
   
 

 
 
 
 
 

AN EMPLOYEE TRANSPORTING PROBLEM AND ITS HEURISTIC SOLUTIONS
  

 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
ÇANKAYA UNIVERSITY 

 
 
 
 
 

BY 
 
 
 
 

İLTER ÖNDER 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

INDUSTRIAL ENGINEERING 

 
 
 
 
 
 
 

DECEMBER 2007 



   
 

 
 
 
 



 iii

 
 

STATEMENT OF NON-PLAGIARISM 

 

 

 

I hereby declare that all information in this document has been obtained and presented 

in accordance with academic rules and ethical conduct. I also declare that, as required 

by these rules and conduct, I have fully cited and referenced all material and results 

that are not original to this work. 

 
 
 
 
 
 
 
 
     Name, Last Name  : İlter Önder 

Signature                :   
 

Date         : 6/12/2007 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



 iv 

 

ABSTRACT 

 

 

 

AN EMPLOYEE TRANSPORTING PROBLEM AND ITS HEURISTIC 
SOLUTIONS 

 
Önder, İlter 

M.Sc., Department of Industrial Engineering 

Supervisor: Prof. Dr. Ümit Yüceer 

 

December 2007, 154 pages 
 
 
 
 
 
A typical Vehicle Routing Problem (VRP) can be described as a problem of 

designing the least cost routes from one depot to a set of geographically scattered 

points. The VRP assumes that the vehicle capacities are identical, yet in real life 

the vehicle capacities are different. Therefore, this thesis presents a study of VRP 

with heterogeneous vehicles (HVRP). A lower bound on the cost of vehicles and 

routing is calculated for the HVRP using some mathematical models. Various 

heuristics are attempted to decide which one provides better solutions on the 

average. The better heuristic is selected based on the deviation from the lower 

bound. A simple software is prepared using the best heuristic methods for the 

employee pickup and delivery operations of a hypothetical company. 

 
Keywords: Heterogeneous Vehicle Routing Problem, Heuristic Methods  



 v 

ÖZ 

 

 

 

BİR ÇALIŞAN TAŞINMASI PROBLEMİ VE SEZGİSEL ÇÖZÜMLERİ 
 

Önder, İlter 

Yüksek lisans, Endüstri Mühendisliği Anabilim Dalı 

Tez Yöneticisi          : Prof. Dr. Ümit Yüceer 

 
 

Aralık 2007, 154 sayfa 
 
 
 
 
 

Tipik bir taşıt güzergâhı rotalama (TGR) coğrafi olarak birbirinden ayrı noktalara 

en az maliyetle ulaşan rotaların bulunmasına yöneliktir.  TGR araç kapasitelerini 

eşit Kabul eder, ancak Gerçek hayatta araç kapasiteleri genellikle farklıdır. Bu 

tezde birbirinden farklı kapasiteli (türdeş olmayan) araçların rotalanması üzerine 

bir çalışma sunulmuştur.  Türdeş olmayan taşıt güzergâhı problemi için matematik 

modelleme kullanılarak bir alt sınır belirlenmiş. Daha sonra sezgisel yöntemler 

kullanılarak çözüm yöntemleri geliştirilmiş, alt sınıra yakınlıklarına göre sezgisel 

yöntemler arasında bir seçim yapılmıştır. Teorik bir firmanın çalışan dağıtımı ve 

toplanması için en iyi sonucu veren sezgisel yöntemleri içeren basit bir yazılım 

hazırlanmıştır. 

 
 
 
Anahtar Kelimeler: Türdeş olmayan Araç Rotalama Problemi, Sezgisel Yöntemler 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Transportation and delivery of the goods that we consume in our daily lives consists 

of a costly and time-consuming function of any firm. Avoiding the unnecessary 

delays and costs during transportation and delivery (including storage) is an 

important factor for any firm to retain and/or improve competitiveness. 

Consequently, an application of optimization techniques to transportation and 

delivery of goods (whenever feasible) is a means of providing a reliable and prompt 

service at a reasonable cost to customers. 

A well known Turkish biscuits producing company was initiated in a Kaizen* study 

on reduction of the losses faced due to inefficiency problems. One of the problems 

that a Kaizen group deals is to improve the cost and time of employee delivery and 

pickup operations. It was noticed that the routes of the buses that brought the 

employees to the plant were not organized. The firm pays a subcontractor on the 

basis of the number of seats in each bus, instead of the route length. The manager of 

the subcontracting firm decides on the routes and the number of people to be carried 

by each bus. As the firm paid on the seat-basis there are cases when the buses 

traveled with half capacity, or large buses traveled where small ones could have 

served, yet the firm had to pay for the whole bus regardless the utilization. The 

problems were first noticed by the firm’s industrial engineers. They noticed that the 

routes rapidly changed quite often and the employees did not know which bus to 

take. The Kaizen group could not figure out an analytical solution, but rather 

                                                
* A Japanese word meaning improvement used as a term in Total Quality Maganement. 
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intuitive and simple solutions were attempted with no success. Therefore, this thesis 

makes an attempt to develop a model and solution approaches to solve this problem. 

This firm’s problem can be classified as a Vehicle Routing Problem (VRP), where 

the depot is the factory and the customers are viewed as the bus stops within the 

city. The aim is to create minimal cost routes for the vehicles, such that all the 

customers are visited once and the vehicles return to the main depot with a high 

percentage of fill rate. The demands in the bus stops (number of employees) have 

some variability and this shall be incorporated in the model procedure. Thus, a 

lengthy one-time solution is not an adequate solution to the problem, a solution that 

takes a reasonable amount of time and good enough solution is preferable. The VRP 

is an NP-Hard problem (Lenstra and Rinnooy Kan, 1981), and even a moderate size 

problem takes a great deal of time to be solved to optimality. A method that can 

solve the problem in relatively short time is required, so that the employees can be 

informed prior to their deliveries or return trips.  

A later analysis prevails that the problem, in fact, is more complicated since the 

buses are not identical and the manager of the subcontractor decides on the type of 

the vehicles, the clusters of the bus stops and the routes within the city. The problem 

then resembles the Heterogeneous Vehicle Routing Problem (HVRP) in the 

literature where there is more than one type of vehicle with different capacities. 

Each vehicle has a fixed cost, a maximum capacity, and a variable cost. The aim of 

the HVRP is to find a point that balances the fixed cost and the variable (routing) 

cost of the vehicles by minimizing the total cost of serving all customers (bus-stops). 

The problem is formulated for designing the optimum crew in logistics or 

distribution fleets, thus is also referred as a fleet mix VRP (Salhi and Rand, 1993).  

The mathematical model we have developed is also used to calculate lower bounds 

for problems that cannot be solved due to size restrictions, by loosening the 

integrality constraints. The model for developed for the HVRP version is also 

improved using some valid inequalities to tighten the lower bound. 

Various solution approaches will be attempted based on HVRP in the thesis. The 

model we have developed can be used to serve as a guideline for further 

subcontracting agreements, finding the best fleet mix for the company’s problem. 

The HVRP did not attract the attention of the researchers as much as VRP. Taillard 
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(1996) states that this is due to the hardness of the problem to be solved compared to 

the VRP.  

Dantzig and Ramser (1959) formulated a truck-dispatching problem and their 

problem has evolved into the VRP. There are exact solution methods based on 

mathematical formulations and branching algorithms for VRP. There are heuristic 

methods that can solve these problems in relatively shorter time. The constraints 

employ a decomposition/partitioning approach to the problem, separating the routing 

and clustering operations. Clarke and Wright (1964) method was the first heuristic 

that handled the problem as a whole in an easy applicable manner. The heuristics are 

grouped in two wide categories: the cluster-first-route-second heuristics and route-

first-cluster-second heuristics. In the first strategy, the customers are clustered using 

a clustering algorithm, and then each clusters is routed solving a TSP problem, in the 

second strategy starts with a giant TSP tour visiting all the customers then this route 

is partitioned into the clusters. The first approach has been reported giving 

promising results for the VRP. 

Metaheuristics are also applied to VRP as natural optimization/improvement 

mechanisms. The simulated annealing, deterministic annealing, tabu search, genetic 

algorithms, and neural networks have been successfully applied to the VRP 

problems. Tabu search of Taillard performed better compared to all heuristics and 

metaheuristics (Toth and Vigo, 2001a). 

The HVRP is more limited in terms of solution attempts. The only exact solution 

approach was presented by Yaman (2006).  Osman and Salhi (1994), Gendreau et al. 

(1999) and  Taillard (1999) present three studies that used a tabu search to solve the 

problem, while Ochi et al. (1998a) and Lima et al. (2004) used genetic algorithms 

instead of HVRP specific heuristics.  

We implement more than one general solution approach with improvement 

mechanism to HVRP and aim to asses the ability of simpler approaches on the 

solution of the problem. Route-first-cluster-second, cluster-first-route-second 

approaches are implemented on HVRP. A genetic algorithm is also implemented on 

the HVRP problem. Lastly, multi-agent systems that utilize simple VRP heuristics 

will be used to solve the HVRP. The results of the heuristics and metaheuristics will 
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be analyzed and the best heuristic/metaheuristic will be selected for implementation 

on the problem of the biscuit producing firm. 

The problem in the biscuit producing firm is rather large having over 90 bus stops, 

and the firm uses two different vehicle types, thus the size of the problem is too 

large to be solved optimally. The efficiency of the final solution to be implemented 

can be assessed using this lower bound.  The lower bound is calculated relaxing the 

integrality constraints on the mathematical model. 

This thesis is organized as follows; Chapter 2 includes the major work done on 

HVRP. A brief explanation of the VRP solution methods are also included in 

Chapter 2, as the method used in Chapter 5 are based on efficient VRP solutions. 

Chapter 3 includes the mathematical model we have used and the results of the 

lower bound calculations for two sets of problem instances. Chapter 4 includes 

detailed algorithms of the various heuristics we have implemented. Chapter 5 gives 

the computational settings and the results of the algorithms compared to the best-

known solutions and the lower bounds. Chapter 6 includes the results for the biscuit 

producing firm, the solution and comparison in terms of deviation from the lower 

bound. Chapter 7 includes the concluding remarks and the results of this study along 

with further research directions. 
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CHAPTER 2 

 

 

REVIEW OF VRP SOLUTION TECHNIQUES AND EXTENTIONS TO 

HVRP 

 

 

Vehicle Routing Problem (VRP) and some well-known solution methods in the 

literature for the VRP are described at the beginning of this chapter. The solution 

methods for different variants of the VRP are usually modifications of the methods 

proposed for the VRP. This chapter continues with the definition Heterogeneous 

VRP (HVRP) and details of the solution approaches presented by various authors.  

Vehicle Routing Problem (VRP) is a well-known combinatorial optimization 

problem, where a number of customers, in different geographical locations are to be 

visited exactly by a vehicle that departs from a central depot and returns back to the 

depot. More formally, let G = (V,E) be a graph where V = {v0, …., vn} is the vertex 

set and E = { (vi , vj ): vi ,  vj ∈V, i ≠ j} is the edge set. Vertex v0 represents the depot. 

Each vertex corresponds to a customer with a non-negative demand. The aim is to 

find the least costly method that visits all the vertices using a specific edge set. 

According to Toth and Vigo (2001a), VRP generally have the following objectives: 

- Minimization of the global transportation cost, dependent on the 

global distance traveled (or on the global travel time) and on the fixed 

costs associated with the used vehicles (and corresponding drivers); 

- Minimization of the number of vehicles (or drivers) required to serve 

all the customers; 

-  Balancing of the routes, for travel time and vehicle load; 

- Minimization of the penalties associated with partial service of the 

customers. 
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or any weighted combination of these objectives. VRP (more specifically 

Capacitated VRP, note that CVRP is used interchangeably with VRP throughout the 

section) is an NP-Hard problem (Lenstra, Rinooy Kan (1981)), thus there is no 

polynomial time complexity algorithm that can be used. Various solution methods 

have been proposed for the solution of the VRP. The literature on VRP is so wide 

that Toth and Vigo (2001a) report, 13 different survey papers, including the 

classification paper of Desrochers, Lenstra, and Savelsbergh (1990), the exact 

solution algorithms paper of Laporte and Nobert (1987), and the extensive 

bibliography by Laporte and Osman (1995). Moreover there are books on VRP by 

Toth and Vigo (2001a) and Golden and Assad (1988).  

VRP has various extensions, like time windows, backhauls, capacity constraints, and 

vehicle number constraints. We are going to consider the generic VRP, or 

capacitated VRP (CVRP), as a great deal of solution methods have been 

experimented on this problem. Then, we more specifically concentrate on the 

HVRP. The more general studies that include extensions to HVRP, and the models 

including more than one depot and time windows (Dondo, 2003) are beyond of the 

scope of this study. 

2.1. Solution Methods for the VRP 

The methods reported in this sub-section are borrowed from the book of Toth and 

Vigo (2001a, 2001b). The solution methods can be grouped in three wide categories. 

The exact solution methods try to generate exact solution to the problem using 

mixed integer programming. The heuristic methods aim to generate good solutions 

using problem specific knowledge to generate good solutions. The metaheuristics 

are naturally inspired optimization mechanisms that try to improve the solutions 

based on problem specific heuristics.  

2.1.1. Exact Solution Methods for VRP  

Branch-and-bound and Branch-and-cut are two different approaches employed in 

solving VRP. Branch and bound method uses the branches of a search tree to 

construct a VRP solution. Relaxation of the subtour elimination or capacity cut 

constraints is used to in the early versions of branch and bound. Better relaxations 
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and good lower bounds are reported by Fischetti, Toth and Vigo (1994). Toth and 

Vigo (2001b) propose some promising branching schemes and search strategies. 

Branch-and-cut approach is based on the relaxation of the integrality constraint in 

the mixed integer model (MIP) of the VRP. The MIP is solved as LP and the non 

integral values of the decision variables are used to generate the cuts. The branch-

and-cut makes it possible to solve larger problems as only promising solutions are 

investigated by the cuts. Toth and Vigo (2001b) report that problems up to size of 45 

customers can be solved to optimality with the branch-and-bound, while problems 

with 75 customers can be solved to optimality using the branch-and-cut method. 

The set-covering based methods are also used in solving the VRP to optimality 

(Toth and Vigo, 2001b). 

2.1.2. Heuristic Solution Methods for VRP 

The heuristics for solution of VRP date back to 1964, (Clarke and Wright, 1964). 

There are various heuristic methods proposed since Clarke and Wright’s Savings 

Heuristic. The heuristics are analyzed in three categories. The savings based 

heuristics, the two-phase heuristics and improvement heuristics. 

Savings Based Heuristics 

The Savings Heuristic proposed by Clarke and Wright (CW) (1964) is based on the 

notion of savings. When two routes are to be merged, the savings of the merger is 

calculated and a merger with the most savings is tried to be achieved. The saving 

(sij) for the merger of the following two routes: (0, …, i, 0) (0, j, …, 0) is 

0 0ij i j ijs c c c= + − . There are various improvements on the classical CW heuristic. 

The complete enumeration of all possible savings is eliminated by Golden et al. 

(1988), while some authors showed that using only a fraction of cij when calculating 

the savings gives better results. 

Desrochers and Verhoog (1989) and Altinkemer and Gavish (1991) showed that 

calculating the savings considering the best TSP tour before and after the merger of 

the two routes (Matching Based Savings (MBS) algorithm) gives better results 
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compared to the pure CW.  Laporte and Semet (2001) report that the best saving 

based heuristic is devised by Wark and Holt (1994). 

Moreover, there are some heuristics which insert the cities one by one, instead of 

merging tours, and these heuristics also make use of a measure for minimum 

increase in tour length that is quite similar to the savings calculations. 

Two Phase Heuristics 

 The two phase heuristics include the route-first-cluster-second (RFCS) and cluster-

first-route-second approaches (CFRS). The RFCS is based on constructing one giant 

tour and then partitioning this tour into routes. Laporte and Semet (2001) report that 

the solution quality of the RFCS is not as good as the CFRS. CFRS has attracted the 

operations researchers more, there are various clustering methods proposed by 

different authors. One of the most widely known ones is the sweep algorithm. The 

others are generalized assignment heuristic; location based heuristic, and the 

truncated branch and bound heuristic.  

The sweep algorithm (Wren (1971) and Gillet and Miller (1974)) is a simple 

method. It is based on rotating a ray with infinite length starting from an arbitrary 

vertex and grouping the customers based on the angle observed when the customer 

intercepts with the ray (Laporte, Semet, 2001). The customers are included as long 

as the capacity allows, and the procedure is repeated until all the customers are 

grouped. A natural extension to the sweep algorithm is the Generalized Petal 

Algorithm, where several different routes are generated and the best route 

combination is found by solving a set partitioning problem. (Seyran (2006)).  

In the generalized assignment heuristic (Fisher and Jaikumar (1981)), some (cluster) 

seed vertices are fixed at the beginning of the algorithms and the cost of inserting 

each customer to each cluster is calculated (Laporte and Semet (2001)). These costs 

and the customer demands are used to solve a Generalized Assignment Problem, to 

form the clusters. 

According to Laporte and Semet (2001), the location-based heuristic is similar to the 

generalized assignment heuristic. Yet this time the seed vertices are generated by 

solving a capacitated location problem (Bramel and Simchi-Levi (1995)). The 
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remaining customers are then inserted so that the least insertion cost is incurred 

when TSP tours are generated. 

The truncated branch-and-bound method is similar to the branch-and-bound 

methods used in the exact solution algorithms. Christofides et al. (1979) use the 

branches of the search tree containing only single branch and the levels consisting of 

non-dominated vehicle routes. The customers are gradually included in the routes 

according to the savings or insertion cost (Laporte and Semet (2001)). 

Improvement Heuristics 

The improvement heuristics are adopted from the Traveling Salesman Problem, 

which can be considered as a case of the single vehicle VRP. The tour constructed 

by the TSP heuristics is improved using some improvement heuristics that include 

edge or node recombination operations. A number of edges or customers are 

removed from the current route and reinserted in a place on the route that yields 

some improvement.  

The improvement heuristics either can be limited to the single route or can exchange 

edges or customers within routes for a VRP. The comprehensive book of Reinelt 

(1996) includes various TSP improvement heuristics that can be employed when 

improving the routes in solving VRP. The most common improvement heuristics are 

apart from edge and node insertion are the 2-opt, 3-opt, and Lin-Kernighan (1973) 

approaches. In 2-opt, every edge is coupled with all other feasible edges to find an 

improvement when the tours are connected the other way around. The case in 3-opt 

is more complicated as three edges are deleted and there are 6 possible 

recombination moves. Or (1976) proposed a restricted 3-opt with a smaller time 

complexity generating good results. Lin and Kernighan (1973) propose an iterative 

heuristic where the λ-opt moves are not specified in advance and the algorithm 

terminates when there is no further improvement. 

2.1.3. Metaheuristics for VRP 

The metaheuristics are optimization methods trying to mimic the natural 

improvement mechanisms. Osman and Laporte (1996) state that “A metaheuristic is 

an iterative generation process which guides a subordinate heuristic by combining 
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intelligently different concepts for exploring and exploiting the search space, and 

various learning strategies are used to structure information in order to find 

efficiently near optimal solutions.” Metaheuristics are not problem dependent and 

they can be applied to various problem domains by changing the subordinate 

heuristics. The descriptions of the main ideas of the heuristics are borrowed from 

Önder (2007), and the best performance is reported from a study of Gendreau et al. 

(2001). 

Simulated Annealing 

Simulated annealing (SA) proposed by Metropolis et al. (1953), is a metaheuristic 

based on statistical physics. The annealing process in physics seeks a good 

molecular structure by allowing formation of different molecular structures 

depending on the rate of change in the cooling temperature. SA is a search process 

controlled by a parameter, the temperature (Kirkpatrick et al. (1983) and Ćerny 

(1985)). The process is based on small changes in the current solution and the good 

moves are always accepted. When a move in an undesirable direction is 

encountered, the move is still accepted based on a probability depending on the 

temperature. At the initial phases of the algorithm, when the temperature is high, the 

algorithm accepts more non-improving moves. At the final stages when the 

temperature is gradually decreased, only improving moves are accepted. The 

algorithm explores the search space when the temperature is high, and exploits the 

current solution when the temperature is low. Simulated Annealing proposed by 

Osman (1993) obtained some of the best known results of problems with size 50 and 

75 on instances of Christofides et al. (1979). The algorithm initializes using the CW 

to generate solutions and λ-interchange is applied for (λ = 1 or 2). Then simulated 

annealing is applied to the generated solution, small perturbations are made by λ-

interchange operations. The cooling scheme is different from the classical point of 

view that the temperature is decreased when an improvement is found. 

Deterministic Annealing 

Deterministic Annealing (DA) follows the same idea with SA; however, the non-

improving moves are accepted using a deterministic rule. The deterministic rule is 
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either calculated by adding a small perturbation factor to the current best solution 

(threshold-accepting) or allowing a small deviation, calculated as the fraction of the 

current solution (record-to-record travel). In record-to-record travel, a record is the 

best solution encountered during the search. Golden et al. (1998) used record-to-

record travel on large instances generated by the authors and report two best-known 

results among 20 benchmark instances. 

Tabu Search 

Tabu Search (TS) is a deterministic search mechanism (with a limited memory) 

proposed by Glover (1986). The search is based on a hill climbing mechanism where 

memory is used to escape from the local optima. Hill climbing may gets stuck at a 

local optima. Tabu search keeps in memory the points previously visited during the 

hill climbing mechanism as tabu points. Revisiting the tabu points is avoided to 

enforce the algorithm to explore the search space.  

Practical experiences has shown that TS is the best metaheuristic proposed for VRP. 

Gendreau et al. (2001) report seven different TS applications with impressing 

results. Taillard’s Algorithm (1993) gives the best results for 12 of the 14 

Christofides et al. (1979) instances (Gendreau et al., 2001). The perturbations are 

based on λ-interchange moves and the individual routes are re-optimized after the 

exchanges. The author decomposes the problem into sub problems, partitioning the 

customers in sectors centered in the depot, and allowing the exchange of customers 

within sections.  

Another TS algorithm that gives promising results is the “Taburoute” algorithm by 

Gendreau et al. (1994). The author uses the GENIUS heuristic developed for the 

TSP to perturb the current solution. The heuristic basically consists of two parts. 

GENI tries to insert the cities to the positions by evaluating the elimination of three 

new edges for each neighbor, within a p-neighborhood on a given tour; US tries to 

improve the tour by using reverse GENI operators. An advantage of the TS proposed 

by Gendreau et al. (1994) is that it allows infeasible intermediate points throughout 

the search process. The solution points that are infeasible in terms of vehicle 

capacity or maximal tour length are accepted after being penalized. The moves of 
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vertices among different vehicles are defined as tabu instead of whole solutions, and 

the tabu points are penalized instead of being disregarded from consideration. 

Taburoute obtained the 5 best known solutions of the 14 Christofides et al. (1979) 

instances (Gendreau et al., 2001). 

Adaptive Memory Search is an interesting development of  TS according to Gendrau 

et al. (2001). Rochat and Taillard (1995) proposed to use an adaptive memory to 

keep and dynamically update good solutions. The elements of different good 

solutions are selected and merged to give the resulting tours. The elements of the 

best solution are given a larger weight and repetition of a solution in the memory is 

avoided to avoid bias of the solution. The tours constructed from the resulting tour 

elements give good results and improve the best known solutions in two of the 14 

Christofides et al. (1979) instances (Gendreau et al., 2001).  

Genetic Algorithms 

According to Larrañaga et al. (1999) Evolutionary Algorithms (EA) were proposed 

for solving probabilistic search problems by Bremermann et al. (1966) and 

Rechenberg (1973). Holland (1975) introduced the Genetic Algorithms (GAs) to 

optimization problems. GAs are based on “survival of the fittest” idea of Charles 

Darwin and genetic theory of Mendel. In GAs every solution is coded as a 

chromosome and the algorithm deals with a population of solutions instead of a 

single solution. These parent solutions are used to generate new children solutions 

that preserve chromosomes of previous ones. According to the schemata theorem 

(Holland, 1975) and building block hypothesis (Goldberg, 1989), the newly 

generated solutions preserve good characteristics of their ancestors, and the 

algorithm eventually converges to a good result. The GAs for VRP did not give 

promising results, the solution quality was worse than the simplest construction 

heuristics and the solution time was large (Gendreau et al., 2001). This observation 

is due to the lack of power of preserving good edges of the crossover operators used 

in the GAs. Crossover operators like the EAX (Nagata, Kobayashi, 1997) or NNX 

(Önder, 2007) that aim to preserve good edges in the parents can be helpful in 

generating good GAs. Moreover, the success of the GAs in the VRP with time–

windows makes GAs a promising solution method.  
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Ant Colony Algorithms  

Ant colony algorithm (ACA) proposed by Colorni et al. in 1991 (Gendreau et al, 

2001). This algorithm represents the ant behavior to find the shortest route. When 

solving a TSP, a number of artificial ants move on a complete graph to find a route 

disposing pheromone, similar to the real ants. The pheromone evaporates with time, 

and the routes with highest pheromone levels are connected to give a tour. The main 

idea behind the scheme is that the short edges will have a higher level of pheromone 

as the ants will travel those edges in a shorter time. The approach is relatively new 

and lacks well established rules. There are very few studies that use ACA for VRP, 

yet the results of Bullnheimer et al. (1998) are comparable with other heuristics. 

