zr(ς, η)

+
∫ ς

℘0

=2(χ, η)zp(χ, η)zr(χ, η)∆χ

]
∆η∇ς (33)
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for (℘, t) ∈ Ω, then

z(℘, t) ≤
{

p0(℘, t) +
q− p− r

q

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

} 1
q−p−r

(34)

where

p0(℘, t) = (a(℘, t))
q−p−r

q +
q− p− r

q

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

(∫ ς

℘0

=2(χ, η)∆χ

)
∆η∇ς

Proof. An application of Theorem 4 with Ξ(z) = zq, ζ(z) = zp, and v(z) = zr yields
the desired inequality (34).

Theorem 5. Under the hypotheses of Theorem 3, if z(℘, t) satisfies

Ξ(z(℘, t)) ≤ a(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)v(z(ς, η))×[
f (ς, η)ζ(z(ς, η)) +

∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς (35)

for (℘, t) ∈ Ω, then

z(℘, t) ≤ Ξ−1
{

G−1
1

(
F−1

1

[
F1(p1(℘, t)) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
(36)

for 0 ≤ ℘ ≤ ℘2, 0 ≤ t ≤ t2, where

G1(v) =
∫ v

v0

∇ς

v(Ξ−1(ς))
, v ≥ v0 > 0, G1(+∞) =

∫ +∞

v0

∇ς

v(Ξ−1(ς))
= +∞ (37)

F1(v) =
∫ v

v0

∇ς

ζ
[
Ξ−1

(
G−1

1 (ς)
)] , v ≥ v0 > 0, F1(+∞) = +∞ (38)

p1(℘, t) = G1(a(℘, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

(∫ ς

℘0

=2(χ, η)∆χ

)
∆η∇ς (39)

and (℘2, t2) ∈ Ω is chosen so that[
F1(p1(℘, t)) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]
∈ Dom

(
F−1

1

)
.

Proof. Suppose that a(℘, t) > 0. Fixing an arbitrary (℘0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ(℘, t) by

ψ(℘, t) = a(℘0, t0) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)v(z(ς, η))[ f (ς, η)ζ(z(ς, η))

+
∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς

for 0 ≤ ℘ ≤ ℘0 ≤ ℘2, 0 ≤ t ≤ t0 ≤ t2, then ψ(℘0, t) = ψ(℘, t0) = a(℘0, t0),

z(℘, t) ≤ Ξ−1(ψ(℘, t)). (40)

Employing Theorem 1 (iv),
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ψ∇℘(℘, t) ≤ `∇1 (℘)
∫ `2(t)

t0

=1(`1(℘), η)η
[
Ξ−1(ψ(`1(℘), η))

][
f (`1(℘), η)ζ

(
Ξ−1(ψ(`1(℘), η))

)
+
∫ `1(℘)

℘0

=2(χ, η)∆χ

]
∆η

≤ `∇1 (℘)η
[
Ξ−1(ψ(`1(℘), `2(t)))

] ∫ `2(t)

t0

=1(`1(℘), η)
[

f (`1(℘), η)ζ
(

Ξ−1(ψ(`1(℘), η))
)

+
∫ `1(℘)

℘0

=2(χ, η)∆χ

]
∆η

then

ψ∇℘(℘, t)
η[Ξ−1(ψ(℘, t))]

≤ `∇1 (℘)
∫ `2(t)

t0

=1(`1(℘), η)
[

f (`1(℘), η)ζ
(

Ξ−1(ψ(`1(℘), η))
)

+
∫ `1(℘)

℘0

=2(χ, η)∆χ

]
∆η.

Taking the ∇-integral for the above inequality gives

G1(ψ(℘, t)) ≤ G1(ψ(0, t)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)
[

f (ς, η)ζ
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς

then

G1(ψ(℘, t)) ≤ G1(a(℘0, t0)) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)
[

f (ς, η)ζ
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς.

Since (℘0, t0) ∈ Ω is chosen to be arbitrary, the last inequality can be restated as

G1(ψ(℘, t)) ≤ p1(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)ζ
(

Ξ−1(ψ(ς, η))
)

∆η∇ς (41)

It is easy to observe that p1(℘, t) is a positive and nondecreasing function for all (℘, t) ∈ Ω,
and an application of Lemma 1 to (41) yields the inequality

ψ(℘, t) ≤ G−1
1

(
F−1

1

[
F1(p1(℘, t)) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])
. (42)

From (40) and (42), we obtain the desired inequality (36).
If a(℘, t) = 0, we carry out the above procedure with ε > 0 instead of a(℘, t) and

subsequently let ε→ 0. The proof is complete.