ACA of Bullnheimer at al. (1998) is able to discover two of the best known 

solutions of the 14 instances generated by Christofides et al. (1979) (Gendreau et al., 

2001).  

Neural Networks 

Artificial neural networks are based on neural activity model of Warren McCulloch 

and Walter Pitts (1943), mimicking central neural networks of animals 

(Michalewicz (2003)). The web of natural neurons does the reasoning in all animals. 

A neuron is a simple entity that gets inputs as a step function and reacts accordingly, 

multiplying the input signal and adding a preset weight. Elastic networks and self-

organizing maps are quite remote from the classical artificial neural networks, but 

they have proven been to give better results (Gendreau et al., 2001). However, the 

results are not competitive with the alternative metaheuristics, in particular Tabu 

Search. 

2.2. An Extension to HVRP and Solution Methods for HVRP 

The heterogeneous VRP assumes that the vehicles can have different capacities for 

servicing the cutomers. The fixed capacity assumption of VRP is relaxed. The 

HVRP is more realistic than VRP as the vehicles in real life distribution fleets need 

not be homogeneous. Thus, the classical capacitated VRP is a special case of the 

HVRP, where the capacities of the vehicles are not the same. 
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The HVRP is studied by a limited number of researchers. This lack of interest can be 

explained with the difficulty of the problem (Yaman, (2006)). HVRP was first 

proposed by Golden et al. (1984). Two main approaches to the HVRP problem have 

arisen over time. In the first approach of Golden et al. (1984), it is assumed that the 

vehicles have a variable fixed cost, and the travel costs with different vehicle type 

assumed to be equal. On the other hand, Gendreau et al. (1999) assume that every 

type of vehicle has a different travel cost calculated based on the distance traveled. 

Various authors named the HVRP problem differently (Choi and Tcha (2005)). The 

approach of Golden et al. (1984) was named as: Vehicle Fleet Mix (Salhi, Rand, 

1993), Fleet Size and Mix VRP (Golden et al. (1984)), Fleet Size and Composition 

VRP (Gheysens et al. (1986)), and HVRP (Yaman (2006)). The approach in which 

the variable travel costs are considered has been referred to: HVRP (Gendreau et al., 

1999), VFM with variable unit running costs (Salhi et al., 1992), the mix fleet VRP 

(Wassan, Osman, 2002). We will refer the method in which the travel costs are 

assumed constant as the Vehicle Fleet Mix (VFM), and the second method as the 

HVRP throughout in this thesis, the HVRP will also be used in a broader sense when 

the problem class is referred. 

Salhi and Rand (1993) present a detailed literature review of the early solution 

approaches to the HVRP. According to the authors, linear programming models 

generated for the problem dates back to 1969, when Gould (1969) generated a linear 

program for the non-homogeneous fleet. There are about twelve different studies 

mentioned by Salhi and Rand (1993) related to the HVRP, who tried to solve the 

problem using analytic, statistical, or stochastic methods. The work of Golden et al. 

(1984) presented solution approaches for real life problems by the heuristic 

approaches. Yaman (2006) states that there is no exact solution method proposed, 

the only study related to the exact solution consists of the lower bounds calculation 

of Golden et al.(1984). 

Yaman (2006) presents six different formulations of the VFP, four based on vehicle 

flow and two based on flow of variables. Miller-Tucker-Zemlin (1960) constraints 

are used in subtour elimination and the author states that the lower bounds are 

improved using valid inequalities. LP relaxations of the Golden et al. (1984) 

instances are studied and lower bounds for the problems are derived. The 
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formulation and lifting equalities of Yaman (2006) are used in Chapter 3 to derive a 

lower bound for the real life problem with 90 customers. Yaman (2006) reports that 

the maximum percentage gap between the lower bound and the upper bound for the 

problems (up to 100 customers) is 4.9%. The gap is desired to be as small as 

possible as the performance of the heuristic proposed will be assessed by the 

calculated lower bound.  

Golden et al. (1984) were the first to develop heuristics for the VFP, based on the 

CW heuristic on tour partitioning. The authors proposed four new saving 

calculations that can be used to merge partitioned tours. The first improvement was 

to add the vehicle costs in the savings calculations. The savings calculation is based 

on the opportunity cost that arises when a vehicle with too large capacity is used in 

order to combine two small routes; cost of the unused capacity is subsided by 

deducting the cost of the vehicle with smallest capacity from the savings to favor the 

merger of tours. The third calculation takes into the consideration of the unused 

capacity and deducts the cost of the largest vehicle, which can accommodate for the 

unused capacity, from the savings calculation. The last formulation is a parametric 

formulation in which the cost of the newly formed edge deducted by a factor of (1-

γ), where γ is the route shape parameter. 

Golden et al. (1984) also proposed the use of a RFCS technique to solve the VFP. A 

tour including all the customers, excluding the depot is constructed and then 

partitioned to small tour so that the length of the newly added edges is minimized. 

The partitions do not always results in good solutions thus the procedure is repeated 

for five times and the resulting tours are subjected to 2-opt or Or-opt (Or, 1976) 

moves.   

Gheysens et al. (1984) used the lower bounding principle to generate the solution to 

the VFP. The cluster-first-route-second approach is used to generate the solution. 

The LP relaxation to the problem is initially solved and the fleet composition of the 

LP relaxation is used with generalized assignment heuristic.  

Desrochers and Verhoog (1991) used the MBS algorithm to calculate the savings 

proposed by Golden et al. (1984). They used a TSP solver proposed by Jonker and 
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Volgenant (1984). The authors demonstrated that the VFP can be solved using a 

good TSP solver with relatively good results. However, the authors conclude that the 

best result is obtained by the last version of the savings algorithm proposed by 

Golden et al. (1984) or the partitioning algorithm is combined with the Or-opt. 

Moreover, the procedure proposed by Gheyens et al. (1984) was consistent in 

producing good results with the settings of Desrochers and Verhoog (1991). 

Salhi and Rand (1993) developed a group of different perturbation mechanisms that 

can be used to improve the routes of a given VFP. The methods they propose are 

based on edge and node exchanges combined in an iterative manner. The 

perturbation methods proposed are capable of merging small tours, exchanging 

customers between tours and partitioning large tours into small tours. The results are 

compared with the partitioning and Or-opt method, LB and routing method and the 

MBS method by the previous authors. The heuristic proposed by Salhi and Rand 

(1993) produced better results in terms of percentage deviation and was able to 

discover the best known results for 8 of the 20 test instances. 

Osman and Salhi (1994) propose a tabu search application, in which the initial 

solution is generated using the method proposed by Salhi and Rand (1993), and the 

λ-interchange mechanism. The authors improved the best known results of 7 of the 

20 problem instances of Golden et al. (1984). 

Gendreau et al. (1999) used a tabu search using the GENIUS within an adaptive 

memory search. The algorithm uses a sweep-based method in selecting the edges 

that are to be inserted, by rotating a ray to select the cities. Tabu search limits the 

number of customers to be moved by GENIUS movements. The routes are subject to 

post optimization that is based on movements like 2-opt and merger of smaller 

routes to larger routes that can be served by a larger vehicle. Adaptive memory 

search is used to generate the final tours, using the best tours in the memory. The 

authors improved the results of 8 of the 12 benchmark instances of Golden et al. 

(1984).  

Taillard (1996) used the column generation method to generate good solution for the 

adaptive memory search for the HVRP. The author proposed to use a generic LP 
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solver to solve the set partitioning problem that arises when the vehicle capacities 

are assumed equal. The results of the column generation attempts with different 

capacities are memorized in the adaptive memory search. The final HVRP tours are 

constructed using the information stored in the adaptive memory. The author 

improves the results of all the studies mentioned, for the Euclidean problems. 

Taillard (1996) also proposes measuring the solution quality without considering the 

fixed vehicle cost, only using the traveling cost arising due to the cost differences of 

using different vehicle types. This version of the HVRP will be referred as HVP, 

throughout the thesis.  

Ochi et al. (1998a) proposed the use of GA that incorporates problem specific 

knowledge. The initial solution for the GA generated using sweep technique. The 

ERX crossover operator proposed by Whitley et al. (1989) is employed. The 

crossover operator is one of the early applications of operators that aim to preserves 

the good edges present in the parents. Tours are randomly perturbed, by a mutation 

operator that randomly changes the positions of random length strings in the tour 

representations within vehicles. The authors do not report the results in tables, thus 

the quality of the solution cannot be judges easily from the graph plotted. Ochi et al. 

(1998b) report improvements in the solution time and quality when parallel 

populations are used. The results are again presented in graphical format, thus it is 

hard of asses the quality of the solutions. 

Renaud and Boctor (2002) proposed a sweep based algorithm which is followed by 

some improvement moves. The authors first define an order for the edges to be 

sweep for both the Euclidean and non-Euclidean cases. Then 1 and 2 petal routes are 

generated. An eleven step improvement procedure which mostly consists of 2-opt 

and 3-opt moves is applied. The algorithm gives the best results compared to the 

VFM heuristics. The results of the sweep are also compared to those of the tabu 

search applications, and the results are better than the application of Osman and 

Salhi (1994) on the average, and slightly behind the results of Taillard (1996) and 

Gendreau et al. (1999). Moreover, the algorithm is capable of generating solution for 

the non-Euclidean distances, which was not considered by Taillard (1996) and 

Gendreau et al. (1999). 
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Lima et al. (2004) proposes the use of GA that incorporates problem specific 

knowledge. The initial solution used by the GA is generated using the GENIUS 

heuristic and the individuals are subjected to λ-interchange moves (λ = 1, 2). The 

algorithm uses the ERX as the crossover operator, again yet the λ-interchange is 

much powerful compared to the random string exchange. The algorithm generated 

new best solution for 8 of the 20 problem instances. 

Choi and Tcha (2005) used the column generation method to solve the VFM and 

HVRP. The method proposed is based on the LP relaxation of the initial model 

based on the formulation using the Danzig-Wolfe decomposition. The algorithm is 

based on the simplex solution, generating the columns when it is necessary using the 

dynamic programming approach, and solving the resulting problem using the branch 

and bound method. The results are guaranteed to be optimal due to the partial 

column generation, yet the authors report that the absolute majority of the solutions 

generated are near optimal. The authors report that the algorithm is capable of 

discovering the best-known value for 11 out of 12 VFP instances and 5 out of 8 

HVP instances. The deviations from the best knows’ are 0.004 % and 0.015 % for 

VFP and HVP respectively. 
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CHAPTER 3 

 

 

A MATHEMATICAL MODEL FOR EMPLOYEE TRASPORTING 

PROBLEM 

 

 

The problem of the biscuit producing firm is formulated and modeled as a mixed 

integer model in this chapter. The model is basically a routing model with side 

constraints and extensions specific to the firm. The personnel that are to be carried to 

the production plant shall be brought to the plant within a specified period of time, 

and the vehicles used by the firm are not identical. The model we have developed 

thus is based on the Heterogeneous Vehicle Routing Problem (HVRP). 

This chapter continues with the statement and formulation of the problem in detail, 

followed by the assumptions adopted while generating the mathematical model 

described. The constraints of the mathematical model are described in detail next. 

The chapter continues with the preliminary runs conducted on benchmark problems. 

The results obtained after the preliminary runs and the lower bounds proposed are 

summarized at the end of the chapter. 

3.1  Statement and Formulation of the Vehicle Routing Problem 

The problem is to carry the employees of a firm to the plant using a number of 

busses. The passengers to be collected or delivered are spread throughout different 

bus stops of a city. All the busses are to start their journey at the plant and bring all 

the employees to the plant. 

The aim is to minimize the fixed cost of the number of busses used. The firm has as 

subcontracting agreement, due to which the firm only pays a fixed cost to the 

subcontractor based on the bus types used.  
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The fixed cost of the vehicles is calculated by multiplying a fixed cost by the 

number of passenger places present in a given bus type. There are two types of 

busses currently available at the subcontractor, one with a capacity of 20 and one 

with capacity of 40 passengers. The cost of two small buses is equal to the cost of 

one large bus. 

The decision to be made is the number of busses and the routes each bus will follow. 

The route is important as there is an implicit restriction on the route length due to the 

policies of the firm. The time between the pick-up of the first passenger and arrival 

at the plant is limited to be less than an upper limit, 75 minutes. The firm states that 

it is desirable to have this time as short as possible. On the other hand this time limit 

is not strict; this time limit can be exceeded in extreme conditions, depending on the 

cost that will be incurred if the limit is kept constant. 

Thus the model that is described in Section 3.3 has an objective function that uses 

goal programming to incorporate the time restriction specified by the firm 

management.  

The capacities of the busses cannot be exceeded in any case, thus overloading is not 

possible. Moreover, all the bus stops are to be visited, the firm does not have to 

possibility to handle the passengers by other means. 

3.2  Assumptions of the Routing Problem  

The assumptions employed while constructing the mathematical model are 

described in this section. The assumptions are based on the policies of the firm and 

the basic assumptions of the CVRP.  

- Capacity of each bus is known prior to the solution 

- All passengers are identical in terms of capacity usage in the busses 

- A bus is assumed to pick-up all the passengers waiting in a bus stop: This 

assumption is due to the policy stated by the subcontractor. This is made possible 

my making small changes in the places of the bus stops if the solution requires. The 

firm is able to make changes, like splits of the bus stops in two, and placing the bus 

stops so that all the passengers in a bus-stop are picked up by the bus that visits a 

given bus stop. 
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- The travel time is proportional to the route length: In a case study of school 

bus routing, Bramel and Julien (1997) state that the travel time calculated 

using a fixed speed and the passenger pick-up times can be modeled using 

linear regression with a p value smaller that 0.001. The authors however 

point out that using a universal speed for different levels of congestion is not 

adequate. The fixed speed shall be modified according to the congestion 

level.  

- The current bus stops used are assumed as fixed: The selection of the 

location of the bus stops, thus making splits in the demands at the bus stops 

is beyond the scope of this study. The decision of bus-stops is not limited 

only to the splitting of the bus stops and also includes the decision of 

locations. 

- The bus stops with maximum number of passengers has less passengers than 

the capacities of the bus with the least capacity 

- The number of people waiting at each bus stop is known 

- Each bus can do only one trip in each planning horizon 

- Cost of the busses is proportional to the capacity of the buses 

- The palnt works in three shifts, thus a bust shall start and finish its tours at 

the plant. 

3.3  Mathematical Model of the Routing Problem 

The mathematical model we have developed for the solution of the routing problem 

is based on Miller-Tucker-Zemlin (1960) constraints. The subtour elimination 

constraints of the proposed by the authors is used with the capacity constraints 

proposed by Golden et al. (1984), extended by Yaman (2006).   

We have developed the objective function and the route length constraints. The 

objective is to minimize the total fixed cost of vehicles, and minimizing the 

weighted tardiness on the routes. As the lateness is not desired at all, a management 

policy that shall be incorporated. 



 22 

 All the constraints are described within this section, after the statement of the 

notations and the decision variables. 

N : Set of nodes in the problem 

M : Very large number  

T : Maximum allowed time 

A :  Graph that includes all the arcs between N nodes 

AK: Graph containing all the combinations of arcs in A using vehicle types 

of K 

Qk : capacity of vehicle k 

Ki : the set of vehicles that can serve node i 

dij : shortest distance from i to j (i, j) ∈  A 

Cik : fixed cost of making a trip using vehicle type k 

Li
+: Length of route that terminates between node i that is larger than the 

allowable route length  

Li
-: Difference between the maximum tour length and the tour length not 

used by the route that terminates at node i 

wT : time per kilometer traversed (1/fixed speed) 

w
+: weight per kilometer of road that exceeds the time limits 

w
-: weight per kilometer of road that improves the time limits for route  

ui : total demand on the trip until i 

ti: total distance elapsed until node i is visited  

 1    if there is a trip that uses vehicle type of k ∈  Ki that ends at node i 

aik :   

0  otherwise  

 1    if vehicle type of k ∈  Ki that goes through node i 

bik :   

0    otherwise 
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  if arc (i,j) ∈  A is used using vehicle type K [(i, j, k) ∈AK] 

xijk: 

0 otherwise 

The mathematical model we propose is: 
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The first two constraint sets impose the time constraints to the model and calculate 

the earliness and tardiness. The first constraint set calculates the total tour length 

encountered at node i, for the vehicle, this distance is used in the second and third 

constraint sets to calculate the earliness of tardiness of the vehicles. A constraint in 

the first set becomes active only if there is a trip that uses the arc i – j, calculating 

the time of visit of node j. The second constraint incorporates the last trip, from the 

last node (bus stop) in a route to the depot (plant). The tardiness is calculated using 

(3.1) 

(3.4) 

(3.3) 

(3.6) 

(3.5) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.2) 

(3.11) 

(3.12) 

(3.13) 
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this constraint in second set. Similar to the first set, a constraint becomes active only 

if there is a trip terminates after node i is visited for any vehicle type. The third 

constraint set, assures that the tardiness or earliness are calculated only if there is a 

routes that terminate at node i. 

The constraints four through ten are proposed by Golden et al. (1984), and enhanced 

by Yaman (2006). The definitions of the constraints are borrowed from Yaman 

(2006). The fourth constraint set assures that the number of vehicles leaving the 

depot is equal to the number of the routes that terminate at the depot. The fifth 

constraint set assures that there is an incoming arc to every node which is served by 

a vehicle of type k. The sixth constraint set states that there is an outgoing arc from 

every node that is visited by vehicle type k and does not end a trip at node i. The 

seventh constraint set ensures that each node is visited by one type of vehicle only, 

and a node is either passed through or is a terminating node of a route.  

The eighth constraint set linearizes the constraint ( )
ij

j i j ijk

k K

u u q x
∈

≥ + ∑ , if for some k, 

xijk= 1, as aik + bik = 1 then j i ju u q≥ + . If xijk = 0, then uj ≥ qj and 

( )
ij

i k ik ik

k K

u Q a b
∈

≤ +∑ . 

The ninth constraint set replaces the weaker constraint i iu q≥ by Desrochers and 

Laporte (1991), improved by Yaman (2006). The utilization of a vehicle that has 

visited node i after visiting a series of nodes lasting with j, updates such that the 

demand of i is added to the previous utilization value.  The tenth constraint set 

ensures that the sum of demands of nodes on trip that goes through node i is less 

than or equal to the capacity of vehicle type k. 

3.4  Initial Experiments 

The mathematical model described above is compiled using GAMS 2.0 on a PC 

with AMD Tution 64x2 1.6 GHz CPU, 512 MB of RAM. The problems defined by 

Golden et al. (1984) are used to test the performance of the mathematical model 

running built in CPLEX solver. As mentioned in the previous chapter, the set of 

problems defined by Golden et al. (1984), consist of the problem set that has been 

most widely studied. This problem set has best-known solutions for larger problems 
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that cannot be solved to optimality using PCs. The availability of good solutions for 

problems with size as large as 101, is adequate for experimenting as the problem of 

the firm we are in contact with is 92. 

The problems are to be modified for our model as the problems proposed are HVRP 

problems and the aim is to minimize the total fixed and routing costs without any 

time limitations. The fixed costs proposed by Golden et al. (1984) are used in the 

modified version we have used. The time limit is assumed to be 100 for modified the 

problems, although Lui and Shen (1999) proposed using the length as 500, in their 

study on Heterogeneous Vehicle Routing Problem with Time Windows (HVRPTW). 

HVRPTW is out of scope of this study and the results are not comparable, yet the 

authors have demonstrated that this time windows are tight enough to limit find 

good solutions that are not exactly the same with the HVRP solutions. The length is 

reduced as the tour length in smaller problems is hardly above 500, and the aim of 

our model is to find a point that balances the tardiness fixed cost. Lui and Shen 

(1999) proposed three different weight levels for wT as 1.1, 1.30 and 1.50. We 

assumed wT as 1, yet w+ is used as 1.1 and 1.5. 

Table 3.1 summarizes the results and the CPU times on PCs* with Pentium 4, 2.4 

GHz having 256 MB of RAM.  The smallest problem proposed by Golden et al. 

(1984) has a size of 13, thus the problem size is reduced by deleting some nodes 

randomly to test the performance of the model. Vehicle capacities are not modified 

to see the impact of increase in the number of customers on the solution time. 

Table 3.1 Results of the mathematical model and CPU times 

 wT=1.1 wT=1.5 

Size Opt 
CPU Time 
(seconds) Opt 

CPU Time 
(seconds) 

6         

7 275.63 6.03 275.63 6.03 

8 270.00 60.70 369.94 135.47 

9 324.00 817.84 324.00 777.66 

10 335.89 7012.47 340.20 6735.30 

11* 450.00 20380.59 450.00 20424.63 

12* 486.30 30294.13 487.50 28965.28 

13* - 30827.42 - 27954.20 

       *Values are the best integer solution observed, not necessarily optimal 

                                                
* Computer Aided Manufacturing and Design Labotarory of Çankaya University Industrial 
Engineering Department was used for the experimental runs. 
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The problem having number of customers larger than 10 could not be solved to 

optimality due to lack of memory. The results indicated in the table for sizes 11 and 

12 are the best integer solution obtained after the mentioned run time. No feasible 

integer solution is found during the run time of 8.5 hours before the memory limits 

are exceeded for the original problem 1 of Golden et al. (1984)  

3.5  Results of the Initial Experiments 

The Table 3.1 clearly identifies that the problems with relatively large size, larger 

than 10 cannot be solved in reasonable amount of time. The exact solution with the 

given formulation is not possible for problems with size higher than 10.  

The following section will continue with solution methods we have developed based 

on some promising applications that are present in the HVRP literature. The 

problem of assigning the absolute quality of these solution methods is to be 

overcome by testing these methods on pure HVRP instances. The best-know 

solutions are applicable to our solution methods.  

The heuristic and metaheuristic methods we apply in the following section are coded 

such that, the time restrictions and the objective function can be modified easily. 

The objective function and the time restriction constraints are eliminated when 

testing the algorithm with the pure HVRP instances. After analysis of the 

performance of the algorithms on pure HVRP instances, the objective function and 

the time restrictions are incorporated.  

On the other hand the solution quality can also be measured based on the linear 

relaxation of the problem, which takes relatively very small amount of time. The 

following subsection includes the linear relaxations and the results of these 

formulations. 

3.6  Linear Relaxation of the Mathematical Model  

The mathematical model developed is solved assuming some of the binary variables 

continuous to find some lowed bounds. The relative gap is reported to be a good 

measure by various authors including Yaman (2006) and Choi and Tcha (2005). The 

relative gap is defined as
UB - LB

100
UB

 
× 

 
, where UB stands for upper bound and 
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LB stands for the lower bound. This measure is used to asses the relative deviation 

of a calculated solution (an upper bound). 

Yaman (2006) proposes some valid inequalities for HVRP to reduce the percentage 

gaps for different formulations of the problem. The following two valid inequalities 

are implemented as proposed by Yaman (2006). (14) is reported to improve the 

relative gap over 75% for instances 3-6 proposed by Golden et al.(1984). 

i

k i N
ik

i N k K

q
Q

a
Q Q

∈

∈ ∈

 
   ≥       

∑
∑∑  

The equation is valid for all values of Q, and eliminates some facets on the search 

space. The constraint ensures that the total capacity of vehicles used is less than the 

total demand. Yaman (2006), proposes to use Q as the greatest common divisor of 

all vehicle capacities to obtain the best facet cut, in order to decrease the relative 

gap. 

(15) is reported to improve at least 4.15%, thus this inequality is also used as a valid 

inequality to improve the relative gap. This inequality can result in improvements as 

large as 18.78%.  

( )k ik i ik ik

i N k K i N k K

Q a q a b
∈ ∈ ∈ ∈

≥ +∑∑ ∑∑  

This inequality ensures that the sum of demand satisfied by vehicles that either pass 

through a node or terminate at a node is less than the total capacity of vehicles. The 

constraint is obviously redundant in the MIP formulation.  

Other inequalities based on reduction of the sub-tour elimination moves on the 

search space are not included in our lower bound calculation; as the large amount of 

sub-tour elimination constraints does not rationalize the time spend in implementing 

the constraints. The process can be demonstrated better by a solid example; say for 

problem instance 13 of Golden et al. (1984), when all inequalities and lifting 

equations are implemented the relative gap is 12.02%. On the other hand when the 

aik and bik are kept as binary in the linear relaxation, the relative gap is 10,47%, 

while the relative gap is 14.03% when all variables are assumed continuous.  

(3.14) 

(3.15) 
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The lower bounds for all instances that are used in this study are calculated using the 

mathematical model discussed in Section 3.3, loosening the integrality constraint, 

assuming variables xijk continuous. The lower bounds for our model assume all 

variables as continuous. 

 Two different lower bounds are calculated for each problem. The one of the lower 

bounds (denoted as LB) corresponds to the relaxation of our model, the second 

corresponds to the linear relaxation of the pure HVRP problem (denoted as 

LB(HVRP)), which aims to minimize the vehicle and travel cost. The second lower 

bound uses the inequalities (14) and (15), which are proven to improve the 

percentage gap. These second lowers bound can be used to asses the relative quality 

of the solutions that is comparable to similar results in the literature. Note that LB 

for our model are much looser than the LB for HVRP as all variables are assumed 

continuous and no valid equalities are included. The inequalities need to be proved 

when time restriction constraints are added. 

Table 3.2 Lower bounds for randomly located problem instances, problem set 1 

  LB  LB(HVRP) 

3 373.04 941.85 

4 3840.91 6402.54* 

5 390.00 844.19 

6 3840.91 6318.17 

13 1061.10 2156.15 

14 6432.43 8974.45 

15 995.89 2198.66 

16 1950.00 2556.65† 

17 701.10 1468.77 

18 775.00 2179.15† 

19 7300.00 8113.08† 

20 2500.00 3546.07 

These lower bounds are used throughout the following chapters in calculating the 

relative gaps for all problems. Two sets of problems are considered, the problems 

proposed by Golden et al (1984), forms the first set. The original numbering 

structure of the authors followed, the problems that are not present are non Euclidian 

instances and are not considered in the scope of this study as heuristics are based on 

the locations of the points. Table 3.2 summarizes the lower bounds. It shall be 

                                                
* This lower bound is better than the lower bound (6369.15) proposed by Choi and Tcha (2005) in 
their work on linear programming relaxation that has been solved using column generation technique.  
† a(i,j) and b(i,j) are also assumed as continuous for generating the LB of these instances 
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mentioned that the instances are generated such that effects of different price 

structures can be demonstrated. For instance, problem instances 3 and 4 are identical 

in terms of node placement, yet the vehicles used in problem 3 are much expensive 

then the price per capacity is considered. If it costs 1 with the smallest vehicle in the 

first price structure, it costs 16.6 units to carry the same load with the smallest 

vehicle in the second price structure. The similar price structures are used in all 

problems of Golden et al (1984). 

A drawback of the instances used in the first set is that the nodes are distributed 

evenly throughout the graph. To asses the performance of the heuristics that are 

implemented in the next chapter, clustered instances are used. The clustered 

instances proposed by Solomon (1987) as VRPTW are modified to become HVRP. 

The instances of Solomon (1987) are basically modification of delivery times of two 

different cluster structures, in our implementation the clusters are preserved as 

proposed by the author and the vehicle capacities are used as proposed by Golden et 

al. (1984). Thus each problem of Solomon (1987) is modified to be served by two 

different vehicle fleets, a cheap and an expensive fleet, the lowerbounds can be seen 

in Table 3.3. So that, the performance of the heuristics applied can be analyzed 

better in this controlled environment. 

Table 3.3 Lower bounds for clustered problem instances, problem set 2 

  LB  LB(HVRP) 

1 201.41 803.34 

2 3840.91 6209.40 

3 205.00 899.16 

4 3840.91 6269.72 

 5 1100.00 2435.93 

 6 6432.43 8845.48 

 7 995.89 2443.81 

 8 1156.08 2520.78* 

 9 701.10 1312.81 

 10 821.10 2096.42* 

 11 7300.00 7989.55* 

 12 2700.00 3821.84 

                                                
* a(i,j) and b(i,j) are also assumed as continuous for generating the LB of these instances 
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CHAPTER 4 

 

 

IMPLEMENTED ALGORITHMS 

 

 

This chapter briefly describes different solution approaches implemented to solve 

the HVRP. The algorithms consist of heuristics and metaheuristics to solve the 

HVRP and HFFVRP, in a reasonable amount of time, close to an optimal solution. 

Five different solution approaches are presented in the chapter. The first two 

approaches are based on the decomposition heuristics, RFCS and CFRS are applied 

to HVRP. The routing phase in both of the solution methods are solved to 

optimality, yet to assure optimality the clustering and routing are to be done 

simultaneously, the best solutions are not necessarily optimal. The first 

metaheuristic to be used is a genetic algorithm that aims to preserve the edges in the 

parents. The algorithm uses a crossover and a mutation operator based on 

conventional heuristics. The search is intensified using simple improvement 

heuristics, yet moves are limited using two types of memory structure. The last 

solution approach is based on agent systems; this study will include the first 

application of agent systems to HVRP. 

This chapter includes the algorithms of the solutions implemented on two 

benchmark sets defined in the previous chapter; the results of the implementations 

and the comparison in between the algorithms are given in Chapter 5.  

4.1 Route-first-cluster-second Algorithm for HVRP 

The ideas of Golden et al. (1984) and Gheysens et al. (1984) are followed in this 

algorithm with major improvements. Authors presented their ideas when the 

theoretical background about the solution of TSP was not very deep. In this method, 
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we consider finding an optimal solution to the giant TSP tour that consists of all of 

the customers then using an efficient clustering heuristic based on mathematical 

programming is considered.  

TSP solving algorithms use available software online; one can solve instances of 

size 100 within seconds. Largest problem contained in the test instances proposed by 

Golden et al. (1984) consists of 100 customers. Önder (2007) notes that, problems 

containing 85,900 cities are solved to optimality (Reinelt (2007)) today. According 

to Reinelt (1996), the progress in the ability to solve the problems with large sizes 

“is only partly due to the increase in the hardware power of computers. Above all, it 

was made possible by the development of mathematical theory (in particular 

combinatorics) and of efficient algorithms” (Önder, 2007). However, TSP cannot be 

considered easy to solve, as the complexity of the problem increases exponentially 

with the number of cities. TSP is a member of NP-hard problems. Therefore, an 

efficient and effective solution procedure is required. Currently, CONCORDE 

(Cook, 2007) is a powerful tool for generating exact solutions for small and medium 

sized problems and lower bounds for problems as large as 1,904,711 cities 

(Applegate, 2007). 

The routing phase of out first algorithm is done using the CONCORDE (Cook, 

2007). The CONCORDE solves the TSP problem using a highly specialized branch-

and-cut algorithm. Three different cutting algorithms are applied to improve the 

separation for subtour cuts (Applegate et al., 1998). The authors add that sub-

problems are solved using branch-and-cut method, improving the data structures. 

Problem instances with size up to 2392 have been solved with only one node, in 

438.9 seconds, where a problem of size 120 is solved in 3.3 seconds. 

We have formulated the clustering using a mixed integer model in the second phase 

of the algorithm, using the tour obtained from the CONCORDE solution. The model 

is designed to assign cities in the order obtained by the first phase, where the 

decision made is the assignment of each city to one of the vehicles, and the capacity 

of the vehicle. The notations and the decision variables that are used in the model 

are: 
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i = ordered set of the customers obtained by solving the TSP 

k = number of vehicles utilized by the model 

t = types of vehicles that can be used in the model 

ci0 = distance between customer i and the depot 

ft = fixed cost of vehicle k 

Qt = capacity of vehicle type t 

qi = demand of customer i 

di = distance incurred to finalize a subtour and start the next (following) tour from 
city i 

 1   if city i is assigned to vehicle k 
xik =   

0  otherwise 
 

1 if vehicle k is of type t 
ykt = 

0  otherwise 

The mathematical model we propose for clustering is given as follows: 
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The objective is to minimize the total fixed cost incurred, when the vehicle types are 

assigned to the routes, and the distances traveled between the first and last nodes 

assigned to each vehicle. The model contains four types constraints, and is an 

extension of the set partitioning model to our problem. The first constraint calculates 

the distances incurred when a tour is finished and the next one is initiated.  The 

 
 
 
 
for all i = 1, … , I                  (4.1) 

 

for all k = 0, … , K                  (4.2) 

 
for all k = 0, … , K                  (4.3) 

 
for all i =  1, … , I                  (4.4) 

 

for all i =  1, … , I                       (4.5) 
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constraint adds the sum of the distances of between the last customer of a tour and 

the depot and the distance between the first customer of the next tour and the depot. 

The second constraint set limits the number of customers assigned to a vehicle; the 

constraint limits the capacity of the vehicle enforcing one of the capacities available. 

The third constraint set ensures that the vehicles are limited to only one capacity; the 

last constraint ensures that each customer is visited by only one vehicle.  

The model was run for all problems proposed by Golden et al. (1984), where a giant 

tour was formed using CONCORDE (Cook, 2007). The model was compiled using 

GAMS 2.0 on a PC with AMD Tution 64x2 1.6 GHz CPU, 512 MB of RAM. 

(GAMS code can be seen in Appendix C) The mathematical model was run on PCs 

with 256 BM of memory using built-in CPLEX solver, and all of the models 

terminated due to lack of memory.  As heuristic clustering methods are reported to 

give solutions that are not comparable to CFRS methods (Laporte and Semet 

(2001)), this method is discarded from further consideration. 

4.2 Cluster-first-route-second Algorithm for HVRP 

Renauld and Boctor (2002) demonstrated that CFRS approaches successfully 

generate good results for HVRP. A sweep algorithm similar to the one applied by 

the authors is implemented in this solution approach. Moreover, Gencer et al. (2006) 

used a parameter to decide on the cluster size in HFVRP problems. The algorithm 

used also makes use of a parameter similar to the proposed by Gencer et al. (2006) 

that is a measure of wideness of the clusters. 

The sweep algorithm is used for clustering the cities, a ray with infinite that is 

centered at the depot is rotated on the Euclidian plane, and the cities are included in 

the order they appear. The polar coordinates are used to explain this process the 

customers with least polar angle, θ is selected first. The process is based on the 

observation that the best known solution are observed in petals, although some 

petals intercept. 

In our implementation of the sweep algorithm we used a measure named as radius of 

convergence ρ, which is defined by a shape parameter (R) multiplied by inverse of 

capacity utilization and radius of coverage. The radius of coverage (σ) is defined as 
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the radius of the smallest circle that can encapsulate all the customers assigned to a 

vehicle.  

[ ]

( )
i

Q
R
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ρ σ=  

The center used for calculation of the σ is an important decision measure. The center 

is calculated using the weighted distances, the demand of each customer is used as a 

weight factor as it is advantageous to include customers with large demand that are 

not to distant to each other. A modified version is used to calculate σ such that the 

depot is also included. The weight of the depot is assumed to be equal to sum of the 

demand of all customers assigned to that cluster. Gencer et al. (2006)  report that the 

customers that are near to the depot shall be considered while doing the routing as a 

vehicle that travels a great distance can serve the customers that are near the depot as 

long as it has free capacity. 

The algorithm is initiated with the vehicle having minimum capacity, and if the 

capacity required to handle the customers assigned by the sweep move is less than 

the available capacity the inner loop terminates and the customers are assigned to 

that vehicle. However, if the capacity required to handle the customers is larger than 

the capacity of the current type of vehicle, then three different methods are used. 

There is no best method defined in the literature to select the type of vehicle, thus we 

have used all three methods proposed by different authors for selection of the 

vehicle type. The first method is proposed by Renaud and Boctor (2002) for sweep 

algorithms is reported to give promising results. The method that is proposed by 

Ochi et al. (1998a) was implemented on genetic algorithms, and the last method is 

deciding on the vehicle type randomly each time the capacity of a vehicle is to be 

exceeded.  Figure 4.1 demonstrates the pseudo code of the algorithm when the 

Renaud and Boctor (2002) measure is used. 

Renaud and Boctor (2002) compare the costs of using two different vehicles, and 

using single larger vehicle. Assume that S denotes a set of customers assigned by the 

sweep algorithm. Q[1] denotes the capacity vehicle with least cost, and the Q[i] 

denotes capacities of larger vehicles in an increasing order. For the case Q(S) ≥ Q[i], 
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then cost of assigning Q(S) to Q[i+1], and comparing cost of Q[1] and assigning Q(S)-

Q[i] to Q[1] (Renauld and Boctor, 2002). The capacity of the vehicle is increased 

similarly as long as the cost of increase is less than assigning of a new vehicle. The 

increase in the capacity or introduction of new tracks continues until all customers 

are serviced. The ray can be rotated more than once until all the customers are 

assigned to vehicles. 

Ochi et al. (1998a), used a different measure that penalizes the unused capacity by 

the cost of the vehicle, aiming to minimize the cost times the unused capacity. Lima 

et al. (2004) report promising results using this method. The vehicle to be used is 

selected to have the least value of (Q[i] – Q(S))*fi among all vehicles. The vehicle 

selected is used as long as there is free space. The algorithm then selects back the 

smallest capacity and increases the capacity as long as the capacity is to be exceeded 

with the inclusion of a new customer. 

The resulting clusters are assigned are routed using a Genetic Algorithm proposed 

by Önder (2007) which uses conventional heuristics as crossover and mutation 

operators. The CONCORDE (Cook, 2007) was not used for routing purposes as the 

program needs at least 16 cities to perform the routing. The clusters generated by the 

sweep algorithm contain less than 15 customers in more than 80% of the instances.  

Inter-cluster movements are not allowed at this stage, the optimum routes are found 

for each cluster. 

4.3 Genetic Algorithm for HVRP 

The genetic algorithm for HVRP is based on the study conducted by Demir (2004). 

The study implemented a genetic algorithm that uses conventional heuristics as 

operators. Constrained VRP problems, VRPPD and VRPB, were successfully solved 

by Demir (2004). The author used five different applications on these constrained 

problems and concluded that repairing infeasible tours gives the best results for 

constrained problems. The author used a crossover that preserves the edges in the 

parents, which is based on Nearest Neighbor Heuristic. The operator, which is 

named as the Nearest Neighbor Crossover (NNX), constructs a union graph of 

parental edges and the nearest neighbor is applied to this union graph. The pseudo 

code for the GA we have applied can be seen in Figure 4.2. 
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Figure 4. 1 Pseudo code for sweep algorithm for HVRP 

 

Parameters and initial conditions of our genetic algorithm are based on the detailed 

analysis on NNX conducted by Önder (2007). The author reports that the NNX 

gives best solutions on TSP instances when the initial population is generated 

randomly. Moreover, it is reported that better results are obtained when the worst 

parents are replaced by their children. The algorithm initiates with the vehicle 

having the least capacity, and the capacity is increased using the method proposed.  

The initial population is either randomly generated or use tours generated by the 

sweep algorithm for the initialization of the genetic algorithm. The procedure begins 

with selection of a vehicle with the least possible capacity, and then randomly 

selected customers are assigned to this vehicle as long as the capacity of the vehicle 

is not exceeded. 

WHILE NOT all cutomers assigned DO 
 FOR vehicle v = 1 to J 
  Vehicle type vt = 1  

  FOR θ = 0 UNTIL θ = 2π 
   IF Customeri(θ) is equal to θ 
   AND IF distance(Customeri, center) ≤ radius 
    IF Q(S) + q(Customeri) ≤ Qt 

     go to Assign  

    ELSE IF ft+1 ≥ ft+fm such that Qm ≥ q(Customeri) 
     v = v + 1  

vt = 1 
     go to Assign 
     ELSE vt = vt +1 
     go to Assign 
  END 
  (Assign) Assign Customeri to vehicle v 
  FOR all customer assigned to vehicle v 
   sum = cutomer(x,y)*q(customer) 
  END 
  center = sum / (number of customers) 
   FOR all customers assigned to vehicle v 
   IF distance (cutomer, center) > distmax 

    Update σ 
  END 
  Update ρ 

   
END 
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Figure 4. 2 Pseudo code for GA algorithm for HVRP 

When the insertion of a randomly selected customer exceeds the vehicle capacity, 

one of the tree different methods are used to select the capacity if it is necessary to 

increase. Figure 4.2 demonstrates the pseudo-code for the case where the Ochi 

method is used to select a better capacity. The new capacity with minimum Ochi 

value is selected, if the Ochi value of the current capacity is the best, then the 

vehicle is assumed to be full. This process is repeated until the vehicle is full, and 

then a new vehicle with least capacity is selected. This procedure is repeated until all 

customers assigned to arbitrary vehicles. Note that similarly the method of Reunad 

BEGIN 
Generate the initial population (N) 

IF NOT all customers assigned DO 
Assign vehicle capacity to be Q[1] 

DO until NEW VEHICLE 
Randomly select a customer 
Calculate the load including the customer 
If the city to be visited exceeds  

Find minimum Qi-Q(S)*fi 

IF minimum Qi equal to current Qi 
 NEW VEHICLE 
ELSE Update the capacity to be Qi. 

  END 
       END 

END 
Do until convergence observed: 

 Select k parents at random from this population 
Generate a union graph from k parents 

All the edges from parents are listed in the union graph 
   (new)      Assign capacity Q[1] to the vehicle 

Start from a random customer  
Calculate the load including the customer 
IF the city to be visited exceeds  

Find minimum Qi-Q(S)*fi 

IF minimum Qi equal to current Qi 
Vehicle is full 
Go to new 

ELSE Update the capacity to be Qi. 
Select the customer nearest to the current form union graph 

IF the next customer is the depot 
 Go to new 

Replace half of the parents with the best half of the children 
END 
Report best solution found  
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and Boctor (2002) or random change is applied, one of the update methods is chosen 

randomly. 

The assignment of all customers to vehicles determines an individual. The initial 

population is created when the number of individuals generated equals to number of 

customers in the problem. Each individual is represented with the number of the 

cities visited. The depot is represented by a 0. The fitness function is easy to 

calculate and subtours can easily be identified. The length of the tour is multiplied 

by the weight factor specified in the benchmark problem instances added to the cost 

of vehicles. This total cost is assumed as the fitness of the individual. The 

individuals with a small fitness value replace the parents with larger fitness value. A 

sample representation can be the following.  

Individuali:  0 – 2 – 4 – 5 – 6 – 0 – 1 – 3 – 7 – 8 – 0   

This individual represents two trucks, the first one visit nodes 2,4,5,6 in the given 

order, and the second one visits 1, 3, 7, 8 in the given order. The vehicle types used 

by this individual are the vehicles with least capacity that can accommodate each of 

these two tours. 

One iteration of the algorithm, between the selection and replacement steps is called 

as one generation. A generation of a GA using NNX is explained in detail below. 

There are different approaches in the literature for selection of the parents. The 

individuals with best fitness values are given a greater chance of being selected, or 

are selected randomly (Larrañaga et al., 1999). Önder (2007) demonstrated that 

NNX gives best results then the parents are selected randomly, he argues that 

favoring the better individuals with NNX causes premature convergence on TSP 

problems. Thus, the parents are selected randomly. NNX makes it possible to 

construct the union graph using edges of more than two parents. Different parent 

numbers are experimented to find out the best parent number. 

The construction of union graph can be demonstrated by a simple example, assume 

that only two parents are used to construct the union graph on a simple problem 

instance with 8 cities. The parents selected for reproduction are: 
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Parent 1: 0 – 2 – 4 – 5 – 6 – 0 – 1 – 3 – 7 – 8 – 0  
Parent 2: 0 – 1 – 4 – 7 – 2 – 5 – 0 – 3 – 6 – 8 – 0  

Both parents represent tours with two vehicles. Then the corresponding union graph 

is given in Figure 4.3, each customer is listed with the neighboring edges in 

increasing distance from the current customer: 

 

  
                Figure 4. 3 A sample union graph for NNX 

 

The numbers in the parenthesis correspond to the distances between two cities. The 

individual that will be generated using the NNX is going to start with 0 the depot. 

Then the next individual to be selected is 1, which is 18 units far from the depot. 

Then after 1, 0 is selected. The first vehicle will visit 0 – 1 – 0. Then 5 will be 

visited as it is nearest to the depot. 5 yields to 6, and 6 yields to 8. 7 will be visited 

after 8. Note that the Ochi values are checked at each iteration, assume that the Ochi 

value of including 7, is not better than the Ochi value when 7 is considered, then the 

second vehicle will visit 0 – 5 – 6 – 8 – 0. The algorithm will select 2 as it is nearest 

feasible neighbor in the parents. Then 4 will be selected, and 4 has no feasible 

neighbor. The algorithm gets stuck, the nearest among all possible customers, which 

can be included in the vehicle regarding the Ochi value, is selected. 3 is included if 

the distance is less than 7, which are the remaining unvisited customers. 3 yields 7 

according to the union graph. The last vehicle in the child generated from this union 

graph will visit 0 – 2 – 4 – 3 – 7 -0. The child generated is then: 

Child: 0 – 1 – 0 – 5 – 6 – 8 – 0 – 2 – 3 – 7 – 0  

0� 1 (18) – 5 (26) – 2 (32) – 6 (40) – 8 (50) 
1� 0 (18) – 3 (25) – 4 (15) 
2� 4 (10) – 0 (32) – 7 (28) – 5 (35) 
3� 1 (25) – 7 (30) – 8 (45) – 6 (47) 
4� 2 (10) – 1 (15) – 5 (30) – 7 (36) 
5� 6 (12) – 0 (26) - 4 (30) – 2 (35)   
6� 5 (12) – 8 (35) – 0 (40) – 3 (47) 
7� 2 (28) – 3 (30) – 8 (30) – 4 (36)  
8� 7 (30) – 6 (35) – 0 (50) 
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Note that the edges, between 0 – 1, 5 – 6, 8 – 0, 0 – 2, 3 – 7 from the first parent are 

preserved, and edges 0 – 1, 0 – 5, 6 – 8, 8 – 0, from the second parent are preserved, 

while, the edge 3 – 7 is introduced in the new individual. NNX has the ability of 

discovering new edges while aiming to preserve good parental edges. This child 

replaces one of its parents if the total cost of visiting the cities in these orders with 

the least cost vehicle alternatives is less than the fitness of its parents. 

The newly generated individuals are subjected to node insertion mutation that 

improves the results of NNX according to Önder (2007). A randomly selected 

customer is removed from the assigned vehicle. All edges are checked and the 

removed customer is tried to be inserted to an improving point. A node insertion 

move is completed if a feasible insertion point for the removed customer is found. 

This mutation operator is tried for 15 times as proposed by Önder (2007) on each 

child that is better than its parents. It must be mentioned that this mutation is 

relatively simple as only one node can be removed and reinserted, Renaud and 

Boctor (2002) proposed an eleven step improvement using 2-opt and 3-opt moves. 

The individual with least cost is reported after the algorithm has converged. The 

convergence can be measured using different methods. Having population average 

equal to the best individual is generally used as a convergence measure, on the other 

hand, most of the combinatorial optimization applications using GA have a 

generation limit as the convergence criterion, as it takes very long time for 

population average to converge to the population best.  

4.4 Multi-Agent Solution for HVRP 

The study is the first application of multi agent systems to HVRP. Multi-agent 

systems are gaining importance in the realm of Artificial Intelligence (AI) 

applications, where more than one decision maker is involved or the problem has a 

distributed nature. Multi-agent systems consist of autonomous agents that interact 

with each other in order to reach pre-specified solution (Erdoğdu (2004)). 

Autonomous agents are used to model rational entities, like independent decision 

makers or entities that work for the same goal but are physically separated. 
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There is a few works on direct solution applications of the well-know VRP instances 

to the knowledge of the authors. However, multi-agents approach has been widely 

used in distributed planning. Erdoğdu (2004) summarizes the most significant work 

by stating that Boutilier and Brafman (1997) worked handling multi-agents that 

share the same goal and execute some action concurrently, Bowling et al. (2002) 

introduced some game theoretic approaches and Ephrati and Rosenschein (1997) 

used robust planners for generating dynamic plans.   

Fischer et al. (1999) describes a comprehensive simulation of a truck distribution 

environment with more than one company and more than one truck, which can be 

referred as a multi depot VRP. A trade mechanism, which is quite similar to the one 

we implemented is used. Firstly, price for the exchange of a city is calculated, one 

agent calculates the saving when it removes a specific city from its solution, while 

the other calculates its loss it incorporates when that specific city is added to its 

current solution. This procedure is overseen by another agent that keeps track of 

data, and manages the transactions. The result is improvement in the current 

schedule if there is a transaction. 

Thangiah et al.’s (2001) work is conceptually similar to Fischer et al. (1999) again 

there is a centralized agent that at the beginning of the solution delivers the cities to 

agents that model the vehicles. A bidding mechanism is constructed in order to find 

out the most suitable vehicle for a city, every vehicle announces its savings by 

accepting a new arrival, and then the best bid is assigned with the city. The most 

significant difference of this work is an improvement mechanism is used, where the 

vehicles exchange the cities between each other, directly based again on the savings 

relative to each other.  

In their recent work, Boudali et al. (2004) concentrates on the VRP with Time 

Windows, the cities must be served within a given time interval, and models every 

city as an agent. This is a totally different approach. Coalition formation is done by 

interaction among agents, where every agent asks its non-enemy agents, if they want 

to coalescence with itself, and they forward that message to their ancestors. When an 

agent finds out that it can form a coalition with the current one it sends back a 

message, accepting this proposal. When a coalition is formed and no other agent can 
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enter the solution, the agents announce a friendship and other declare them as 

enemies, thus a new coalition shall be formed. By this way forming of new 

coalitions, with autonomous agents that try to maximize their own benefits form the 

solution by negotiating between each other. 