Remark 5. If we take T = R and ℘0 = 0 and t0 = 0 in Theorem 5, then Inequality (36) becomes
the inequality obtained in [26] (Theorem 2.7).
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Theorem 6. Under the hypotheses of Theorem 3 and letting p be a nonnegative constant, if z(℘, t) sat-
isfies

Ξ(z(℘, t)) ≤ a(℘, t) +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)zp(ς, η)×[
f (ς, η)ζ(z(ς, η)) +

∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς (43)

for (℘, t) ∈ Ω, then

z(℘, t) ≤ Ξ−1
{

G−1
1

(
F−1

1

[
F1(p1(℘, t)) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
(44)

for 0 ≤ ℘ ≤ ℘2, 0 ≤ t ≤ t2, where

G1(v) =
∫ v

v0

∇ς

[Ξ−1(ς)]
p , v ≥ v0 > 0, G1(+∞) =

∫ +∞

v0

∇ς

[Ξ−1(ς)]
p = +∞ (45)

and F1, p1 are as in Theorem 5 and (℘2, t2) ∈ Ω is chosen so that[
F1(p1(℘, t)) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]
∈ Dom

(
F−1

1

)
.

Proof. An application of Theorem 5 with v(z) = zp yields the desired inequality (44).

Remark 6. Taking T = R, the inequality established in Theorem 6 generalizes [30] (Theorem
1) (with p = 1, a(℘, t) = b(℘) + c(t), ℘0 = 0, t0 = 0, =1(ς, η) f (ς, η) = h(ς, η), and
=1(ς, η)

(∫ ς
℘0
=2(χ, η)∆χ

)
= g(ς, η)).

Corollary 4. Under the hypotheses of Theorem 6 and q > p > 0 being constants, if z(℘, t)
satisfies

zq(℘, t) ≤ a(℘, t) +
p

p− q

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)zp(ς, η)×[
f (ς, η)ζ(z(ς, η)) +

∫ ς

℘0

=2(χ, η)∆χ

]
∆η∇ς (46)

for (℘, t) ∈ Ω, then

z(℘, t) ≤
{

F−1
1

[
F1(p1(℘, t)) +

∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]} 1
q−p

(47)

for 0 ≤ ℘ ≤ ℘2, 0 ≤ t ≤ t2, where

p1(℘, t) = [a(℘, t)]
q−p

q +
∫ `1(℘)

℘0

∫ `2(t)

t0

=1(ς, η)

(∫ ς

℘0

=2(χ, η)∆χ

)
∆η∇ς

and F1 is defined in Theorem 6.

Proof. An application of Theorem 6 with Ξ(z(℘, t)) = zp to (46) yields Inequality (47); to
save space, we omit the details.

Remark 7. Taking T = R, ℘0 = 0, t0 = 0, a(℘, t) = b(℘) + c(t), =1(ς, η) f (ς, η) = h(ς, η),
and =1(ς, η)

(∫ ς
℘0
=2(χ, η)∆χ

)
= g(ς, η) in Corollary 4, we obtain [31] (Theorem 1).
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Remark 8. Taking T = R, ℘0 = 0, t0 = 0, a(℘, t) = c
p

p−q , =1(ς, η) f (ς, η) = h(η), and
=1(ς, η)

(∫ ς
℘0
=2(χ, η)∆χ

)
= g(η) and keeping t fixed in Corollary 4, we obtain [32] (Theorem 2.1).

4. Application

In the following, we discus the boundedness of the solutions of the initial boundary
value problem for the partial delay dynamic equation of the form

(ψq)∇℘∆t(℘, t) = A
(
℘, t, ψ(℘− h1(℘), t− h2(t)),

∫ ℘

℘0

B(ς, t, ψ(ς− h1(ς), t))∆ς

)
(48)

ψ(℘, t0) = a1(℘), ψ(℘0, t) = a2(t), a1(℘0) = at0(0) = 0

for (℘, t) ∈ Ω, where ψ, b ∈ C(Ω,R+), A ∈ C(Ω × R2, R), B ∈ C(ζ × R, R) and h1 ∈
C1(T1,R+), h2 ∈ C1(T2,R+) are nondecreasing functions such that h1(℘) ≤ ℘ on T1,
h2(t) ≤ t on T2, and h∇1 (℘) < 1, h∇2 (t) < 1.