Lastly, Erdoğdu (2004) concentrates on resource based planning, re-planning of 

Dynamic Postmen Problem. The problem is similar to VRP, where new cities arrive, 

and the postmen (vehicles) are the agents. The agents have an initial list of nodes to 

be visited, and after a plan is generated a new node arrives, the model is based on the 

negotiation for the assignment of the new node after the plan has been formed. The 

negotiation is resource based, which is similar to the negotiation mechanism 

discussed. 

MA applications are only limited to VRP applications, and no study aimed to solve 

HVRP. In out implementation, we use two types of agents to handle the HVRP. The 

first type is the vehicle agents (VA) and the second is the central agent (CA). All the 

agents are autonomous reactive agents; they react to the changes and act rationally, 

without reasoning about the changes. The tasks each agent will perform are 

described including the necessary structures.  

Vehicle Agents 

The vehicle agents have three main tasks; the first one is to keep the route that 

traverses all the cities, namely Hamiltonian Cycle, as short as possible, the second 

one is advertising cities to other agents, and the very last one is giving bids for the 

advertised cities. 

Each agent is initialized using by a randomly assigned city. The agents are capable 

of changing the capacities of vehicles assigned, including the price of updates to the 

cost calculations. 

An agent keeps an ordered list of cities to be visited; the order of the list represents 

the order in which the agent is going to visit the cities. Thus, the agent should 

optimize the order in order to minimize the route, this is done by the help of the 2-

opt heuristic.  
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The next task the vehicle agents serves is finding the city that results in maximal 

shortening in the tour. This is similar to the first part of the savings equation. Let us 

assume that (for agent t) city i is connected to city j, and city j is connected to city k, 

(the visiting order of the agent is …- vi – vj – vk-…). Then shortening in the tour can 

be calculated by: sjik = (cij+cjk)-cik (as the new visiting order will become …vi-vk… 

remaining j to be advertised). The city with maximum savings is obtained by: 

sj = max{ sjik  | ∀ i , j, k >0 and i ≠ j } 

j = argmax{ sjik  | ∀ i , j, k >0 and i ≠ j }, 

 the city j and the savings are announced to a common blackboard.  

The blackboard is used as the communication medium; all the agents can see the 

values on the blackboard and can decide on their actions accordingly. 

A modified version of the savings announcement is the “exaggerated” 

announcement implemented as an alternative. In this version when an agent 

observes that the capacity usage ratio of it is less than the average of all other 

vehicles, and the city it advertises keeps remaining on the blackboard for 

consecutive iterations, it overstates its savings, by the following formulae: 

s j
x = sj  ln( 1 + n × U(c)) 

where n denotes the number of instances the agent advertised city j consecutively, 

U(c) denotes the capacity utilization of the agent. The equation is logarithmic to 

ensure that the increase of the sj
x value is decreasing avoiding illogical (very high) 

values to be advertised. Moreover, the U(c) takes part in the equation to ensure that 

the exaggeration is inversely proportional to the usage rate, while increase 

proportionally by the number of instances the agent advertised the same city 

consecutively. 

The vehicle agents lastly calculate the total saving of inserting the cities they see on 

the blackboard by using an equation similar to the one discussed above. Assume that 

an agent (agent u) whose has the arc …vx-vy… on its current route, sees the 

following information on the blackboard, then it calculates its own bid value. 
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Blackboard: “j” � sj   

Agent u calculates: S = (cxj + cjy) - cxy + sk 

The savings S being larger than 0 and agent having enough capacity to 

accommodate the demand of j, the agent announces its bid to be S and the place 

(vx,vy) to the central agent. 

Again there is one alternative to the calculation of the bid S(exaggeration version), if 

the agent an agent observes that the capacity usage ratio of it is less than the average 

of all other agents, S is decreased using the following equation: 

S
x = S × U(c) r/10 

where r denotes the number of bids the agent has offered since the beginning of the 

run. As the value U(c) ≤1, then Sx decreases with the increase in r. In this study r/10 

is used as the instances algorithm usually terminates a bid number which is less than 

10 times the number of nodes, and 10 ensures that the Sx value does not approach 0 

during a run.  

This “exaggeration” structure was employed to avoid a city continuously being 

traded form one agent to other and vice versa. The standard version of the algorithm 

was observed to result in infinite loops where the same city that is taken from an 

agent in one term is assigned back to the same agent at the next term. Yet when an 

algorithm is based on capacity usage ratio then if a city is taken from one agent that 

agent will tend to bid a lesser amount as the capacity usage ratio would change. 

Central Agent 

The central agent acts as the final decision maker, for the biding mechanism, its 

function is the same as the manager agent in Fisher et al. (1999). The agent decides 

on the exchange of cities between agents after all the agents announce their bids. 

The decision mechanism has two different versions implemented; the first one is 

deterministic version. In this version the central agent select the best offer for each 

city and assigns the city to the position announced by the agent that gave the bid, 

deleting it from its current position on the advertising agent. It shall be mentioned 
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that at each iteration step central agent makes only one change on the vehicle agents. 

Thus if an agent gives a city, it cannot get a city until the next iteration.  

A modified version of the central gent is also present; in this version, the central 

agent selects the city to be assigned is selected proportional to the probability that is 

calculated using the following equation: 
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The index i denote the rank of the agent among the m agents who give bids for a city 

advertised. The parameter η denotes the pressure to select the good bid. η varies 

between 1 and 2, 1 denotes the totally random selection as all the positive bid giving 

agents have equal probability of wining the bid. 2 denotes the alternative where the 

best bid has the most chance of being selected. 

The trading continues until a feasible bid is observed. The vehicle type of each agent 

and the resulting tours are the output of this solution approach. 
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CHAPTER 5 

 

 

NUMERICAL EXPERIMENTS AND COMPARISON OF THE 

RESULTS OF IMPLEMENTED ALGORITHMS 

 

 

The algorithms discussed in Chapter 4 are implemented with necessary modification 

to find one best way of handling the HVRP and HFFVRP problem. The results of 

the algorithms are reported as percent deviations from the LP lower bounds 

calculated in Chapter 3. The percent deviations from the best known solution is also 

reported for comparison reasons for the solutions that use the objective function that 

aims to minimize the cost of vehicles and cost of routing simultaneously.   

The CFRS method is investigated in detail in this chapter as the genetic algorithm 

and multi-agent algorithm uses the sweep algorithm as the initial point. Different 

clustering methods are analyzed and compared; the chapter finishes with the 

comparison of the results of the algorithms. 

5.1 Cluster-First-Route-Second Algorithm 

Various parameter levels and methods are implemented to obtain the best parameter 

combination for our sweep algorithm. 

The radius of convergence uses the multiplicative inverses of capacity usage to 

include the nodes that in the immediate neighborhood while the capacity utilization 

is low, and increase the coverage of the neighborhood as the capacity utilization 

increases. This gradual increase of the radius of convergence (ρ), aims to include the 

far away customers as long as there is free capacity, and they are not really far away. 
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Different levels of the parameter R are used, when this shape parameter is very 

small, the algorithm tends to include very few customers on each route, as no other 

customers are within the ρ. When R is very large, ρ increases such that no limitation 

on the cities to be included in the route remains then the algorithm becomes pure 

sweep algorithm. 

As mentioned in Section 4.2 three different methods are implemented when the 

vehicle type is to be changed to increase the capacity of the vehicle. All the methods 

are implemented on the problem sets defined in chapter 3. The result of the 

algorithm is influenced by the clustering structure of the problems, as the sweep 

algorithm is expected to work well with clustered instances. 

Another factor that affects the results of the sweep algorithm is the initial point 

where the ray of infinite length is started to be rotated as the capacity usages and the 

vehicles selected are dependent on the order the customer are included in a vehicle. 

We have initiated the sweep algorithm such that each customer became the first to 

be included in a vehicle once.  The clusters are finalized when the capacity is full or 

there is no customer within the radius of convergence. 

The shortest route between points within a cluster and the depot are routed using the 

genetic algorithm proposed by Önder (2007), without allowing the inter-cluster 

movements. The inter-cluster movements are restricted as the quality of the clusters 

generated is under consideration at this stage of the CFRS algorithm. (The C code 

for CFRS algorithms is given in Appendix D.)The result of the best possible initial 

point is reported. 

Six different R values are used in the experimental runs, 0.5, 1, 1.5, 2, 2.5 and 3. 

There are two different alternatives for calculating σ, one including the depot the 

other not. Furthermore, there are three vehicle selection methods, Renaud and 

Boctor (2002), Ochi et al. (1998a) and selecting randomly. There are 12 different 

problems with varying sizes in both of the sets. Analyses of results of 864 different 

replications are reported in Appendix A, the factor analysis and main interaction 

plots for our model are given in Figure 5.1 and 5.2. The appendix also includes the 
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analysis where the problem is solved as a pure HVVRP using the same parameter 

settings. MINITAB for Windows13.3 is used to conduct the factor analysis. 

The main interaction plot is used for analyzing the affect of changes in discrete 

levels of parameters. The affect on the deviation from the LB of three decision 

parameters can be seen in Figure 5.1. However, the factor analysis shall be 

conducted to analyze the statistical significance of changes in parameters. The 

results of the ANOVA analysis are used to comment on the parameters. For our 

model, the residuals of the model can be assumed normal, as the p-value of 

Anderson-Darling normality test are 0. However, the histogram and normality plot 

tests indicate that the residuals are not distributed normally. The size in the analysis 

is kept as a block in the factor analysis, the results of the 

 
Figure 5. 1 Main effect plots for the deviation from the LB for our model 

According to the ANOVA results the method used for selection of larger vehicles, is 

statistically significant. It can be seen that R (Weight) value is not significant 

statistically, thus the weight is not further considered. The presence of the depot in 

the solution is also not statistically significant. 

According to figure 5.2 the weight and the inclusion of the depot into the 

calculations do not have an impact on the solutions, when the interaction is 

considered. There is no complicated interaction among the decision parameters.   

Another factor analysis we have conducted, is the inclusion of the clustered structure 

of the problem. The clustered structure is not a decision parameter for the problems 

solver, yet the interaction of this parameter, if statistically significant, can play an 

important role in selection of the best course of action. 
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Figure 5. 2 Interaction plots for the deviation from the LB for our model 

The Figures 5.3 and 5.4 are the main effects plots when the clustered structure is 

included in the analysis. The ANOVA and the normality plots of the residuals are 

given in Appendix A. Figure 5.3 demonstrates the effects when the model we have 

developed is used, and the corresponding LB are considered when the deviations are 

calculated. Figure 5.4 demonstrates the effects when the problem is solved as a 

HVRP, to minimize the total cost. The figures are similar in when the capacity 

increasing method and weather to include the depot into the cluster or not, are 

considered. The change in the R can be explained by the difference in the tightness 

of the LB for our model and the HVRP. The types of vehicles available is a 

parameter that can be adjusted, thus the analysis can be helpful in developing the 

problem structure. The type of vehicles demonstrates a great difference in the graphs 

as the costs of vehicles have a great impact on the objective values of both of the 

problems. 

 There is a significant difference, when the clustering is considered. The sweep 

algorithm we have employed, gives better results when the problems are not 

clustered when our objective function. On the other hand, when the distances are 

included in the cost is used in HVRP, the sweep algorithm gives better results when 

the problem is clustered. 
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Figure 5. 3 Main effect plots including “cluster” for the deviation from the LB for our model 

The average deviation from the LB is given in Table 5.1. The deviations are 

extremely high. The results of Ochi and Boctor are similar, while the Random 

selection gives the worst results. The deviation is less when the problem size 

increases, this is possibly due to the improvement of the lower bound. 

 
Figure 5. 4 Main effect plots including “cluster” for the deviation from the LB for HVRP 

As the LB generated for our model is not tight, a comparison with the best known 

solutions can be handled better when the HVVRP is considered. The deviation from 

the best-known solutions of the Golden et al. (1984) instances is given in Table 5.2. 

The best results that can be obtained using the mentioned method with the given 

parameters are listed in the columns according to the problem number. The results 

for problem 17 and 18, which contain a 5 and 6 vehicles respectively, are very poor.  
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Table 5. 1 Average percent deviation from the LB for sweep algorithm on our model 

 Size 

Method 20 50 75 100 Average 

Boctor 96.66 50.03 44.86 11.70 58.32 

Ochi 100.80 57.41 44.86 11.70 62.16 

Random 125.63 95.58 207.06 58.58 118.01 

Average 107.70 67.67 98.93 27.33 98.82 

 

The results reported by Renaud and Boctor (2002) are better compared to the results 

presented in Table 5.2 This is due to the post improvement phase they have used 

after the sweep algorithm. In out implementation the clustering ability of the 

heuristics is analyzed, and the resulting clusters are routed in the best possible route. 

However the improvement moves Renaud and Boctor (2002) used contain inter-

cluster moves, 2-opt moves, and edge exchanges. The results shall be improved by 

improvement heuristics if only sweep algorithm is to be considered. The deviation 

from the best known solution is less than 20% for 8 out of 12 problem instances. 

5.2 Genetic Algorithm 

The genetic algorithm described in Section 4.3 is implemented with different 

parameter settings. (The C code of the algorithm is given in Appendix D.)The 

algorithm is either initialized randomly or using the clusters generated by the sweep 

algorithm. The clusters generated by the sweep algorithm are used with the form 

obtained prior to routing in order to avoid the algorithm getting trapped to local 

optima easily. The clusters generated by the Boctor method are used as an input 

when the initial population is not generated randomly, according the results of the 

previous section. 

The genetic algorithm initializes with a population that is equal to the number of 

customers in the problem. The algorithm is run for 10,000 generations. The parents 

are randomly selected and a child is generated using the nearest neighbor list. The 

children that are better than their parents are replace their parents after a simple 

mutation. The mutation consists of node exchange move that is applied for 15 times 

on each child. The best member of a population is reported at the end of the 

algorithm. 10 different replications are conducted for each problem setting. 
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Table 5.3 the best results of 10 replications. The type of the initial population used is 

given in the third column. The results regarding our model are given along with the 

results of the HVRP solution for easy comparison. The deviation from the best-

known solution is reported for the first problem set. 

Table 5. 2 Results of Genetic Algorithm on problem set 1 

  
Initial 
Pop Size 

CPU 
Time Result 

Dev LB 
(%) 

CPU 
Time Result 

Dev LB 
(%) 

Dev BN 
(%) 

Random 20 0.00 490.00 20.57 0.60 989.55 5.06 2.97 

3 Boctor 20 0.00 480.00 18.11 0.10 990.07 5.12 3.02 

Random 20 0.00 5657.28 47.29 0.00 6962.64 8.75 8.16 

4 Boctor 20 0.00 6500.96 69.26 0.00 7423.17 15.94 15.31 

Random 20 0.30 573.91 47.16 0.80 1089.41 29.05 8.18 

5 Boctor 20 0.00 521.29 33.67 0.60 1125.79 33.36 11.79 

Random 20 0.00 4603.56 19.86 0.10 7470.31 18.24 14.64 

6 Boctor 20 0.00 7091.48 84.63 0.00 7531.39 19.20 15.57 

Random 50 1.70 1375.71 29.65 1.50 3267.33 51.54 35.78 

7 Boctor 50 1.00 1260.00 18.74 1.10 3283.00 52.26 36.43 

Random 50 1.90 9533.28 48.21 1.60 10273.60 14.48 12.66 

8 Boctor 50 1.00 9850.13 53.13 1.00 10623.22 18.37 16.50 

Random 50 1.60 1918.65 92.66 1.30 2936.46 33.56 13.54 

9 Boctor 50 1.00 1801.99 80.94 1.00 3135.09 42.59 21.22 

Random 50 1.90 1975.41 98.36 2.30 3514.07 37.45 29.17 

10 Boctor 50 1.00 2236.02 98.36 1.00 3791.69 48.31 39.38 

Random 75 1.70 1039.70 48.30 2.20 2254.80 53.52 29.23 

11 Boctor 75 2.00 889.40 48.30 1.90 2402.11 63.55 37.67 

Random 75 1.60 1147.85 48.11 1.60 3811.86 74.92 60.74 

12 Boctor 75 2.00 1557.27 48.11 1.90 3879.99 78.05 63.61 

Random 100 7.00 8860.88 21.38 7.60 11185.81 37.87 29.10 

13 Boctor 100 4.00 8143.63 21.38 4.00 9606.68 18.41 10.88 

Random 100 10.60 3402.72 36.11 10.90 5247.20 47.97 29.90 

14 Boctor 100 4.00 3014.18 20.57 5 5194.1044 46.47 28.58 

For the problem set 1, the average deviation from the best known solutions for the 

problem set 1 is 21.21%. While the deviation from the LB for our model is 41%, and 

for HVRP model is 31.66. The average deviation from the LB for our model is 

26.34%,and for HVRP model is 19.56.  

The improvement the GA brings in on the solutions generated using the Boctor 

method is given in Table 5.5. The difference is calculated by simple subtracting the 

average percent deviations.  The results suggest that the improvement is 14.39%. 

More problem specific heuristics shall be incorporated to intensify the search. 
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Table 5. 3 Results of Genetic Algorithm on problem set 2 

  
Initial 
Pop Size 

CPU 
Time Result 

Dev LB 
(%) 

CPU 
Time Result 

Dev LB 
(%) 

Random 20 0.00 390.00 32.56 0.40 920.36 14.57 
1 File 20 0.00 490.00 28.58 0.10 940.47 17.07 

Random 20 0.00 4012.37 4.46 0.00 6928.15 11.58 
2 File 20 0.00 6500.00 69.23 0.00 6880.09 10.80 

Random 20 0.00 267.34 30.41 0.30 920.36 2.36 
3 File 20 0.00 490.00 139.02 0.10 940.47 4.59 

Random 20 0.00 5023.49 30.79 0.10 6928.15 10.50 

4 File 20 0.00 6500.00 69.23 0.00 6880.09 9.74 

Random 50 1.80 1310.04 19.09 2.00 3116.44 27.94 
5 File 50 1.20 1263.60 14.87 1.00 3426.16 40.65 

Random 50 1.10 7669.99 19.24 1.00 9550.76 7.97 
6 File 50 1.00 8571.79 33.26 0.90 10048.13 13.60 

Random 50 2.20 1417.81 42.37 2.60 3006.87 23.04 

7 File 50 1.10 1762.07 76.93 1.10 3012.15 23.26 

Random 50 2.60 1905.66 91.35 2.70 3380.70 34.11 

8 File 50 1.70 2206.70 91.35 2.00 3336.61 32.36 

Random 75 2.00 1014.16 44.65 2.10 2046.64 55.90 
9 File 75 2.00 832.32 44.65 2.20 2126.45 61.98 

Random 75 1.50 1460.97 77.93 1.00 3352.97 59.94 
10 File 75 2.90 1162.96 77.93 2.00 3891.34 85.62 

Random 100 6.00 7804.63 6.91 4.50 9906.50 23.99 
11 File 100 2.00 8119.12 6.91 2.00 9569.28 19.77 

Random 100 8.60 2902.14 7.49 9.80 4890.22 27.95 

12 File 100 3.40 2784.19 3.12 3 4797.9291 25.54 

5.3 Multi-Agent Solution for HVRP 

The agent system described in Section 4.5 is implemented on both of the problem 

sets, different parameter settings are used to improve the results. (The C code of the 

algorithm is given in Appendix E). The behavior of agents is controlled using the 

selection and exaggeration parameters. According to previous experiments the 

agents tends to get stuck in local optima when they announce the real savings they 

gain, when an exchange is done. Golden et al. (1984) demonstrated that modifying 

the costs of gain give better results, compared to the pure savings algorithm on 

HVRP. Thus all the agents exaggerate the savings when they are announcing, or 

understate the gain when they obtain a city.  

Table 5. 4 Average improvement of deviation from the LB with GA 
 Size 

 20 50 75 100 Average 

Boctor (Dev %) 96.66 50.03 44.86 11.70 50.81 

GA on Boctor  (Dev %) 52.85 48.27 43.54 5.02 36.42 

Improvement (Dev %) 43.81 1.76 1.32 6.69 14.39 
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The selection done by the central agent is done probabilistically, controlled by the 

parameter η. Selecting always the best bid, sometimes causes the algorithm to get 

stuck at local optima. 5 different levels of η are used in the experiments as small 

changes in η, cause changes in final solution. As the algorithm is probabilistic, 10 

different replications of each setting are implemented.  

The agents are either honest or they exaggerate the results they are gained if the city 

is transferred from them. Similarly the agents tend to exaggerate the saving they 

obtain when they are acquiring a city. 

Table 5.6 and Table 5.7 summarize the results for different levels of η (Etha). The 

results are very poor compared to the results in the literature. The results are better 

than the results of the pure savings algorithm for small problems when compared, 

yet they are not good enough to be applied under these settings. 

Table 5. 5 Percentage deviations of different η values for MA, using our model 
 Etha  

Problem 1 1.25 1.5 1.75 2 Minimum 

Golden 3 25.55 24.86 22.43 26.70 13.65 13.65 

Golden 4 25.75 33.18 17.84 26.42 24.65 17.84 

Golden 5 56.71 47.35 52.35 45.21 36.14 36.14 

Golden 6 37.75 22.25 21.16 36.86 19.84 19.84 

Golden 13 118.14 128.94 122.99 130.49 121.50 118.14 

Golden 14 55.25 53.34 43.87 59.84 50.59 43.87 

Golden 15 104.90 100.45 83.80 86.11 77.11 77.11 

Golden 16 88.03 96.53 89.27 86.48 63.95 63.95 

Golden 17 173.51 167.60 149.53 144.36 93.40 93.40 

Golden 18 162.73 171.44 165.74 156.71 122.89 122.89 

Golden 19 80.03 73.25 67.35 65.25 47.14 47.14 

Golden 20 123.95 125.67 123.02 114.94 75.94 75.94 

Solomon 1 70.56 43.01 61.37 61.37 46.94 43.01 

Solomon 2 95.27 108.28 82.31 95.27 95.29 82.31 

Solomon 3 217.07 165.85 200.00 200.00 173.17 165.85 

Solomon 4 95.27 108.28 82.31 95.27 95.29 82.31 

Solomon 5 141.66 154.62 155.76 151.14 129.15 129.15 

Solomon 6 104.55 96.33 96.30 96.91 53.71 53.71 

Solomon 7 252.95 222.05 221.22 203.39 185.82 185.82 

Solomon 8 193.43 197.51 186.20 174.54 144.87 144.87 

Solomon 9 263.46 265.86 252.83 241.93 150.88 150.88 

Solomon 10 291.51 273.49 291.35 258.13 164.54 164.54 

Solomon 11 95.34 92.57 79.79 81.06 58.28 58.28 

Solomon 12 146.78 134.62 127.60 115.27 83.75 83.75 
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The multi-agent systems fail to generate good enough solutions in our very simple 

implementation that is based on the saving heuristic although a 2-opt improvement 

mechanism in incorporated in the algorithm.  The average of deviations from the 

LB’s is more than 100% for our model, and about 59% for the HVRP.  

This study is the first attempt to use agent systems in HVRP solution. The algorithm 

lacks some problem specific algorithms, like the γ-weighted savings algorithm 

proposed by Golden et al. (1984). Moreover, the 2-opt improvement method is 

limited to intra-cluster movement, limiting the search space. The study can be 

further developed using more effective heuristics in the decision mechanisms of the 

vehicle agents. 

Table 5. 6 Percentage deviations of different η values for MA, on HVRP instances 
Problem 1 1.25 1.5 1.75 2 Minimum 

Golden 3 48.87 23.03 40.32 50.26 53.19 23.03 

Golden 4 96.30 110.39 82.71 95.75 95.27 82.71 

Golden 5 89.24 70.35 75.20 66.80 70.78 66.80 

Golden 6 110.56 85.06 84.47 109.91 84.67 84.47 

Golden 13 155.19 164.45 158.06 164.60 159.76 155.19 

Golden 14 107.08 104.73 91.92 113.44 101.48 91.92 

Golden 15 235.24 230.89 199.51 199.58 189.28 189.28 

Golden 16 71.17 80.51 72.40 71.06 52.08 52.08 

Golden 17 270.58 254.53 234.89 230.13 169.03 169.03 

Golden 18 287.05 291.16 291.78 284.20 228.42 228.42 

Golden 19 83.86 77.66 71.67 68.95 50.55 50.55 

Golden 20 133.34 138.25 131.45 124.01 81.88 81.88 

Solomon 1 230.9373 177.4821 213.106 213.106 185.1075 177.4821 

Solomon 2 95.27 108.28 82.31 95.27 95.29 82.31 

Solomon 3 217.07 165.85 200.00 200.00 173.17 165.85 

Solomon 4 95.27 108.28 82.31 95.27 95.29 82.31 

Solomon 5 141.66 154.62 155.76 151.14 129.15 129.15 

Solomon 6 104.55 96.33 96.30 96.91 53.71 53.71 

Solomon 7 252.95 222.05 221.22 203.39 185.82 185.82 

Solomon 8 193.43 197.51 186.20 174.54 144.87 144.87 

Solomon 9 263.46 265.86 252.83 241.93 150.88 150.88 

Solomon 10 291.51 273.49 291.35 258.13 164.54 164.54 

Solomon 11 95.34 92.57 79.79 81.06 58.28 58.28 

Solomon 12 146.78 134.62 127.60 115.27 83.75 83.75 

5.4 Analysis of the Results of the Experimental Runs 

The percent deviations from the LB are very high for all of the heuristics we have 

experimented with in this chapter. This is possibly due to the lack of tightness of the 

LB generated in Section 3. The deviation for the best known solutions using the 
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HVRP model suggest that the deviation from the best known solutions is 29.81% on 

average when the CFRS method is used and 21.21% when the genetic algorithm is 

used. 

The problems defined by Golden et al. (1984) have been widely studied and the 

average utilization of the vehicles is more than 90% for the best-known solutions, 

thus algorithms like the ones we have implemented naturally fall behind these 

utilization values as well. Complex moves of series adjacent cities is be required to 

intensify the search mechanisms of the GA and CFRS methods. 

The results of the mutli-agent attempt on the HVRP and our problem has an 

adventage of being implemented on distributed environments like the palm 

computers of the drivers, however the city trade mechanisms need to be improved. 

A very simple implementation suggests that the agents are capable of finding 

solution with deviation  around 20% from the LB for some instances. On the other 

hand on the average the algorithm does not find good solutions. A detailed analysis 

on the performance of the algorithm based on the topology and the cost structure can 

reveal useful information for better implementations of distributed artificial 

intelligence.  
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CHAPTER 6 

 

 

AN APPLICATION OF THE PROPOSED ALGORITHMS  

 

 

A hypothetical firm that faced the problem we have explained in Chapter 1 is 

analyzed in this section. 

The problem of assigning of the bus-stops to the routes and routing are to 

considered, in two different settings. The clustering methods and R values are 

implemented in this chapter, and the GA is implemented both with a random initial 

population and the results of the Renaud and Boctor (2002) method. 

The size of the problem is large, with 92 bus stops among the city. GIS software can 

be employed to generate the distance matrix for a real life application.  

A distribution generated randomly that follows the topology of a real distribution of 

the bus stops is generated to analyze the performance of the solution methods 

proposed. Figure 6.1 demonstrates the distribution of the bus-stops (circles 

representing the bus-stops, squares the plant). The plant is located in a suburb of the 

city. The problem is not cannot be assumed to be clustered, as the borders of the 

suburbs of the city are not very visible on the plot. There are some stops on the road 

that connects the city to the plant. 
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Figure 6. 1 The plot of the bus-stops and production plant ofthe hypothetical firm 

The firm uses two types of busses with capacities of 20 and 40, respectively and the 

fixed cost of the large bus is two times the small bus.  

The bus that leaves the plant is expected to be back at the firm in 75 minutes. The 

speed of the busses is assumed to be 50 km/h for the whole city. No time is allocated 

for passenger pickups, as there is relatively low number of passengers on each bus 

stop. The time to complete the tour is thus converted to km’s to be 62.5 km’s. The 

distance of the farthest point to the firm is about 20 km’s in our graph. 

The number of passengers is about 3-5 on average for the bus stops that are not in 

the city center, while this becomes around 8-10 in the city center. The bus that 

passes through a bus-stop is to pick-up all the passengers waiting on a stop. 

6.1 Results on a Random Problem 

The results on the problem generated for all the solution approaches is given in the 

following table. The LB is calculated using the mathematical model described in the 

second chapter.  The LB calculated is 48000, for the problem. The results for the 

sweep methods is given in table. All of the methods give the same minimum cost as 

55163.13, when R = 3. 
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Table 6. 1 Results of the CFRS algortihm for fort he hypothetical firm 
  0.5 1 1.5 2 2.5 3 

Boctor 54074.83 54191.37 54214.39 54214.39 54214.39 54214.39 

Boctor With Depot 54192.23 54214.39 54214.39 54214.39 54214.39 54214.39 

Ochi With 54074.83 54191.37 54214.39 54214.39 54214.39 54214.39 

Ochi With Depot 54192.23 54214.39 54214.39 54214.39 54214.39 54214.39 

Random 50224.93 50102.21 50178.44 50178.44 50187.08 50246.78 

Random With Depot 62842.93 50187.08 50246.78 50246.78 50246.78 50246.78 

However, the genetic algorithm resulted in 52800.28, when it is initiated randomly, 

and 52615.38, when the initial population is generated using the sweep algorithm 

with the method proposed by Renaud and Boctor (2002), for the minimum of 10 

replications is considered. The clustering when the GA is run initialized with the 

sweep algorithm is done by the Boctor method according to the results of chapter 5. 

However, the results do not change in this case when the random clustering is used. 

The resulting clusters using Random increase of the vehicle capacity, and R as 1 can 

be seen in Figure 6.2. 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
 

Figure 6. 2 The plot of the resulting clusters, then Random method is used with R=1 

The Renaud and Boctor (2002) method is to be improved, and a better user interface 

is to be designed. The current program we have encoded runs on an MS Dos 

environment, and all the inputs are in file forms. A user interface that allows the user 

to specify the distance files can be implemented. 
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The user interface and further improvements can be implemented after the results 

are compared to the currently used plan in a real firm. Although Bramel and Simchi-

Levi (1997) report that the vehicle routing applications usually result in 15-20% 

improvement on the costs, the improvement shall be measured.  
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CHAPTER 7 

 

 
CONCLUSION 

 

 

A model based on the HVRP formulation is analyzed for solving the personnel 

pickup and delivery operations of a firm, in this thesis. The personnel are to be 

collected with buses having different capacities. The aim is to generate good routes 

that do not to exceed the maximum travel time allowed very much, while 

minimizing the total cost of vehicles. The objective function is based on goal 

programming where the weight of lateness is much less than the cost of a vehicle.   

A mathematical model is generated similar to the HVRP model as the basic 

constraints of our model and the HVRP are the same. The mathematical model 

developed could not be in stand alone PCs for problem sizes larger than 10, due to 

memory limitations. 

Lower bounds based on the mathematical model developed are calculated loosening 

the binary variables to integers. Some valid inequalities are used to tighten the lower 

bounds of HVRP model are also used.  

Different heuristics are investigated in order to generate solutions on two different 

problem sets. The first problem set consists of customers that are delivered 

randomly and the second set consists of clustered customers. The performance of 

solution methods in two different settings is also analyzed.  

The first heuristic analyzed is a route-first cluster-second heuristic, where the 

optimum route that passes through all the customers is generated at first, then this 

route is partitioned to smaller routes. The initial route was solved to optimality and a 
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mathematical model is developed for the partitioning. The mathematical model 

developed for partitioning could not be solved due to memory limitations. 

The second heuristic we have implemented is the cluster-first route-second heuristic. 

We have implemented the sweep algorithm with slight modifications. A parameter is 

used to control the radius of the cluster while adding new customers to the current 

cluster.  

The resulting clusters are routed using a genetic algorithm, and the results are 

compared with the lower bounds generated. A detailed analysis is conducted on the 

results of the sweep algorithm. The method used to increase the capacities of the 

vehicles that give the best results is found to be the method proposed by Boctor and 

Renaud (2002) is demonstrated to give the best results. It has been observed that the 

HVRP model give better results when the customers are clustered, on the other hand 

our model gives better results when the customers are delivered randomly. 

A genetic algorithm for HVRP is used as the third heuristic. The genetic algorithm 

uses nearest neighbor heuristic as the crossover operator, and node insertion as the 

mutation operator. The results of the genetic algorithm are better compared to the 

results of the sweep method, and we have demonstrated that the genetic algorithm is 

capable of improving the results of the sweep algorithm 14%.  

The last heuristic we have implemented is a distributed artificial intelligence 

method. To the best of our knowledge this study includes the first attempt to solve 

HVRP instances using a multi-agent system. The results are not comparable to 

problem specific heuristics or the ones presented in this study. However, the 

heuristics used as decision mechanisms in the agents are very simple.  

The demand and vehicle capacities proposed by Golden et al (1984) are used to test 

the performance of the heuristics. The results obtained by the heuristics described 

are poor compared to the results of the studies in the literature. The vehicle 

utilization on the best-known solution of the instances of Golden et al (1984) are 

demonstrated to be very high, thus alternative good solutions are not found very 

easily. All the heuristics explained need to be improved, by some improvement 

mechanisms so that the results they provide become useful.  



 64 

A simple program that can be used to handle the routing tasks, based on the sweep 

and genetic algorithms, is generated for the firm to be able to compare the 

performance of our algorithms with the clustering and routing that is currently used 

by the firm. A randomly generated problem with the size of the real one is 

investigated to demonstrate the results on a similar problem. The implementation 

and comparison of the results is not considered in this study. 

For further research, an improvement mechanism that allows inter-cluster 

movements must be employed, to improve the current results of the heuristics 

described, in order to come up with solutions good enough to complete the ones 

reported in the literature.  

The mathematical formulation of our model can also be investigated in detail to 

come generate tight lower bounds for the problem, and to ease the effort of solution 

of the problem to optimality if possible. 

The sweep algorithm can be improved to include tabu search, to incorporate 

intelligence in generating the cluster structure. Some other clustering methods like 

k-means can be considered to compare the performance of different clustering 

techniques. The sweep algorithms can be extended to consited the rotation of the ray 

in clock-wise to analize the behavior of the clustering in reverse order. 

The power of the genetic algorithm to explore the search space can be increased by 

using different improvement heuristics such that some promising individual are 

generated. A more complicated two stage genetic algorithm that clusters the 

customers first and routes these next can be used to make benefit of the exploitative 

power of the genetic algorithm.  

More intelligent agents need to be considered to improve the results of the multi-

agent approach to the HVRP. The central agent can be improved to solve 

mathematical models to find the best assignment among different vehicle agents in 

each bid. Moreover the vehicle agents can be improved to use more complicated 

bidding mechanisms instead of exaggerating the savings. 
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More runs on random problems are required in order to generalize the behaviour of 

all algorithms. 

The extension of the model to allow the splitting of the demand in busses can also be 

considered to analyze different properties of the model indetail. 
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APPENDIX A 

 
 
 

General Linear Model: DMODEL versus Size; Method; Depot; Weight 
 
 
 
Factor     Type Levels Values  

Size      fixed      4  20  50  75 100 

Method    fixed      3 1 2 3 

Depot     fixed      2 0 1 

Weight    fixed      6 0,5 1,0 1,5 2,0 2,5 3,0 

 

Analysis of Variance for DMODEL, using Adjusted SS for Tests 

 

Source                DF     Seq SS     Adj SS     Adj MS       F      P 

Size                   3   116,2128   116,2128    38,7376  138,17  0,000 

Method                 2    68,2784    68,2784    34,1392  121,77  0,000 

Depot                  1     0,0012     0,0012     0,0012    0,00  0,948 

Weight                 5     0,0071     0,0071     0,0014    0,01  1,000 

Method*Depot           2     0,0005     0,0005     0,0003    0,00  0,999 

Method*Weight         10     0,0128     0,0128     0,0013    0,00  1,000 

Depot*Weight           5     0,0008     0,0008     0,0002    0,00  1,000 

Method*Depot*Weight   10     0,0027     0,0027     0,0003    0,00  1,000 

Error                825   231,2926   231,2926     0,2804 

Total                863   415,8087   
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General Linear Model: DHVVRP versus Size; Method; Depot; Weight 
 
 
Factor     Type Levels Values  

Size      fixed      4  20  50  75 100 

Method    fixed      3 1 2 3 

Depot     fixed      2 0 1 

Weight    fixed      6 0,5 1,0 1,5 2,0 2,5 3,0 

 

Analysis of Variance for DHVVRP, using Adjusted SS for Tests 

 

Source          DF     Seq SS     Adj SS     Adj MS       F      P 

Size             3    77,6217    77,6217    25,8739 1020,76  0,000 

Method           2     1,7038     1,7038     0,8519   33,61  0,000 

Depot            1     0,0069     0,0069     0,0069    0,27  0,602 

Weight           5     0,0080     0,0080     0,0016    0,06  0,997 

Method*Depot     2     0,0037     0,0037     0,0018    0,07  0,930 

Method*Weight   10     0,0296     0,0296     0,0030    0,12  1,000 

Depot*Weight     5     0,0023     0,0023     0,0005    0,02  1,000 

Error          835    21,1654    21,1654     0,0253 

Total          863   100,5413   
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General Linear Model: DMODEL versus Size; Vehicle; ... 

 
 
Factor     Type Levels Values  

Size      fixed      4  20  50  75 100 

Vehicle   fixed      5 2 3 4 5 6 

Cluster   fixed      2 0 1 

Method    fixed      3 1 2 3 

Depot     fixed      2 0 1 

Weight    fixed      6 0,5 1,0 1,5 2,0 2,5 3,0 

 

Analysis of Variance for DMODEL, using Adjusted SS for Tests 

 

Source     DF     Seq SS     Adj SS     Adj MS       F      P 

Size        3    116,213     45,325     15,108  104,57  0,000 

Vehicle     4    104,746     98,662     24,665  170,72  0,000 

Cluster     1      4,191      4,191      4,191   29,01  0,000 

Method      2     68,278     68,278     34,139  236,29  0,000 

Depot       1      0,001      0,001      0,001    0,01  0,927 

Weight      5      0,007      0,007      0,001    0,01  1,000 

Error     847    122,372    122,372      0,144 

Total     863    415,809   
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General Linear Model: DHVVRP versus Size; Vehicle; ... 
 
 
Factor     Type Levels Values  

Size      fixed      4  20  50  75 100 

Vehicle   fixed      4 3 4 5 6 

Cluster   fixed      2 0 1 

Method    fixed      3 1 2 3 

Depot     fixed      2 0 1 

Weight    fixed      6 0,5 1,0 1,5 2,0 2,5 3,0 

 

Analysis of Variance for DHVVRP, using Adjusted SS for Tests 

 

Source            DF     Seq SS     Adj SS     Adj MS       F      P 

Size               3    77,6217     9,5055     3,1685  267,95  0,000 

Vehicle            3     5,3766     4,2993     1,4331  121,19  0,000 

Cluster            1     0,1679     0,0037     0,0037    0,31  0,576 

Method             2     1,7038     0,0539     0,0269    2,28  0,103 

Depot              1     0,0069     0,0007     0,0007    0,06  0,808 

Weight             5     0,0080     0,0034     0,0007    0,06  0,998 

Vehicle*Cluster    3     1,1940     1,1940     0,3980   33,66  0,000 

Vehicle*Method     6     4,9342     4,8899     0,8150   68,92  0,000 

Vehicle*Depot      3     0,0086     0,0086     0,0029    0,24  0,867 

Vehicle*Weight    15     0,0242     0,0249     0,0017    0,14  1,000 

Cluster*Method     2     0,0431     0,0431     0,0216    1,82  0,162 

Cluster*Depot      1     0,0001     0,0001     0,0001    0,01  0,917 

Cluster*Weight     5     0,0041     0,0041     0,0008    0,07  0,997 

Method*Depot       2     0,0037     0,0037     0,0018    0,16  0,856 

Method*Weight     10     0,0296     0,0296     0,0030    0,25  0,991 

Depot*Weight       5     0,0023     0,0023     0,0005    0,04  0,999 

Error            796     9,4127     9,4127     0,0118 

Total            863   100,5413  
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APPENDIX B 

 

 

GAMS Model of LP Relaxation of the Proposed Model 

 

 

SETS 
i customers /0*20/ 
k vehicle /1*3/; 
alias(i,j) 
File gamsout / d:\soln.txt/; 
PARAMETERS 
$batinclude d:\data\datas\t4.txt "Q(k)" "c(k)"; 
$include d:\data\datas\dg4.txt; 
TABLE 
d(i,j)  weight 
$include d:\data\datas\gol4.txt ; 
VARIABLES 
Z; 
POSITIVE VARIABLES 
u(i) 
u(j) 
t(i) 
t(j) 
Lp(i) 
x(i,j,k) 
a(i,k) 
b(i,k); 
 
EQUATIONS 
obj 
c1(i) 
c2(i) 
c3(k) 
c4(i,k) 
c5(i,k) 
c6(i,j) 
c7(i) 
c8(i,j) 
c9(i) 
c10(i) 
c11(i,k) 
c12; 
obj..Z=e=sum((i,k),c(k)*a(i,k))+ sum((i),1.1*Lp(i)); 
c1(i)$(ord(i)>1)..sum((k),a(i,k)+b(i,k))=e=1; 
c2(i)$(ord(i)>1)..u(i)=l=sum((k),Q(k)*(a(i,k)+b(i,k))); 
c3(k)..sum((j)$(ord(j)>1), x("0",j,k))=e=sum((i)$(ord(i)>1),a(i,k)); 
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c4(j,k)$(ord(j)>1)..sum((i), x(i,j,k))=e=a(j,k)+b(j,k); 
c5(i,k)$(ord(i)>1)..sum((j)$(ord(j)>1), x(i,j,k))=e=b(i,k); 
c6(i,j)$((ord(i)>1) and (ord(j)>1) and ord(i) ne ord(j))..u(j) =g= u(i) + qa(j) -   

sum((k),Q(k)*(a(i,k)+b(i,k))) + sum((k), Q(k)*x(i,j,k)); 
c7(i) $(ord(i)>1)..u(i) =g= qa(i) + sum((j,k),qa(j)* x(j,i,k)); 
c8(i,j)$(ord(j)>1).. t(i)+d(i,j)*sum((k),x(i,j,k))-t(j)=l=1000*(1-sum((k),x(i,j,k))); 
c9(i)..t(i)+d(i,"0")=l=50*sum((k),a(i,k))+Lp(i)+1000000*(1-sum((k),(a(i,k)))); 
c10(i).. 10000000*(sum((k),(a(i,k)))) =g= Lp(i); 
c11(i,k)..x(i,i,k)=e=0; 
c12..sum((i,j,k),qa(i)*x(i,j,k))=l=sum((i,k), Q(k)*a(i,k)) 
option iterlim =999999999; 
OPTION ResLim = 21600; 
MODEL tez /ALL/; 
SOLVE tez MINIMIZING z USING MIP; 
put gamsout; 

 

GAMS Model of LP Relaxation of the HVRP Model 

 

SETS 
i customers /0*20/ 
k vehicle /1*3/; 
alias(i,j); 
PARAMETERS 
$batinclude d:\data\datas\t4.txt "Q(k)" "c(k)" "w(k)"; 
$include d:\data\datas\dg4.txt; 
TABLE 
d(i,j)  weight 
$include d:\data\datas\gol4.txt; 
VARIABLES 
Z; 
POSITIVE VARIABLES 
u(i) 
u(j) 
x(i,j,k); 
BINARY VARIABLES 
a(i,k) 
b(i,k); 
EQUATIONS 
obj 
c1(i) 
c2(i) 
c3(k) 
c4(i,k) 
c5(i,k) 
c6(i,j) 
c7(i) 
c14 
c15; 
obj..Z=e=sum((i,k),c(k)*a(i,k)+d(i,'0')*a(i,k))+ sum((i,j,k),w(k)*d(i,j)*x(i,j,k)); 
c1(i)$(ord(i)>1)..sum((k),a(i,k)+b(i,k))=e=1; 
c2(i)$(ord(i)>1)..u(i)=l=sum((k),Q(k)*(a(i,k)+b(i,k))); 
c3(k)..sum((j)$(ord(j)>1), x("0",j,k))=e=sum((i)$(ord(i)>1),a(i,k)); 
c4(j,k)$(ord(j)>1)..sum((i), x(i,j,k))=e=a(j,k)+b(j,k); 
c5(i,k)$(ord(i)>1)..sum((j)$(ord(j)>1), x(i,j,k))=e=b(i,k); 
c6(i,j)$((ord(i)>1) and (ord(j)>1) and ord(i) ne ord(j))..u(j) =g= u(i) + qa(j) -   

sum((k),Q(k)*(a(i,k)+b(i,k))) + sum((k), Q(k)*x(i,j,k)); 
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c7(i) $(ord(i)>1)..u(i) =g= qa(i) + sum((j,k),qa(j)* x(j,i,k)); 
c14..ceil(sum((i),qa(i))/10)=l=sum((i,k)$(ord(i)>1),ceil(Q(k)/10)*a(i,k)); 
c15..sum((i,k),Q(k)*a(i,k))=g=sum((i,k),qa(i)*(a(i,k)+b(i,k))); 
MODEL tez /ALL/; 
SOLVE tez MINIMIZING z USING MIP;
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APPENDIX C 

 

 

SETS 
i customers /0*20/ 
t vehicle type /1*5/ 
k vehicle /1*18/; 
alias(i,j) 
alias(k,m); 
File gamsout /d:\data\res_G_03.txt/; 
PARAMETERS 
$batinclude d:\data\g03.txt "Q(t)" "c(t)" "qa(i)" "co(i)"; 
SCALAR 
H /5/; 
VARIABLES 
Z; 
POSITIVE VARIABLES 
d(i); 
BINARY VARIABLES 
x(i,k) 
y(k,t); 
EQUATIONS 
obj 
c1(i,k) 
c2(k) 
c3(i) 
c5(k) 
c6(k); 
obj..Z=e=sum((t,k),c(t)*y(k,t))+ sum((i),d(i-1)); 
c1(i,k)..(co(i)+co(i-1))* (-1+x(i,k)+sum((m)$((ord(m)>ord(k) or(ord(m)<ord(k)))),x(i-1,m)))=l=d(i-
1); 
c2(k).. sum((t),y(k,t))=l=1; 
c3(i)..sum((k),x(i,k))=e=1; 
c5(k)..(co('0')+co('20'))*(-1+x('0',k)+sum((m)$((ord(m)>ord(k) or(ord(m)<ord(k)))), x('20',m))) =l= 
d('0') ;  
c6(k).. sum((i), qa(i)*x(i,k))=l=sum((t), Q(t)*y(k,t)); 
option iterlim =999999999; 
OPTION ResLim = 172800; 
MODEL tez /ALL/; 
SOLVE tez MINIMIZING z USING MIP; 
put gamsout; 
  scalar col column number /18/ ; 
  loop(k, put @col k.tl; col=col+10;); 
  put /; col=10; 
  loop(i, 
       loop (k, put @col x.l(i,k):10:1, @0 i.tl ; col=col+10; ) ; 
   put / ; col=10 ; 
 ); 
 put /; 
  loop(t, 
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       loop (k, put @col y.l(k,t):10:1, @0 t.tl ; col=col+10; ) ; 
   put / ; col=10 ; 
 );
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APPENDIX D 

 

 

 

The C codes of all CFRS algorithms are provided in the Appendix CD, attached on the back 

cover of the thesis. Sample CFRS algorithm code, where the ochi method is used is given 

below.  