Theorem 7. Assume that the functions a1, a2, A, B in (48) satisfy the conditions

|a1(℘) + a2(t)| ≤ a(℘, t) (49)

|A(ς, η, ψ,z)| ≤ q
q− p

=1(ς, η)
[

f (ς, η)|ψ|p + |z|
]

(50)

|B(χ, η, ψ)| ≤ =2(χ, η)|ψ|p (51)

where a(℘, t),=1(ς, η), f (ς, η), and =2(χ, η) are as in Theorem 2, and q > p > 0 are constants.
If ψ(℘, t) satisfies (48), then

|ψ(℘, t)| ≤
{

p(℘, t) + M1M2

∫ `1(℘)

℘0

∫ `2(t)

t0

−
=1(ς, η)

−
f (ς, η)∆η∇ς

} 1
q−p

(52)

where

p(℘, t) = (a(℘, t))
q−p

q

+M1M2

∫ `1(℘)

℘0

∫ `2(t)

t0

−
=1(ς, η)

(
M1

∫ ς

℘0

−
=2(χ, η)∆χ

)
∆η∇ς

and
M1 = Max

℘∈I1

1
1− h∇1 (℘)

, M2 = Max
t∈I2

1
1− h∇2 (t)

and
−
=1(γ, ξ) = =1(γ + h1(ς), ξ + h2(η)),

−
=2(µ, ξ) = =2(µ, ξ + h2(η)),

−
f (γ, ξ)

= f (γ + h1(ς), ξ + h2(η)).

Proof. If ψ(℘, t) is any solution of (48), then

ψq(℘, t) = a1(℘) + a2(t)

+
∫ ℘

℘0

∫ t

t0

A
(

ς, η, ψ(ς− h1(ς), η − h2(η)),
∫ ς

℘0

B(χ, η, ψ(χ− h1(χ), η))∆χ

)
∆η∇ς. (53)

Using the conditions (49)–(51) in (53), we obtain

|ψ(℘, t)|q ≤ a(℘, t) +
q− p

q

∫ ℘

℘0

∫ t

t0

=1(ς, η)
[

f (ς, η)|ψ(ς− h1(ς), η − h2(η))|p

+
∫ ς

℘0

=2(χ, η)|ψ(χ, η)|p∆χ

]
∆η∇ς. (54)
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Now, making a change of variables on the right side of (54), ς− h1(ς) = γ, η− h2(η) =
ξ,℘− h1(℘) = `1(℘) for ℘ ∈ T1, t− h2(t) = `2(t) for t ∈ T2, we obtain the inequality

|ψ(℘, t)|q ≤ a(℘, t) +
q− p

q
M1M2

∫ `1(℘)

℘0

∫ `2(t)

t0

−
=1(γ, ξ)

[−
f (γ, ξ)|ψ(γ, ξ)|p

+M1

∫ γ

℘0

−
=2(µ, ξ)|ψ(µ, η)|p∆µ

]
∆ξ∆γ. (55)

We can rewrite Inequality (55) as follows:

|ψ(℘, t)|q ≤ a(℘, t) +
q− p

q
M1M2

∫ `1(℘)

℘0

∫ `2(t)

t0

−
=1(ς, η)

[−
f (ς, η)|ψ(ς, η)|p

+M1

∫ ς

℘0

−
=2(χ, η)|ψ(χ, η)|p∆χ

]
∆η∇ς. (56)

As an application of Corollary 1 to (56) with z(℘, t) = |ψ(℘, t)|, we obtain the desired
inequality (52).

5. Conclusions

Using the Leibniz integral rule on time scales, we examined additional generalizations
of the integral retarded inequality presented in [26,27] and generalized a few of these
inequalities to a generic time scale. We also looked at the qualitative characteristics of
various different dynamic equations’ time scale solutions. As future work, we intend to
generalize these results by using conformable calculus on time scales.
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