CFRS C code for Ochi Method 

#include<iostream.h> 
#include<iomanip.h> 
#include<stdlib.h> 
#include<time.h> 
#include<fstream> 
#include<math.h> 
#include<string.h> 
#include<time.h> 
void  readdistances(char * filename); 
int sweep(int * liste, double t,int N, char * fname); 
int * sort(int * liste, int N); 
int  demand[3500],capcacity;  
double dist[3500][3500],x[3500],y[3500]; 
int capacity[10],cno,yazdir[3500]; 
double cost[10]; 
char boy [7]; 
int KalanArac[10]; 
double RadiusRatio; 
int uzunluk,bir; 
char * fname; 
int main(int argc, char **argv) 
{ 
 int i,j,k,semp; 
 char dosyadi[20], * num,NofTrucks; 
 fname= new char [20]; 
 int * sortedcities; 
 for(i=0;i<20;i++) 
 dosyadi[i] = argv[1][i]; 
 RadiusRatio=atof(argv[2]); 
 bir=atoi(argv[3]); 
 semp=strlen(dosyadi); 
 fname=strcpy(fname,dosyadi); 
 fname[semp-4]=fname[semp]; 
 FILE *finput; 
 FILE * foutput; 
  
 finput=fopen(dosyadi,"r"); 
 for(i=0;i<10;i++)
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{ 
  capacity[i]=-1; 
 } 
    readdistances(dosyadi); 
 boy[0]='A'; 
 boy[1]='B'; 
 boy[2]='C'; 
 boy[3]='D'; 
 boy[4]='E'; 
 boy[5]='F'; 
 boy[6]='Y'; 
 uzunluk--; 
 sortedcities= new int[uzunluk+1]; 
 sortedcities=sort(sortedcities,uzunluk); 
 if (bir>uzunluk) 
  bir=0; 
  
 NofTrucks=sweep(sortedcities,RadiusRatio,uzunluk,dosyadi); 
 delete sortedcities; 
 return 0; 
} 
  
  
 
 
void  readdistances(char * filename) 
{ 
 double result,hold; 
 int i,j,k; 
 FILE *fread; 
 fread = fopen(filename,"r"); 
 printf("dosyayy actim, %s\n",filename); 
 fscanf(fread,"%d %d",&uzunluk, &cno); 
 for(i=0;i<cno;i++) 
 { 
  fscanf(fread,"%d",&capacity[i]); 
  fscanf(fread,"%lf",&cost[i]); 
  KalanArac[i]=100; 
 } 
 for(i=0;i<uzunluk;i++) 
 { 
  fscanf(fread,"%d %lf %lf\n",&k,&x[i],&y[i]); 
 } 
 for(i=0;i<uzunluk;i++) 
 { 
  fscanf(fread," %d %d\n",&k,&demand[i]); 
 } 
 fclose(fread); 
 for(i=0;i<uzunluk;i++) 
  for(j=0;j<uzunluk;j++) 
  { 
   if(i==j) 
    dist[i][j]=0; 
   else  
   { 
    hold=sqrt(pow((x[i]-x[j]),2) + pow((y[i]-y[j]),2)); 
    if(hold-floor(hold)<0.5) 
     dist[i][j]=floor(hold); 
    else dist[i][j]=floor(hold+1); 
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   } 
  } 
 
} 
 
int * sort(int * liste, int N) 
{ 
 int i,j,k,tut,temp,flag=0; 
 for(i=0;i<=N;i++) 
  liste[i]=0; 
 for(i=1;i<N+1;i++) 
 { 
  if((x[i]-x[0])>0) 
  { 
   tut=i; 
   for(j=0;j<i-1;j++) 
   { 
    if((x[tut]-x[0])>(x[liste[j]]-x[0])) 
    { 
     temp=liste[j]; 
     liste[j]=tut; 
     tut=temp; 
    } 
    if(tut==0) 
    { 
     flag=1; 
     break; 
    } 
   } 
   if(flag==0) 
   liste[j]=tut; 
  } 
  else  
  { 
   tut=i; 
   for(j=N-1;j>N-i;j--) 
   { 
    if((x[tut]-x[0])<=(x[liste[j]]-x[0])) 
    { 
     temp=liste[j]; 
     liste[j]=tut; 
     tut=temp; 
    } 
    if(tut==0) 
    { 
     flag=1; 
     break; 
    } 
   } 
   if(flag==0) 
   liste[j]=tut; 
  } 
  flag=0; 
} 
 for(i=0;i<N;i++) 
  printf("%d ", liste[i]); 
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 return liste; 
} 
 
int sweep(int * liste, double t,int N, char * fname) 
{ 
 int i,j,k, count=0,tount=0,doluluk=0,dlag=0,positives,n=0,semp=0,capp=0,c, buyuk,ilk,cik, 
tapcacity, tapp,z; 
 double temp,dist,radius, centerx,centery,eskix,eskiy, totalcost=0,sayy; 
 bool * check; 
 int * current; 
 char * name ; 
 name=new char [20]; 
 name[0]=NULL; 
 char * tame ; 
 char tut [20]; 
 clock_t start,end; 
 name[0] ='t'; 
 name[1] ='e'; 
 name[2] ='m'; 
 name[3] ='p'; 
 name[4]=NULL; 
 FILE * fent; 
 FILE *fcent; 
 
 
 check=new bool [N+1]; 
 current= new int [N+1]; 
 for(i=0;i<N+1;i++) 
 { 
  check[i]=false; 
  current[i]=-1; 
 } 
 fcent=fopen("route_res.txt","a"); 
 fprintf(fcent,"%lf: %d: %d:",RadiusRatio,cno, bir); 
  if(y[bir]>0) 
  { 
   positives =1; 
  } 
  else positives =0; 
 start=clock(); 
 do 
 { 
  capp=0; 
  capcacity=capacity[capp]; 
  cik=0; 
  if(y[bir]>0) 
  { 
   positives =1; 
  } 
  else positives =0;  
 for(i=bir;((i<N) || (cik<2));i++) 
 { 
  if((i==N)&&(positives==1)) 
  { 
   i=0; 
   positives=0; 
   cik++; 
  } 
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  else if(i==N) 
  { 
   i=0; 
   positives=1; 
   cik++; 
  } 
  if((i==bir) && ((positives==1)&&(y[bir]>0)||(positives==0)&&(y[bir]<0))) 
  { 
   centerx=x[0]; 
   centery=y[0]; 
  } 
  tapcacity=capcacity; 
  tapp=capp; 
  if((demand[liste[i]]+doluluk)>capcacity) 
  { 
   buyuk=-1; 
   ilk=-1; 
   for(c=0;c<cno;c++) 
   { 
    if((demand[liste[i]]+doluluk<capacity[c]) && (buyuk<0)) 
     buyuk=c; 
    if((demand[liste[i]]<capacity[c])&&(ilk<0)) 
     ilk=c; 
    if((ilk>=0)&&(buyuk>=0)) 
     break; 
   } 
   if((ilk>=0)&&(cost[capp]*(capacity[capp]-
doluluk)+cost[ilk]*(capacity[ilk]-demand[liste[i]]))>(cost[buyuk]*(capacity[buyuk]-
demand[liste[i]]+doluluk)) && (buyuk>=0)) 
   { 
    tapcacity=capacity[buyuk]; 
    tapp=buyuk; 
   } 
     
  } 
 
  if((((y[liste[i]]-y[0]>=0) && (positives==1)) || ((y[liste[i]]-y[0]<0) && 
(positives==0))) && (check[liste[i]]==false) && (demand[liste[i]]+doluluk<tapcacity)) 
  { 
   capcacity=tapcacity; 
   capp=tapp; 
   
   temp=sqrt((centerx-x[liste[i]])*(centerx-x[liste[i]])+(centery-
y[liste[i]])*(centery-y[liste[i]])); 
 
   if((dlag==0) || (radius > temp)) 
   {  
    current[tount]=liste[i]; 
    tount++; 
    count++;  
    if(doluluk!=0) 
    { 
     if(tount==1) 
     { 
      centerx=eskix; 
      centery=eskiy; 
     } 
    
 centerx=(centerx*doluluk+x[liste[i]]*demand[liste[i]])/(doluluk+demand[liste[i]]); 
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 centery=(centery*doluluk+y[liste[i]]*demand[liste[i]])/(doluluk+demand[liste[i]]); 
    // centerx=(centerx+x[0])/2; 
    // centery=(centery+y[0])/2; 
    } 
    else  
    { 
     centerx= (centerx + x[liste[i]])/2; 
     eskix = x[liste[i]]; 
     centery=(centery + y[liste[i]])/2; 
     eskiy = y[liste[i]]; 
    } 
   if(tount>0) 
    dlag=1; 
    dist=0; 
    for(j=0;j<tount;j++) 
    { 
     temp=sqrt(pow((centerx-x[current[j]]),2)+pow((centery-
y[current[j]]),2)); 
     if(dist < temp) 
      dist=temp; 
    } 
    doluluk=doluluk+demand[liste[i]]; 
    radius = dist * capacity[cno-1] / doluluk * t; 
 
     
    check[liste[i]]=true; 
   } 
  } 
 } 
  
  if(tount>0) 
 n++; 
 tame=strncat(name,itoa(n,tut,10),100); 
 tame=strncat(tame,".txt",4); 
 printf("%s",tame); 
 if(tount>0) 
 fent=fopen(tame,"w"); 
 semp=strlen(tame); 
 tame[semp-5-int(log10(n))]=tame[semp]; 
 
 while(capacity[capp-1]>doluluk) 
 { 
  capp--; 
 } 
 if(capp<0) 
  capp=0; 
 KalanArac[capp]--; 
 if(KalanArac[capp]<=0) 
 { 
  for(z=0;z+capp<=10;z++) 
  { 
   capacity[capp+z]=capacity[capp+z+1]; 
   cost[capp+z]=cost[capp+z+1]; 
   if(capacity[capp+z]==-1) 
    break; 
  } 
  cno--; 
 } 
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 totalcost=cost[capp]+totalcost; 
 if(tount>0) 
 { 
 printf("\n%d. kamyon",n); 
 fprintf(fent,"%d %d %c %lf %d\n", tount+1, bir, boy[capp], cost[capp], doluluk); 
 fprintf(fent,"0 %lf %lf\n",x[0],y[0]); 
 fprintf(fcent,"0 "); 
  for(i=0;i<N;i++) 
  { 
   if(current[i]==-1) 
    break; 
   printf(" %d (%d)", current[i], demand[current[i]]); 
   fprintf(fent,"%d %lf %lf\n", current[i],x[current[i]],y[current[i]]); 
   fprintf(fcent,"%d ",current[i]); 
   current[i]=-1; 
  } 
 fclose(fent); 
 printf("cost: %lf", cost[capp]); 
 } 
 dlag=0; 
 capp=0; 
 tount=0; 
 doluluk=0; 
 } 
 while(count<N); 
 fent=fopen("temp.txt","w"); 
 fprintf(fcent,":%d: %lf: %lf",n, totalcost,double(clock()-start)/CLOCKS_PER_SEC); 
 fprintf(fcent,"\n"); 
 fprintf(fent,"%d %lf %lf %s %lf %d",n,  double(clock()-
start)/CLOCKS_PER_SEC,totalcost, fname, RadiusRatio, bir  ); 
 fprintf(fent,"\n"); 
 fclose(fent); 
 fclose (fcent); 
 fent=fopen("run_BWD.bat","a"); 
 for(i=0;i<n;i++) 
 { 
  fprintf(fent,"Rotate temp%d.txt\n",i+1); 
 } 
 fprintf(fent,"Summarize \nStartT"); 
 delete check; 
 delete current; 
 return n; 
} 
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APPENDIX E 

 

 

 

The C codes of the genetic algorithm are also provided in the Appendix CD, attached on the 

back cover of the thesis.  

C code of the Generic Algorithm 

#include<iostream.h> 
#include<iomanip.h> 
#include<stdlib.h> 
#include<time.h> 
#include<fstream> 
#include<math.h> 
#include<string.h> 
#include<time.h> 
using std::ifstream; 
#define MODLUS 2147483647 
#define MULT1       24112 
#define MULT2       26143 
struct node{ 
 int plc; 
 struct node *nextnode; 
}; 
struct nodek{ 
 int plc; 
 struct nodek * nextnode; 
 int * parents; 
}; 
struct list { 
 bool chk; 
 struct list *nextl; 
}; 
struct nodelist{ 
 struct node tour; 
 struct nodelist * nexttour; 
}; 
struct llist{ 
 int no; 
 double fitness; 
 struct node * body; 
 struct llist * prev; 
 struct llist * next; 
}; 
typedef struct node nodetype; 
typedef nodetype *nodeptr; 
 
struct node bir; 



 A23 

int k=3,l,cr,shortest; 
void initializecheck ( struct list *k); 
void generate(struct node *bir, int N, bool * bak);  
void readdistances(char * filename); 
double * assignfitness (double * fitnss,struct node * input,int lenght); 
void InitializeStat (struct node * one, struct node * input,int count,double *fitnss,int *parents,int N); 
void selectrand (struct node * one, struct node * input,int count,double *fitnss,int *parents,int N); 
void yazdir(struct node t,int k); 
struct node * createunion(struct node *,int count,int N, struct node * liste); 
struct node * writetolist (struct node *liste,int count,int previous,int first); 
void deletelist (struct nodelist * liste); 
void listesil (struct node * girilen, int N); 
void deleteind (struct node * liste); 
int fcheck (bool *r,int yer,int k); 
float lcgrand(int stream); 
void  lcgrandst(long zset, int stream); 
long  lcgrandgt(int stream); 
struct node * ReplaceWParentNoList(struct node *pop,double *fitness,int N, struct node *children, 
double *childrenfitness, int chil, int * parentlist, int parentno,int k); 
double  MutateRandomOrt(struct node * individual, int derinlik, int N,double fitness); 
struct node * seneratechildren (struct node * child,struct node * liste, int num,int N,bool * check); 
struct llist * llrank (struct llist * rankl,double * fitness, int N,struct node * pop); 
int *  ranking(double *fitness, int * rank, int N); 
struct node * ReplaceHalfParents(struct node *pop, double *fitness, int N, struct node *children, 
double *childrenfitness, int chil, int * parentlist, int parentno,int k, int *parentrank, int * 
childrenrank); 
struct node * ReplaceAtLeastHalfParents(struct node *pop, double *fitness, int N, struct node 
*children, double *childrenfitness, int chil, int * parentlist, int parentno,int k, int *parentrank, int * 
childrenrank); 
struct nodek * WriteToJList (struct nodek *liste,int parents, int count, int previous, int first); 
struct nodek * CreateJUnion(struct node * child, int count,int N, struct nodek * liste); 
struct node * GenerateJapaneseChildren (struct node * child, struct nodek * liste, int num,int N, int 
parents,bool * check); 
struct node * GenerateSJapaneseChildren (struct node * child, struct nodek * liste, int num,int N, int 
parents,bool * check); 
void assigne2(struct node * poop,struct node * chiil); 
void edgebul(struct node * population, double * fintess, int N, int nodes, char * name); 
void fenerate(struct node *bir, int N, bool * bak); 
int kapasitele (int cap, int usage, int demand, int no); 
int hop=0; 
int repyap=0; 
int longmutyap=0; 
int randmutyap=0; 
int longmutdene=0; 
int randmutdene=0; 
int capacity; 
 
int randomseed=1; 
int cggit=0,tccgit[3500]; 
 
double yol=50; 
double dist[3500][3500]; 
int ortak[3500][3500];  
int Ortakilk[3500]; 
int Ortakson[3500]; 
int demand[3500]; 
 FILE * froute; 
double prob[3500]; 
double avginit; 
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double VCost[10]; 
double Vwei[10]; 
int VCapacity[10]; 
int VNo[10]; 
double x[3500],y[3500]; 
int uzunluk, cno; 
int seed; 
char filew[20]; 
char filen[20]; 
double usunluk; 
int onceki,usage; 
char Vtipi[10]; 
 
int main(int argc, char **argv) 
{ 
 int i,j,chil,de, 
t,N,iterations,shortest,nodeci,termin,counter=1,bestcount=0,bestfind=0,sounter=0,mut1=0,mut2=0,du
r=1,ilk; 
 int repno; 
  
 bool terminate = false; 
 char filename[20]; 
 char fsol[20];  
 char rfilename[20]="resa"; 
 char ek2[20]="m2a"; 
 char ek4[20]="m4a"; 
 char ek6[20]="m6a"; 
 char ek8[20]="m8a"; 
 char *nodenumber; 
 FILE *fout; 
 FILE *finput; 
 FILE *foutput; 
 FILE *frun2; 
 FILE *frun4; 
 FILE *frun6; 
 FILE *frun8; 
 int * parentlist; 
 double *fitnss, *childrenfitnss, *hildrenfitnss,  * pitness, 
mini,previousbest,etha,duration,worstinit=0,bestinit=0, deneme[3500],mutolasilik; 
 int * ranked, *pranke, *cranke; 
 bool * checker; 
 struct node *iki; 
 struct node *yaz; 
 struct node * parents; 
 struct node * children; 
 struct node * uniongraph; 
 struct nodek * kuniongraph; 
 struct node * pop; 
 struct node * sonucsirali; 
 long double cpu_time_used; 
 clock_t start,end; 
 finput=fopen("input.txt","r"); 
 Vtipi[0]='A'; 
 Vtipi[1]='B'; 
 Vtipi[2]='C'; 
 Vtipi[3]='D'; 
 Vtipi[4]='E'; 
 Vtipi[5]='F'; 
 Vtipi[6]='G'; 
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 Vtipi[7]='H'; 
 Vtipi[8]='Y'; 
 seed=atoi(argv[5]); 
 randomseed=1; 
 do 
 { 
  etha=1; 
  termin=1; 
  iterations =10000; 
 for(i=0;i<20;i++) 
 filename[i] = argv[1][i]; 
 for(i=0;i<20;i++) 
 fsol[i] = argv[2][i]; 
  for(i=0;i<20;i++) 
 filew[i] = argv[3][i]; 
   for(i=0;i<20;i++) 
 filen[i] = argv[4][i]; 
 
 rfilename[0]='m'; 
 rfilename[1]='e'; 
 rfilename[2]='s'; 
 rfilename[3]='a'; 
 rfilename[4]=NULL; 
 strcat(rfilename,filename); 
 strcat(ek2,filename); 
 strcat(ek4,filename); 
 strcat(ek6,filename); 
 strcat(ek8,filename); 
 
 foutput=fopen(rfilename,"a"); 
 k=nodeci; 
 k++; 
 nodeci++; 
 for(i=0;i<10;i++) 
 { 
  Vwei[i]=1000; 
  VNo[i]=100; 
 } 
 
 readdistances(filename); 
  
 k=uzunluk; 
  N=k; 
 do 
 { 
 cr=2; 
 if(cr>N) 
  printf("Number of parents cannot be higher than the population!\n"); 
 }while(cr>N); 
 
 chil=1; 
 capacity = VCapacity[0];  
 pop = new struct node[N+1]; 
 parents=new struct node[cr+1]; 
 ranked=new int[N]; 
 childrenfitnss=new double[chil+1]; 
 hildrenfitnss=new double[chil+1]; 
 parentlist=new int[cr+1];  
 children = new struct node[chil+1]; 
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 checker = new bool [k+3]; 
 uniongraph=new struct node [k]; 
 kuniongraph = new struct nodek [k]; 
 fitnss=new double[N+3];  
 
 pranke=new int [cr+1]; 
 cranke=new int [chil+1]; 
 pitness=new double [cr+1]; 
 t=123; 
 for(i=0;i<cr;i++) 
  parentlist[i]=0; 
 foutput=fopen(rfilename,"a"); 
 if(randomseed==1) 
 { 
 fclose(foutput); 
 } 
 for(repno=1;repno<=dur;repno++) 
 { 
  longmutyap=0; 
  randmutyap=0; 
  longmutdene=0; 
  randmutdene=0; 
  counter=0; 
  bestcount=0; 
  terminate=false; 
 lcgrandst(seed, randomseed); 
 froute=fopen(fsol,"r"); 
 for(i=0;i<N;i++) 
 { 
  generate(&pop[i],k,checker); 
 } 
 fclose(froute); 
 repyap=0; 
 cggit=0; 
 uniongraph = createunion(parents,0,k, uniongraph); 
 if(uzunluk>20) 
 { 
  yol=100; 
 } 
 fitnss=assignfitness(fitnss,pop,N); 
 previousbest=fitnss[N+1]; 
 InitializeStat(parents, pop,cr-1,fitnss,parentlist,N); 
 start=clock(); 
 printf("\nTUR %d\n",repno); 
 while(!terminate) 
 { 
  counter++; 
   
  previousbest=fitnss[N+1]; 
  selectrand(parents, pop,cr-1,fitnss,parentlist,N); 
   if(counter==1) 
  { 
   avginit=fitnss[N]; 
   bestinit=fitnss[N+1]; 
   worstinit=fitnss[N+2]; 
  } 
   
  for(i=0;i<cr;i++) 
  { 
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   parents[i].plc=pop[parentlist[i]].plc; 
   parents[i].nextnode=pop[parentlist[i]].nextnode; 
   pitness[i]=fitnss[parentlist[i]]; 
 
  } 
  pranke=ranking(pitness,pranke,cr); 
  if(counter>10000) 
  { 
   printf("DUR"); 
   hop=1; 
  } 
  uniongraph = createunion(parents,cr,k, uniongraph); 
  if(counter>10000) 
   listeyaz(uniongraph,k); 
    if(counter==1) 
     children=seneratechildren(children,uniongraph,chil,k,checker); 
    else 
    { 
     if(counter>10000) 
     { 
      printf("parentlar\n");  
  for(de=0;de<cr;de++) 
  { 
   printf("%lf ",parents[de]); 
   yazdir(parents[de],k); 
     } 
     listeyaz(uniongraph,k); 
     } 
 
  children = generatechildren(children,uniongraph,chil,k,checker); 
    } 
 
 
  if(hop==1) 
  { 
    printf("childrenlar\n");  
  for(de=0;de<chil;de++) 
  { 
   printf("%lf ",childrenfitnss[de]); 
   yazdir(children[de],k); 
  } 
  } 
  childrenfitnss=assignfitness(childrenfitnss,children,chil); 
  cranke=ranking(childrenfitnss,cranke,chil); 
 for(i=0;i<chil;i++) 
  
 childrenfitnss[cranke[i]]=MutateRandomOrt(&children[cranke[i]],1,k,childrenfitnss[cranke[
i]]); 
   
  childrenfitnss=assignfitness(childrenfitnss,children,chil); 
 if(childrenfitnss[0]==245)   
 childrenfitnss=assignfitness(childrenfitnss,children,chil); 
   
 pop=ReplaceWParentNoList(pop,fitnss,N,children,childrenfitnss,chil,parentlist,cr,k); 
 
  if(previousbest==fitnss[N+1]) 
   bestcount++; 
  else 
  { 
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   sounter=bestcount; 
   bestcount=0; 
   bestfind=counter; 
  } 
  
  
  listesil(uniongraph,k); 
  end=clock(); 
  duration=(end-start)/CLOCKS_PER_SEC; 
  if((termin==1)&&(counter>=iterations)) 
   terminate=true; 
  if((termin==2)&&(fitnss[N]==fitnss[N+1])) 
   terminate=true; 
  if((termin==3)&&(bestcount>=iterations)) 
   terminate=true; 
  if((termin==4)&&((counter>=10000)||(fabs(fitnss[N+1]-
fitnss[N])<0.005)||(bestcount>=1000))) 
   terminate=true; 
 
  else  
  { 
    
   if(duration>3600) 
   { 
    terminate=true; 
    printf("SURE BITTI"); 
    foutput=fopen(rfilename,"a"); 
    fprintf(foutput,"SURE BITTI"); 
    fclose(foutput); 
   } 
  } 
 
 } printf("bestcount %d , count %d",bestcount,counter); 
  foutput=fopen(rfilename,"a"); 
  fprintf(foutput," %s, %d, %d,  %.2lf, %.2lf, %d, %d, %.4lf, %4lf, %4lf, %.4lf, 
%.4lf, %.4lf, %d, %d, %d, %d, %d, %d, %d\n ", 
      filename,cr,chil, etha, 
duration,counter,sounter,bestinit,avginit,worstinit,fitnss[N+1],fitnss[N],fitnss[N+2], repyap, bestfind, 
cggit,longmutdene, longmutyap, randmutdene,  randmutyap); 
  fclose(foutput); 
  
  printf("\n At time %lf, best is %lf, average is %lf, worst is %lf\n 
",duration,fitnss[N+1],fitnss[N],fitnss[N+2]); 
   
 mini = fitnss[1]; 
  shortest=1; 
  for(i=1;i<N;i++) 
  { 
   if(fitnss[i]<mini)  
   { 
    shortest=i; 
    mini=fitnss[shortest]; 
   } 
  } 
  printf("The shortest individual is %d with lenght %lf\n", shortest,mini); 
  sonucsirali=&pop[shortest]; 
  frun2=fopen("Best_GA.txt","a"); 
  printf("Best\n"); 
  usunluk=0; 
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  ilk =0; 
  onceki=0; 
  for(i=1;ilk<uzunluk;i++) 
  { 
   printf("%d ",sonucsirali->plc); 
   fprintf(frun2,"%d ",sonucsirali->plc); 
   sonucsirali=sonucsirali->nextnode; 
    
   usage=usage+demand[sonucsirali->plc]; 
   usunluk=usunluk+dist[onceki][sonucsirali->plc]; 
   onceki=sonucsirali->plc; 
   if(sonucsirali->plc==0) 
   { 
    for(j=0;j<cno;j++) 
     if(VCapacity[j]>usage) 
      break; 
     printf("\n Cost %lf, usage %d\n",VCost[j], usage); 
     fprintf(frun2,": %d : %c :", usage,Vtipi[j]); 
     usage=0; 
   } 
   else 
    ilk++; 
  } 
  printf("%lf",usunluk); 
  printf("-1 "); 
  fprintf(frun2,"\n"); 
  fclose(frun2); 
  for(i=0;i<N;i++) 
  { 
   deleteind(&pop[i]); 
  } 
} 
 printf("heyyeok"); 
 randomseed--; 
 
 }while(randomseed>0); 
 fclose(foutput); 
 return 0; 
 
} 
 
 
 
void generate(struct node *bir, int N, bool * bak) 
{ 
 struct node *sonraki,*emanet; 
 int i,j; 
 struct node *iki; 
 int doluluk=0; 
 for(i=0;i<N;i++) 
  bak[i]=false; 
 double num; 
 sonraki=(struct node *)malloc(sizeof(node)); 
 bir->nextnode = sonraki; 
 bir->plc = 0; 
 capacity=VCapacity[0]; 
 for(i=0;i<N-1;i++) 
 { 
  sonraki->plc=fcheck(bak,i,N-1); 
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  if(doluluk+demand[sonraki->plc]>capacity) 
   capacity=VCapacity[kapasitele(capacity, doluluk+demand[sonraki-
>plc],demand[sonraki->plc],0)]; 
  if(doluluk+demand[sonraki->plc]>capacity) 
  { 
   doluluk=0; 
   iki=(struct node*)malloc(sizeof(node)); 
   iki->plc=sonraki->plc; 
   sonraki->plc=0; 
   sonraki->nextnode=iki; 
  // i--; 
   sonraki=iki; 
   doluluk=doluluk+demand[iki->plc]; 
  } 
  else 
   doluluk=doluluk+demand[sonraki->plc]; 
 
  if(i==k-2) break; 
  emanet=(struct node*)malloc(sizeof(node)); 
  sonraki->nextnode=emanet; 
  sonraki=emanet; 
    
 } 
 sonraki->nextnode=bir; 
} 
 
void fenerate(struct node *bir, int N, bool * bak) 
{ 
 struct node *sonraki,*emanet; 
 int i,j,ikinokta=0,nod; 
 struct node *iki; 
 char bos, * say; 
 int doluluk=0; 
 double num; 
 say=new char [20]; 
 sonraki=(struct node *)malloc(sizeof(node)); 
 bir->nextnode = sonraki; 
 capacity=VCapacity[0]; 
 for(i=0;i<6*N-1;i++) 
 { 
  if(i==0) 
   bir->plc=nod; 
  else 
  sonraki->plc=nod; 
  fscanf(froute,"%d",&nod); 
  if(nod<0) 
   break; 
  if(i!=0) 
  { 
  emanet=(struct node*)malloc(sizeof(node)); 
  sonraki->nextnode=emanet; 
  sonraki=emanet; 
  } 
    
 } 
 sonraki->nextnode=bir; 
} 
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int fcheck (bool *r,int yer,int k) // this fuunction uses a boolean list, too keep and check if the node 
was previously visited, if visited the value is made true and this node is not assigned any mode 
{ 
 int i,count=0,j=0,sayi,tut; 
 bool search=false; 
 
 do 
 { 
 
  tut=float(lcgrand(randomseed)*(k-yer)); 
  sayi = tut+1; 
 
  for(i=0;i<=k;i++) 
  { 
   if(r[i]==false) count++; 
    
   if (count==sayi)  
   { 
    r[i]=true; 
    j=i; 
    search=true; 
    break; 
   } 
  } 
 
 }while (search==false); 
 
 return j+1; 
  
} 
 
void readdistances(char * filename) 
{ 
 double result,hold; 
 int i,j,k,max; 
 FILE *fread; 
 FILE *fnum; 
 FILE *fwei; 
 fread = fopen(filename,"r"); 
 printf("dosyayy actim, %s\n",filename); 
 fscanf(fread,"%d %d",&uzunluk, &cno); 
 
 if(uzunluk>30) 
 { 
  fnum=fopen(filen,"r"); 
  fwei=fopen(filew,"r"); 
  fscanf(fwei,"%d",&max); 
 } 
 for(i=0;i<cno;i++) 
 { 
  fscanf(fread,"%d",&VCapacity[i]); 
  fscanf(fread,"%lf",&VCost[i]); 
  if((uzunluk>30)&&(i<max)) 
  { 
   fscanf(fnum,"%d",&VNo[i]); 
   fscanf(fwei,"%lf",&Vwei[i]); 
  } 
  else 
  { 
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   VNo[i]=100; 
   Vwei[i]=1; 
  } 
    
 } 
 for(i=0;i<uzunluk;i++) 
 { 
  fscanf(fread,"%d %lf %lf\n",&k,&x[i],&y[i]); 
 } 
 for(i=0;i<uzunluk;i++) 
 { 
  fscanf(fread," %d %d\n",&k,&demand[i]); 
 } 
 fclose(fread); 
 for(i=0;i<uzunluk;i++) 
  for(j=0;j<uzunluk;j++) 
  { 
   if(i==j) 
    dist[i][j]=0; 
   else  
   { 
    hold=sqrt(pow((x[i]-x[j]),2) + pow((y[i]-y[j]),2)); 
    if(hold*1000000-floor(hold*1000000)<0.5) 
     dist[i][j]=floor(hold*1000000)/1000000; 
    else dist[i][j]=floor((hold+1)*1000000)/1000000; 
 
 
   } 
  } 
} 
 
void  leaddistances(char * filename, int N) 
{ 
 double x[3500],y[3500],result,hold; 
 int i,j,k; 
 FILE *fread; 
 fread = fopen(filename,"r"); 
 printf("dosyayı actim, %s\n",filename); 
 for(i=0;i<N;i++) 
 { 
  fscanf(fread," %d %lf %lf %d\n",&k,&x[i],&y[i],&demand[i]); 
  printf("%d %lf %lf %d \n",i,x[i],y[i], demand[i]); 
 } 
 fclose(fread); 
 for(i=0;i<N;i++) 
  for(j=0;j<N;j++) 
  { 
   if(i==j) 
    dist[i][j]=0; 
   else  
   { 
    hold=sqrt(pow((x[i]-x[j]),2) + pow((y[i]-y[j]),2)); 
    if(hold-floor(hold)<0.5) 
     dist[i][j]=floor(hold); 
    else dist[i][j]=floor(hold+1); 
 
 
   } 
  } 
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} 
 
double * assignfitness (double * fitnss, struct node * input,int length)  
{ 
 int first=NULL,previous=-1,current=0, usage=0, il,im, Hno[10]; 
 struct node * hold,*told; 
 int i,j; 
 double sum=0,tum; 
 tum=0; 
 hold=input[0].nextnode; 
 first=hold->plc; 
 hold=hold->nextnode; 
 for(i=0;i<cno;i++) 
 { 
  Hno[i]=0; 
 } 
  
 for(i=0;i<uzunluk*2;i++) 
  if((hold->plc!=0)) 
  { 
   hold=hold->nextnode; 
  } 
  else  
  { 
   if (hold->nextnode->plc!=0) 
 
   break; 
  } 
  
 
 hold=hold->nextnode; 
 first=hold->plc; 
 previous=first; 
 hold=hold->nextnode; 
 usage=demand[first]; 
 sum=sum+dist[0][previous]; 
 for(i=1;i<length+1;i++) 
 { 
  do 
  { 
    
   sum = sum + dist[hold->plc][previous]; 
   previous=hold->plc; 
   hold=hold->nextnode; 
    
   if (previous==0) 
   { 
     for(il=0;il<cno;il++) 
      { 
       if(VCapacity[il]>=usage) 
       break; 
      } 
      if(Hno[il]<VNo[il]) 
      { 
       Hno[il]++; 
        
       tum=tum+Vwei[il]*sum+ VCost[il]; 
       sum=0; 



 A34 

        
      } 
      else if (uzunluk>30) 
       tum=tum+sum*100+1000000; 
   } 
   if(previous==0) 
   { 
    usage=0; 
   } 
   else 
    usage=usage+demand[previous]; 
  
 
  }while(hold->plc != first); 
 
   fitnss[i-1]=tum; 
   sum=0; 
   tum=0; 
   if(i==length) 
    break; 
   hold=input[i].nextnode; 
  for(im=0;im<uzunluk*2;im++) 
  if((hold->plc!=0)) 
  { 
   hold=hold->nextnode; 
  } 
  else  
  { 
   if (hold->nextnode->plc!=0) 
 
   break; 
  } 
 
    
    
 hold=hold->nextnode; 
 first=hold->plc; 
 for(il=0;il<cno;il++) 
 { 
  Hno[il]=0; 
 } 
  
 for(il=0;il<length+1;il++) 
  if(hold->plc!=0) 
   hold=hold->nextnode; 
  else break; 
  
 
 hold=hold->nextnode; 
 first=hold->plc; 
 previous=first; 
 hold=hold->nextnode; 
 usage=demand[first]; 
 sum=sum+dist[first][previous]; 
 
 } 
 return fitnss; 
} 
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void InitializeStat(struct node * one, struct node * input,int count,double *fitnss,int * parents,int N) 
{ 
 int i,j; 
 double mini,maxi; 
 double average=0; 
 struct node hold; 
 mini = fitnss[0]; 
 maxi = fitnss[0]; 
 j=0; 
 for(i=1;i<N;i++) 
 { 
  if(fitnss[i]<mini)  
  { 
   j=i; 
   mini=fitnss[j]; 
  } 
  average=average+fitnss[i]; 
  if(fitnss[i]>maxi)  
  { 
   j=i; 
   maxi=fitnss[j]; 
  } 
   
  
 } 
 fitnss[N+1]=mini; 
 fitnss[N+2]=maxi; 
 fitnss[N]=average/double(N-1); 
 
} 
void selectrand(struct node * one, struct node * input,int count,double *fitnss,int * parents,int N) 
{ 
 int i,j,m; 
 
 struct node hold; 
 for(i=0;i<=count;i++) 
 { 
  j=float(lcgrand(randomseed)*(N-i)); 
   
  for(m=0;m<i;m++) 
   if(j>=parents[m]) j++; 
  parents[i]=j; 
  one[i]=input[j]; 
 } 
} 
 
struct node * createunion(struct node * child, int count,int N, struct node * liste) 
{ 
 int i,j,veryfist,previous,first; 
 struct node *hold; 
 for(i=0;i<N;i++) 
 { 
  liste[i].plc=-1; 
  liste[i].nextnode=NULL; 
 } 
 for(i=0;i<count;i++) 
 { 
  previous=child[i].nextnode->plc; 
  veryfist=child[i].nextnode->plc; 
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  hold=&child[i]; 
  hold=hold->nextnode; 
  do 
  { 
   hold=hold->nextnode; 
   first=hold->plc; 
   if(first!=previous) 
   liste=writetolist(liste,count,previous+1,first+1); 
   if(hop==1) 
   { 
    printf(" %d %d %d\n",count,previous,first); 
   } 
   previous=first; 
  }while(veryfist!=previous); 
 } 
 return liste; 
} 
 
struct node * writetolist (struct node *liste, int count, int previous, int first) 
{ 
 int i,j,temp=-1,one,other; 
 bool flag =false; 
 struct node *hold,*sonraki; 
 one=previous-1; 
 other=first-1; 
  
 for(i=0;i<2;i++) 
 {  
 
  hold=&liste[one]; 
  while (!flag){ 
  if((hold->nextnode==NULL) && (hold->plc==-1)) 
  { 
    liste[one].plc=other; 
    liste[one].nextnode=NULL; 
    flag = true; 
  } 
  else 
  { 
   if(hold->nextnode==NULL) 
   { 
    if(hold->plc==other) break; 
    if(dist[one][hold->plc]>dist[one][other]) 
    { 
     temp=hold->plc; 
     hold->plc=other; 
     other=temp; 
    } 
     
    sonraki=(struct node *)malloc(sizeof(node)); 
    hold->nextnode=sonraki; 
    sonraki->plc=other; 
    sonraki->nextnode=NULL; 
    flag=true; 
   } 
   else 
   { 
    temp=hold->plc; 
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    if(temp==other) break; 
    if(dist[one][temp]>dist[one][other]) 
    { 
     sonraki=(struct node *)malloc(sizeof(node)); 
     sonraki->plc=hold->plc; 
     hold->plc=other; 
     sonraki->nextnode=hold->nextnode; 
     hold->nextnode=sonraki; 
     flag=true; 
    }hold=hold->nextnode; 
   } 
  }} 
  one=first-1; 
  other=previous-1; 
  hold=&liste[one]; 
  flag=false; 
 } 
 return liste; 
} 
 
struct node * seneratechildren (struct node * child,struct node * liste, int num,int N,bool * check) 
{ 
 int i,j,mi,t,veryfirst,count, o,hasan; 
// tccgit=0; 
 bool flag=false,change=false; 
 //bool * check; 
 double min,hold; 
 struct node * me, *temp,*zonk,*init; 
 int doluluk=0,hlag,old; 
// check = new bool[N+2]; 
 capacity=VCapacity[0]; 
 for(t=0;t<num;t++) 
 {  
  tccgit[t]=0; 
  flag=false; 
  check[0]=false; 
  for(i=1;i<N+1;i++) 
  check[i]=false; 
   
  me=&child[t]; 
  init=me; 
  if(t==0) 
  me->plc=0; 
  else 
   me->plc=hasan; 
  min=0; 
  count=0; 
  hold=0; 
  zonk=&liste[me->plc]; 
  doluluk=doluluk+demand[me->plc]; 
  
   while(count<N-1) 
  { 
   hold=0; 
   hlag=1; 
   
    if(doluluk+demand[zonk->plc]>capacity) 
   capacity=VCapacity[kapasitele(capacity, doluluk+demand[zonk-
>plc],demand[zonk->plc],lcgrand(randomseed)*3)]; 
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   if((check[zonk->plc] == false) && (doluluk+demand[zonk-
>plc]<=capacity)&&(zonk->plc!=old)) 
   { 
 
    temp=(struct node*)malloc(sizeof(struct node)); 
    temp->plc=zonk->plc; 
    temp->nextnode=NULL; 
    me->nextnode=temp; 
    old=me->plc; 
     
    me=me->nextnode; 
    if ( me->plc ==0)  
    { 
     doluluk=0; 
    } 
    else 
     count=count+1; 
    zonk=&liste[me->plc]; 
    if(me->plc!=0) 
    check[me->plc]=true; 
    change=true; 
     
    doluluk= demand[me->plc]+doluluk; 
 
     
   } 
   else 
   { 
 
    if (zonk->nextnode==NULL) 
    { 
     flag = true; 
      
 
      
    } 
    else 
    { 
    zonk=zonk->nextnode; 
    } 
   } 
   if(flag==true) 
   { 
    j=0; 
    for(i=0;i<N;i++) 
    { 
    if((check[i]==false) && (doluluk+demand[i]<capacity) && (me-
>plc!=i))   
     { 
      hlag=0;     
  
      if(hold==0) 
      { 
       j=i; 
       hold = dist[me->plc][i]; 
       min=hold; 
       tccgit[t]++; 
      } 
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      hold = dist[me->plc][i]; 
       
      if((min>hold) && (hold!=0))  
      { 
       j=i; 
       min=hold; 
       tccgit[t]++; 
      } 
     } 
     else hlag*1; 
     
    } 
    hold=0; 
    temp=(struct node*)malloc(sizeof(struct node)); 
     temp->plc=j; 
     temp->nextnode=NULL; 
     me->nextnode=temp; 
      
     me=me->nextnode; 
     if(j==0)  
     { 
  
      doluluk=0; 
     } 
     else 
      count=count+1;     
     zonk=&liste[me->plc]; 
     check[me->plc]=true; 
      
     doluluk=doluluk+demand[j]; 
     j=0; 
     flag=false; 
      
   } 
   if((((hlag==0) && (flag==1))|| (doluluk==capacity))&& (count!=N-1)) 
   { 
    temp=(struct node*)malloc(sizeof(struct node)); 
    temp->plc=0; 
    temp->nextnode=NULL; 
    me->nextnode=temp; 
    me=me->nextnode; 
    zonk=&liste[me->plc]; 
    doluluk=0; 
     
   } 
    
 } 
   hasan=me->plc; 
  me->nextnode=&child[t]; 
 
 } 
  return child; 
} 
 
struct node * ReplaceWParentNoList(struct node *pop,double *fitness,int N, struct node *children, 
double *childrenfitness, int chil, int * parentlist, int parentno,int k) 
{ 
 int i,j,m,c,flag; 
 double min,pax,old; 
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 struct node * yoket, *temp; 
 struct llist  *rank, * ara; 
 min=childrenfitness[0]; 
 j=0; 
 for(i=1;i<chil;i++) 
 { 
  if(min>childrenfitness[i]) 
  { min=childrenfitness[i]; 
   j=i;} 
 } 
  
 pax=fitness[parentlist[0]]; 
 c=parentlist[0]; 
 for(i=1;i<parentno;i++) 
 { 
   
  if(pax<fitness[parentlist[i]]) 
  {  
   pax=fitness[parentlist[i]]; 
   c=parentlist[i]; 
  } 
 } 
 old=fitness[c]; 
 if(pax>min) 
 { 
  fitness[c]=min; 
  assigne2(&pop[c],&children[j]); 
  repyap++; 
  cggit=tccgit[j]+cggit; 
  temp=&children[j]; 
 if(fitness[c]<fitness[N+1]) 
  fitness[N+1] = fitness[c]; 
 fitness[N]=fitness[N]+fitness[c]/N-old/N; 
 if(fitness[N+2]==old) 
 { 
  fitness[N+2]=fitness[0]; 
  for(i=1;i<N;i++) 
   if(fitness[N+2]<fitness[i]) 
   { 
    fitness[N+2]=fitness[i]; 
   } 
 } 
 return pop; 
} 
 
 
void deleteind (struct node * liste) 
{ 
 int i,j=0,first; 
 struct node *uur,*rafet; 
 if(liste->nextnode==NULL || liste->plc==0) return; 
 first=liste->plc; 
 rafet=liste; 
 uur=rafet->nextnode; 
 while(rafet->nextnode->plc!=first) 
 { 
  rafet=rafet->nextnode; 
 } 
 rafet->nextnode=NULL; 
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 rafet=liste; 
  
 while(rafet!=NULL) 
 {  
  j++; 
  uur=rafet; 
  rafet=rafet->nextnode; 
  uur->nextnode=NULL; 
  if(j>1) 
  { 
   free(uur); 
  } 
 } 
 free(rafet); 
  
 liste->nextnode=NULL; 
 liste->plc=0; 
 
} 
void listesil (struct node * girilen, int N) 
{ 
 int i,j=0; 
 struct node * huhu, *tut; 
 for(i=0;i<N;i++) 
 {  
  huhu=&girilen[i]; 
  j=0; 
  while (1) 
  { 
   j++; 
   tut=huhu; 
   if(huhu==NULL) 
   { 
    break; 
   } 
   else  
   { 
    huhu = huhu->nextnode; 
    if(j>1) 
    free(tut); 
    tut=NULL; 
   } 
  } 
 } 
} 
 
struct node assigne(struct node * poop,struct node * chiil) 
{ 
 int i,j,t,first,count=0; 
 struct node * temp,fist,*hold; 
 first=chiil->plc; 
 hold=poop; 
 fist.plc=chiil->plc; 
 chiil=chiil->nextnode; 
 poop->plc=chiil->plc; 
 poop->nextnode=NULL; 
 chiil=chiil->nextnode; 
 do 
 { 
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  count++; 
  temp=(struct node*)malloc(sizeof(struct node)); 
  temp->plc=chiil->plc; 
  temp->nextnode=NULL; 
  if (count==1) 
  fist.nextnode=poop; 
  poop->nextnode=temp; 
  poop=poop->nextnode; 
  chiil=chiil->nextnode; 
 }while(chiil->plc!=first); 
 poop->nextnode=hold; 
 return fist; 
} 
 
static long zrng[] = 
{         1, 
 1973272912, 281629770,  20006270,1280689831,2096730329,1933576050, 
  913566091, 246780520,1363774876, 604901985,1511192140,1259851944, 
  824064364, 150493284, 242708531,  75253171,1964472944,1202299975, 
  233217322,1911216000, 726370533, 403498145, 993232223,1103205531, 
  762430696,1922803170,1385516923,  76271663, 413682397, 726466604, 
  336157058,1432650381,1120463904, 595778810, 877722890,1046574445, 
   68911991,2088367019, 748545416, 622401386,2122378830, 640690903, 
 1774806513,2132545692,2079249579,  78130110, 852776735,1187867272, 
 1351423507,1645973084,1997049139, 922510944,2045512870, 898585771, 
  243649545,1004818771, 773686062, 403188473, 372279877,1901633463, 
  498067494,2087759558, 493157915, 597104727,1530940798,1814496276, 
  536444882,1663153658, 855503735,  67784357,1432404475, 619691088, 
  119025595, 880802310, 176192644,1116780070, 277854671,1366580350, 
 1142483975,2026948561,1053920743, 786262391,1792203830,1494667770, 
 1923011392,1433700034,1244184613,1147297105, 539712780,1545929719, 
  190641742,1645390429, 264907697, 620389253,1502074852, 927711160, 
  364849192,2049576050, 638580085, 547070247 }; 
 
float lcgrand(int stream) 
{ 
    long zi, lowprd, hi31; 
 
    zi     = zrng[stream]; 
    lowprd = (zi & 65535) * MULT1; 
    hi31   = (zi >> 16) * MULT1 + (lowprd >> 16); 
    zi     = ((lowprd & 65535) - MODLUS) + 
             ((hi31 & 32767) << 16) + (hi31 >> 15); 
    if (zi < 0) zi += MODLUS; 
    lowprd = (zi & 65535) * MULT2; 
    hi31   = (zi >> 16) * MULT2 + (lowprd >> 16); 
    zi     = ((lowprd & 65535) - MODLUS) + 
             ((hi31 & 32767) << 16) + (hi31 >> 15); 
    if (zi < 0) zi += MODLUS; 
    zrng[stream] = zi; 
    return (zi >> 7 | 1) / 16777216.0; 
} 
 
 
void lcgrandst (long zset, int stream) /* Set the current zrng for stream 
                                          "stream" to zset. */ 
{ 
    zrng[stream] = zset; 
} 
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long lcgrandgt (int stream) /* Return the current zrng for stream "stream". */ 
{ 
    return zrng[stream]; 
} 
 
int *  ranking(double *fitness, int * rank, int N) 
{ 
 int i,j,ka; 
 int tut,temp; 
 double current; 
 
 for(i=0;i<10;i++) 
  rank[i]=0; 
 
 rank[0]=0; 
 for(i=1;i<N;i++) 
 { 
  temp=i; 
  for(j=0;j<i;j++) 
  { 
   if(fitness[temp]<fitness[rank[j]]) 
   { 
    tut=rank[j]; 
    rank[j]=temp; 
    temp=tut; 
   } 
  } 
  rank[i]=temp; 
 
 } 
 
 return rank; 
} 
 
 
void listeksil (struct nodek * girilen, int N, int parents) 
{ 
 int i,j=0 ; 
 struct nodek * huhu, *tut; 
 for(i=0;i<N;i++) 
 {  
  huhu=&girilen[i]; 
  j=0; 
  while (1) 
  { 
   j++; 
   tut=huhu; 
   if(huhu==NULL) 
   { 
    break; 
   } 
   else  
   { 
    delete(tut->parents); 
    huhu = huhu->nextnode; 
    if(j>1) 
    free(tut); 
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    tut=NULL; 
   } 
  }  
 } 
} 
 
 
double  MutateRandomOrt(struct node * individual, int derinlik, int N,double fitness) 
{ 
 int yer,i,j,gum,flag=0,ilk,tum=0,il; 
 double newfitness,saving,loss, deger=-1, cumulatif=0, doluluk=0,a,b; 
 struct node * burasi, *omer, *cikart, *tak, *cak, *tas,*temp; 
 omer=individual;  
 for(gum=1;gum<=derinlik;gum++) 
 { 
  yer=float(lcgrand(randomseed)*N)+1; 
  burasi=individual; 
  for(i=0;i<yer;i++) 
  { 
   if(burasi->plc==0) 
    doluluk=0; 
   else  
    doluluk=doluluk+demand[burasi->plc]; 
    
   burasi=burasi->nextnode; 
   if(burasi->plc==0)  
    i--; 
    
  } 
  tas=burasi; 
  for(i=0;i<N;i++) 
  { 
   if(tas->plc==0) 
    break; 
   if(tas->plc!=burasi->nextnode->plc) 
   doluluk=doluluk+demand[burasi->plc]; 
   tas=tas->nextnode; 
  } 
  if(burasi->nextnode->plc==0) 
  { 
   burasi=burasi->nextnode; 
 
   doluluk=0; 
   tas=burasi->nextnode; 
 
   for(i=0;i<N;i++) 
   { 
    if(tas->plc==0) 
     break; 
    if(tas->plc!=burasi->nextnode->plc) 
    doluluk=doluluk+demand[tas->plc]; 
    tas=tas->nextnode; 
   } 
    
  } 
  saving=-dist[burasi->plc][burasi->nextnode->nextnode->plc]+(dist[burasi-
>plc][burasi->nextnode->plc]+dist[burasi->nextnode->plc][burasi->nextnode->nextnode->plc]); 
  omer=burasi->nextnode->nextnode; 
  cak=burasi; 
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  burasi=burasi->nextnode; 
  
  for(j=0;j<N && omer->nextnode->nextnode != burasi;j++) 
  { 
   if(omer->plc==0) 
   { 
    tas=omer->nextnode; 
    doluluk=0; 
    for(i=0;i<N;i++) 
    { 
     if(tas->plc==0) 
      break; 
     if(tas->plc!=burasi->nextnode->plc) 
     doluluk=doluluk+demand[tas->plc]; 
     tas=tas->nextnode; 
    } 
   } 
   loss=dist[omer->plc][burasi->plc]+dist[burasi->plc][omer->nextnode-
>plc]-dist[omer->plc][omer->nextnode->plc]; 
   if((deger==-1) && (saving>loss)) 
    deger=saving-loss; 
    for(il=0;il<cno;il++) 
    { 
     if(VCapacity[il]>=tum) 
     break; 
    } 
    capacity = VCapacity[il]; 
   if(((saving-loss)>=deger) && (demand[burasi->plc]+doluluk<capacity)) 
   { 
    flag=1; 
    cikart=cak; 
    tak=omer; 
    deger=saving-loss; 
   } 
   omer=omer->nextnode; 
  } 
 
  if(flag==1) 
  { 
   omer=tak->nextnode; 
   tak->nextnode=cikart->nextnode; 
   cikart->nextnode=cikart->nextnode->nextnode; 
   tak->nextnode->nextnode=omer; 
   cumulatif=cumulatif+deger; 
   flag=0; 
   randmutyap++; 
  } 
 } 
 burasi=individual->nextnode; 
 if(burasi->plc==0) 
 { 
  individual->nextnode=individual->nextnode->nextnode; 
  free(burasi); 
 } 
 burasi=individual->nextnode; 
 for(i=0;i<N*2;i++) 
 { 
  if((burasi->plc==burasi->nextnode->plc)) 
  { 
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   burasi->nextnode=burasi->nextnode->nextnode; 
  } 
  else if(burasi->nextnode->plc==individual->nextnode->plc) 
   break; 
  burasi=burasi->nextnode; 
 } 
 randmutdene=randmutdene+gum-1; 
 return fitness-cumulatif;  
} 
 
 
int kapasitele (int cap, int usage, int demand, int no) 
{ 
 int i,j,c; 
 int tip, nip, ilk; 
 for(i=0; VCapacity[i+1]<=cap; i++); 
 tip=i; 
 if(no==0) 
 { 
  nip=tip + lcgrand(randomseed)*(cno-tip); 
 } 
 else if(no==1) 
 { 
   nip=-1; 
   ilk=-1; 
   for(c=0;c<cno;c++) 
   { 
    if((usage<VCapacity[c]) && (nip<0)) 
     nip=c; 
    if((demand<VCapacity[c])&&(ilk<0)) 
     ilk=c; 
    if((ilk>=0)&&(nip>=0)) 
     break; 
   } 
   if(!((ilk>=0)&&((VCost[tip]+VCost[ilk]>VCost[nip])) && (nip>=0))) 
   { 
    nip=tip; 
   } 
 } 
 else 
 { 
   nip=-1; 
   ilk=-1; 
   for(c=0;c<cno;c++) 
   { 
    if((usage<VCapacity[c]) && (nip<0)) 
     nip=c; 
    if((demand<VCapacity[c])&&(ilk<0)) 
     ilk=c; 
    if((ilk>=0)&&(nip>=0)) 
     break; 
   } 
   if(!((ilk>=0)&&(VCost[tip]*(VCapacity[tip]-(usage-
demand))+VCost[ilk]*(VCapacity[ilk]-demand))>(VCost[nip]*(VCapacity[nip]-usage)) && 
(nip>=0))) 
   { 
    nip=tip; 
   } 
 } 
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 return nip; 
} 
  
void assigne2(struct node * poop,struct node * chiil) 
{ 
 int tut,i,j,cilk,pilk,stop1=0, stop2=0; 
 struct node *  hah, * first, * tirst, * tah, *vah; 
 first=chiil; 
 tirst=poop; 
  
 pilk=poop->nextnode->plc; 
 cilk=chiil->nextnode->plc; 
 poop->plc=chiil->plc; 
 hah=poop->nextnode; 
 tah=hah; 
 vah=chiil->nextnode; 
  
 for(i=0;i<k*2;i++) 
 { 
  if(chiil->nextnode->nextnode->plc==cilk) 
  { 
   chiil->nextnode=poop; 
   stop1=1; 
  } 
  if(hah->nextnode->nextnode->plc==pilk) 
  { 
   hah->nextnode=first; 
   stop2=1; 
 
  } 
  if((stop1==0)||(stop2==0)) 
  { 
   if(stop1!=1) 
   chiil=chiil->nextnode; 
   if(stop2!=1) 
    hah=hah->nextnode; 
  } 
  else 
  break; 
 } 
 first->nextnode=tah; 
 tirst->nextnode=vah; 
} 
struct node * generatechildren (struct node * child,struct node * liste, int num,int N,bool * check) 
{ 
 int i,j,mi,t,veryfirst,count, o,hasan,kac,bas; 
 bool flag=false,change=false,one=false; 
 double min,hold; 
 struct node * me, *temp,*zonk,*init,*hemp,*tas; 
 int doluluk=0,hlag,old; 
 capacity=VCapacity[0]; 
 for(t=0;t<num;t++) 
 {  
  tccgit[t]=0; 
  flag=false; 
  check[0]=false; 
  for(i=1;i<N+1;i++) 
  check[i]=false; 
  kac=child[t].nextnode->plc; 
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  temp=child[t].nextnode; 
  for(i=0;i<uzunluk*2;i++) 
  { 
   if(temp->nextnode->plc==kac) 
   { 
    temp->plc=-1; 
    break; 
   } 
   else 
   temp=temp->nextnode; 
  } 
 
 
  me=&child[t]; 
  init=me; 
  child[t].plc=-1; 
  me->plc=0; 
  min=0; 
  count=0; 
  hold=0; 
  doluluk=doluluk+demand[me->plc]; 
  me->plc=-1; 
  me=me->nextnode; 
  bas=zonk->plc; 
  while(count<N-1) 
  { 
   hold=0; 
   hlag=1; 
   if(doluluk+demand[zonk->plc]>capacity) 
   capacity=VCapacity[kapasitele(capacity, doluluk+demand[zonk-
>plc],demand[zonk->plc],lcgrand(randomseed)*3)]; 
 
   if((check[zonk->plc] == false) && (doluluk+demand[zonk-
>plc]<=capacity)&&(zonk->plc!=old)) 
   { 
     
   
    me->plc=zonk->plc; 
    old=me->plc; 
    if ( me->plc == 0)  
    { 
     doluluk=0; 
    } 
    else 
     count=count+1; 
    if(one==false) 
     bas=me->plc; 
    one=true; 
    if((me->nextnode->plc==-1)&&(count<N-1)) 
    { 
 
     temp=(struct node*)malloc(sizeof(struct node)); 
     temp->nextnode=me->nextnode; 
     me->nextnode=temp; 
     temp->plc=0; 
    } 
    if((count==N-1)) 
     break; 
    me=me->nextnode; 
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    zonk=&liste[old]; 
    if(old!=0) 
    check[old]=true; 
    change=true; 
    doluluk= demand[old]+doluluk; 
   
   } 
   else 
   { 
 
    if (zonk->nextnode==NULL) 
    { 
     flag = true; 
      
 
      
    } 
    else 
    { 
    zonk=zonk->nextnode; 
    } 
   } 
   if(flag==true) 
   { 
    j=0; 
    for(i=1;i<N;i++) 
    { 
      if((doluluk+demand[i]>capacity) && 
(check[i]==false)) 
      { 
       for(mi=0;mi<cno;mi++) 
       { 
        if(demand[i]<capacity) 
         break; 
        else 
        
 capacity=VCapacity[mi]; 
       } 
      
 capacity=VCapacity[kapasitele(capacity, 
doluluk+demand[i],demand[i],lcgrand(randomseed)*3)]; 
      } 
     if((check[i]==false) && (doluluk+demand[i]<capacity) 
&& (old!=i))   
     { 
      hlag=0;     
  
      if(hold==0) 
      { 
       j=i; 
       hold = dist[old][i]; 
       min=hold; 
       tccgit[t]++; 
      } 
      hold = dist[old][i]; 
       
      if((min>hold) && (hold!=0))  
      { 
       j=i; 
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       min=hold; 
       tccgit[t]++; 
      } 
     } 
     else hlag*1; 
     
    } 
    hold=0; 
    me->plc=j; 
    old=j; 
    if(j==0)  
     { 
      doluluk=0; 
     } 
     else 
      count=count+1; 
 
    if((me->nextnode->plc==-1)&&(count<N-1)) 
    { 
    temp=(struct node*)malloc(sizeof(struct node)); 
     temp->nextnode=me->nextnode; 
     me->nextnode=temp; 
     temp->plc=0; 
    } 
     if((count==N-1)) 
     break; 
     me=me->nextnode; 
     zonk=&liste[old]; 
     if(old!=0) 
     check[old]=true; 
     change=true; 
     doluluk=doluluk+demand[old]; 
     j=0; 
     flag=false; 
      
   } 
   if((((hlag==0) && (flag==1))|| (doluluk==capacity))&& (count!=N-1)) 
   { 
    me->plc=0; 
    if((me->nextnode->plc==-1)&&(count<N-1)) 
    { 
     temp=(struct node*)malloc(sizeof(struct node)); 
     temp->plc=0; 
     temp->nextnode=NULL; 
     temp->nextnode=me->nextnode; 
     me->nextnode=temp; 
    } 
    else 
    me=me->nextnode; 
    zonk=&liste[0]; 
    doluluk=0; 
     
   } 
  } 
   hasan=me->plc; 
   if((me->plc!=-1) && (me->nextnode!=NULL)) 
   { 
    temp=me->nextnode; 
    for(i=0;i<uzunluk;i++) 
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    { 
     if((temp->plc==-1)&&(temp->nextnode->plc==bas)) 
     { 
      me->nextnode=temp; 
      break; 
     } 
     else 
     { 
      hemp=temp; 
      temp=temp->nextnode; 
      hemp->nextnode=NULL; 
      free(hemp); 
     } 
    } 
   } 
  child[t].plc=0; 
 
  temp=child[t].nextnode; 
  for(i=0;i<uzunluk*2;i++) 
  { 
   if(temp->plc==-1) 
   { 
    temp->plc=0; 
    break; 
   } 
   else 
   temp=temp->nextnode; 
  } 
 temp=&child[0]; 
 for(i=0;i<2*N;i++) 
 { 
  if(temp->plc!=0) 
   break; 
  else 
 temp=temp->nextnode; 
 
 } 
 j=temp->plc; 
 temp=temp->nextnode; 
 for(i=0;i<2*N;i++) 
 { 
  if((temp->plc==0)&&(temp->nextnode->plc==0)) 
  { 
   tas=temp->nextnode; 
   temp->nextnode=temp->nextnode->nextnode; 
   tas->nextnode=NULL; 
   free(tas); 
  } 
  else 
  temp=temp->nextnode; 
  if(j==temp->plc) 
   break; 
 } 
 if(hop==1) 
 { 
 printf("Childi yazdiriyorum!!\n"); 
 yazdir(child[t],70); 
 } 
 }return child;} 
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APPENDIX F 

 

 

 

The C codes of the multi-agent system are also provided in the Appendix CD, attached on 

the back cover of the thesis.  

#include<iostream.h> 
#include<iomanip.h> 
#include<stdlib.h> 
#include<time.h> 
#include<fstream> 
#include<math.h> 
#include<string.h> 
#include<time.h> 
 
void readdistances(char * filename); 
void teaddistances(char * filename); 
int fcheck (bool *r,int k); 
void initialize (); 
void yazdir(int sayi); 
void findandbbwrite(int ajannono); 
void giveaprice(int ajanno); 
void sendToCentralAgent(void); 
void selectbest(void); 
void update(int cityno, int verenajan, int alanajan, int konacakyer); 
void improve(int i); 
void hepsiniduyur(int ajanno); 
void  selectranking(double etha); 
void find2write(int ajanno); 
void givesprice(int ajanno); 
void findandwrite(int ajanno); 
{ 
 int no; 
 int cap; 
}; 
 
struct boardnode 
{ 
 int cap; 
 double savings; 
 int ownerid; 
 int bas; 
 int son; 
 int sayi; 
}; 
 
struct saver { 
 double savings; 
 int place; 
 int yon; 
}; 
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double dist[300][300]; 
int capacity[300]; 
double x[500],y[500]; 
struct node ajan[300][300]; 
int nodesayisi; 
int aracsayisi; 
struct boardnode blackb[300]; 
struct saver keep[300][300]; 
int vehiclecapacity[300]; 
int dcap[300]; 
double dcost[300]; 
int dahaoncevermistim[300]; 
int tradeyaptim[300]; 
int doluluk[300]; 
int run; 
int improveyap=0; 
double selector=1; 
int method; 
double alpha[300]; 
int kandir=0; 
int initializor=0; 
int conv=0; 
 
char filew[20]; 
int main(int argc, char **argv) 
{ 
 int i,j,k,bu,su,count,tradeyapilmis; 
 int repno,replication,runlenght=10,hepsi=1; 
 double tum=0,zost=0; 
 char filename[20]; 
 for(i=0;i<20;i++) 
 { 
  filename[i]=argv[1][i]; 
 } 
 
 for(i=0;i<20;i++) 
 { 
  filew[i]=argv[2][i]; 
 } 
 
 char *nodenumber; 
 FILE *fout; 
 FILE *fname;  
 FILE *finput; 
 FILE *foutput; 
 long double cpu_time_used; 
 double sum; 
 clock_t start,end; 
 do{ 
  repno=10; 
  runlenght=-1; 
  improveyap=1; 
  selector=atof(argv[5]); 
  method=atoi(argv[4]); 
  kandir=atoi(argv[3]); 
  if(repno <=replication ) break; 
  readdistances(filename); 
 for(replication=0;replication<repno;replication++) 
 { 
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  runlenght=300; 
  sum=0; 
  zost=0; 
  conv=0; 
 for(i=0;i<nodesayisi+2;i++) 
 { 
  for(j=0;j<nodesayisi+2;j++) 
  { 
   ajan[i][j].no=0; 
   ajan[i][j].cap=0; 
   keep[i][j].savings=-1; 
   keep[i][j].place=-1; 
  } 
  blackb[i].ownerid=0; 
  blackb[i].savings=0; 
  vehiclecapacity[i]=dcap[aracsayisi-1]; 
  dahaoncevermistim[i]=0; 
 } 
 initialize(); 
 for(run=0;((run<runlenght) || (runlenght ==-1));run++) 
 { 
  for(i=0;i<=nodesayisi+1;i++) 
   if(ajan[i][0].cap!=0) 
   { 
    if(kandir==1) 
    findandwrite(i); 
    else 
   { 
 
    if(method==1) findandbbwrite(i); 
    else if(method==2)  hepsiniduyur(i); 
    else find2write(i); 
    } 
      
 
   } 
  for(i=0;i<=nodesayisi+1;i++) 
   if(ajan[i][0].cap!=0) 
   { 
    if(kandir==1) 
     givesprice(i); 
    else  
     giveaprice(i); 
   } 
   hepsi=1; 
   for(i=0;i<nodesayisi;i++) 
   { 
    for(j=0;j<=nodesayisi;j++) 
    { 
     if(keep[i][j].savings>0) 
    { 
     hepsi=0; 
    } 
    } 
   } 
   sendToCentralAgent(); 
   tradeyapilmis=0; 
   for(i=0;i<nodesayisi+2;i++) 
    if(tradeyaptim[i]!=0) 
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     tradeyapilmis=1; 
   if(tradeyapilmis==0) 
   { 
    runlenght=0; 
    conv++; 
   } 
   else conv=0; 
 
 
 
   for(i=0;i<nodesayisi+2;i++) 
   { 
    tradeyaptim[i]=0; 
   } 
   if(improveyap>0) 
   for(i=0;i<nodesayisi;i++) 
    improve(i); 
  if((runlenght==-1) && (hepsi==1) || (run>=50)) 
   runlenght=0; 
 } 
 
  
 sum=0; 
 foutput=fopen("anyresults.txt","a"); 
 fout=fopen("anydis_res.txt","a"); 
  
  count=0; 
 fprintf(foutput,"File %s  rep %d (init %d / method %d / kandir %d / select %lf / imp. %d: 
\n", filename,replication, initializor, method, kandir,selector, improveyap); 
 for(i=0;i<nodesayisi+1;i++) 
 { 
  if(ajan[i][1].no!=0) 
  { 
   count++; 
   fprintf(foutput,"Ajan %d: ", count); 
   for(j=0;j<nodesayisi+1;j++) 
   { 
     
    fprintf(foutput,"%d ",ajan[i][j]); 
    su=ajan[i][j].no; 
    if(j>=1) 
     tum=dist[bu][su]+tum; 
    bu=su; 
    if(ajan[i][j].no==0 && j>0) 
    { 
     break; 
    } 
   } 
  fprintf(foutput,"\n"); 
  for(k=0;dcap[k]>=0;k++) 
  { 
   if(dcap[k]>=ajan[i][0].cap) 
   { 
    vehiclecapacity[i]=dcap[k]; 
    zost=dcost[k]; 
    break; 
   } 
  } 
   sum=sum+tum*alpha[k]+(double)zost; 
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   tum=0; 
  } 
 
 } 
 fprintf(fout,"FILE %s rep %d (%d %d %d %lf %d) %lf %d 
\n",filename,replication,initializor, method, kandir, selector,improveyap,sum,count); 
 printf("%s (%d %d %lf) %lf %d \n",filename,method, kandir, selector,sum,count); 
 fclose(foutput); 
 fclose(fout); 
 } 
 } 
 while(true); 
 return 0; 
  
} 
 
void teaddistances(char * filename) 
{ 
 double x[500],y[500],result,hold; 
 int i,j,k,h; 
 FILE *fread; 
 FILE * dista; 
  
 fread = fopen(filename,"r"); 
  
 printf("dosyayı actim, %s\n",filename); 
 fscanf(fread,"%d",&nodesayisi); 
 fscanf(fread,"%d",&aracsayisi); 
 for(i=0;i<aracsayisi+5;i++) 
  dcap[i]=0; 
 for(i=0;i<aracsayisi;i++) 
 { 
  fscanf(fread,"%d %d %lf", &dcap[i],&dcost[i],&alpha[i]); 
  printf("%d %d %lf\n",dcap[i],dcost[i],alpha[i]); 
 } 
 for(i=0;i<nodesayisi;i++) 
 { 
  fscanf(fread," %d %lf %lf\n",&k,&x[i],&y[i]); 
  printf("%d %lf %lf \n",i,x[i],y[i]); 
 } 
 for(i=0;i<nodesayisi;i++) 
 { 
  fscanf(fread," %d %d\n",&h,&capacity[i]); 
  printf("%d %d\n",i,capacity[i]); 
 } 
 fclose(fread); 
 nodesayisi--; 
 for(i=0;i<=nodesayisi;i++) 
  for(j=0;j<=nodesayisi;j++) 
  { 
   if(i==j) 
    dist[i][j]=0; 
   else  
   { 
    hold=sqrt(pow((x[i]-x[j]),2) + pow((y[i]-y[j]),2)); 
    dist[i][j]=hold; 
 
   } 
  } 
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} 
 
 
void readdistances(char * filename) 
{ 
 double result,hold; 
 int i,j,k,max; 
 FILE *fread; 
 FILE *fnum; 
 FILE *fwei; 
 fread = fopen(filename,"r"); 
 printf("dosyayy actim, %s\n",filename); 
 fscanf(fread,"%d %d",&nodesayisi, &aracsayisi); 
  fwei=fopen(filew,"r"); 
  fscanf(fwei,"%d",&max); 
 for(i=0;i<aracsayisi;i++) 
 { 
  fscanf(fread,"%d",&dcap[i]); 
  fscanf(fread,"%lf",&dcost[i]); 
  printf("%d %lf",dcap[i],dcost[i]); 
  if((nodesayisi>30)&&(i<max)) 
  { 
   fscanf(fwei,"%lf",&alpha[i]); 
  } 
  else 
  { 
   alpha[i]=1; 
  } 
    
 } 
 for(i=0;i<nodesayisi;i++) 
 { 
  fscanf(fread,"%d %lf %lf\n",&k,&x[i],&y[i]); 
 } 
 for(i=0;i<nodesayisi;i++) 
 { 
  fscanf(fread," %d %d\n",&k,&capacity[i]); 
 
 } 
 fclose(fread); 
 for(i=0;i<nodesayisi;i++) 
  for(j=0;j<nodesayisi;j++) 
  { 
   if(i==j) 
    dist[i][j]=0; 
   else  
   { 
    hold=sqrt(pow((x[i]-x[j]),2) + pow((y[i]-y[j]),2)); 
    if(hold*1000000-floor(hold*1000000)<0.5) 
     dist[i][j]=floor(hold*1000000)/1000000; 
    else dist[i][j]=floor((hold+1)*1000000)/1000000; 
 
 
   } 
  } 
} 
int fcheck (bool *r, int kac)  
{ 
 int i,j,k; 
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 int sayimiz,count=0; 
 if(kac==nodesayisi-1) 
 { 
  sayimiz=1; 
 } 
 else  
 { 
  sayimiz = rand() % (nodesayisi-kac); 
  sayimiz++; 
 } 
 for(i=1;i<nodesayisi+1;i++) 
 { 
  if(r[i]==false) count++; 
  if(sayimiz == count) 
  { 
   r[i]=true; 
   break;} 
 } 
 return i; 
} 
 
void initialize () 
{ 
 int i,j,k; 
 bool * dolumu; 
 int place; 
 dolumu = new bool [nodesayisi+2]; 
 for(i=0;i<nodesayisi+1;i++) 
  dolumu[i]=false; 
 for(i=0;i<nodesayisi;i++) 
 { 
  place=fcheck(dolumu,i); 
  ajan[i][1].no=place; 
  ajan[i][1].cap=capacity[place]; 
  ajan[i][0].cap=capacity[place]; 
  doluluk[i]=1; 
 if(initializor==0) 
  for(j=0;dcap[j]>=0;j++) 
  { 
   if(ajan[i][0].cap<=dcap[j]) 
   { 
    vehiclecapacity[i]=dcap[j]; 
    break; 
   } 
  } 
 if(initializor==2) 
  for(j=0;dcap[j]>=0;j++) 
  { 
   if(ajan[i][0].cap<=dcap[j]) 
   { 
    vehiclecapacity[i]=dcap[rand()%aracsayisi]; 
    break; 
   } 
  } 
 } 
} 
void findandbbwrite(int ajanno) 
{ 
 int i, j, k; 
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 double maximumsaver=0; 
 double temp=0; 
 int place = -1; 
 for(i=1;;i++) 
 { 
  if(ajan[ajanno][i].no==0) 
   break; 
  else 
  { 
   temp=(dist[ajan[ajanno][i-1].no][ajan[ajanno][i].no] + 
dist[ajan[ajanno][i].no][ajan[ajanno][i+1].no]) - dist[ajan[ajanno][i-1].no][ajan[ajanno][i+1].no]; 
   if(i==1) 
   { 
    maximumsaver=temp; 
    place=i; 
   } 
   else 
   { 
    if(temp<=maximumsaver) 
    { 
     maximumsaver=temp; 
     place=i; 
    } 
   } 
  } 
 } 
 if(maximumsaver >= 0) 
 { 
  if((blackb[ajan[ajanno][place].no].ownerid==ajanno) && 
(blackb[ajan[ajanno][place].no].savings==maximumsaver)) 
   dahaoncevermistim[ajanno]++; 
  else  
   dahaoncevermistim[ajanno] = 0; 
 
  if(dahaoncevermistim[ajanno]>=4) 
  { 
   blackb[ajan[ajanno][place].no].ownerid=-1; 
   blackb[ajan[ajanno][place].no].savings=-1; 
  } 
  else 
  { 
   blackb[ajan[ajanno][place].no].ownerid=ajanno; 
   blackb[ajan[ajanno][place].no].savings=maximumsaver; 
  } 
 } 
} 
 
void giveaprice(int ajanno) 
{ 
 int i,j,k,stop = 0,duz,arac,gec,veh,hount,kucuk; 
 double temp=-1, temp1=-1,cost, temp2=-1,  min=-1,avg=0; 
 int bestplace=-1; 
  if(kandir==2) 
  { 
    avg=0; 
    hount=0; 
    for(i=0;i<nodesayisi;i++) 
    {  
     if((i!=ajanno) && ajan[ajanno][1].no!=0) 
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     { 
      avg = avg + 
(double)ajan[i][0].cap/(double)vehiclecapacity[i]; 
      hount++; 
     } 
    } 
    avg=avg/hount; 
  } 
 for(i=0;i<=nodesayisi;i++) 
 { 
   
  for(j=0;j<=nodesayisi;j++) 
  { 
   if((i!= blackb[j].ownerid) && (blackb[j].savings>=0)) 
   { 
    duz=-1; 
    temp1=-1; 
    temp2=-1; 
    gec=1; 
    veh=-1; 
    cost=0; 
    if(ajan[i][1].no==0) 
    { 
     for(k=0;dcap[k]>=0;k++) 
     { 
      if(blackb[j].cap>=dcap[k]) 
      { 
       cost=dcost[k]; 
       kucuk=k-1; 
       break; 
      } 
     } 
    } 
    else  
    if((ajan[i][0].cap + blackb[j].cap)> vehiclecapacity[i]) 
     { 
      for(k=0;dcap[k]>=0;k++) 
      { 
       if((dcap[k]==vehiclecapacity[i]) 
||(veh!=-1)) 
       { 
        veh=k; 
        kucuk=k-1; 
        if(dcap[k+1]<=0) 
        { 
         keep[i][j].savings=-1; 
         keep[i][j].place=-1; 
         gec=0; 
         break; 
        } 
        else if 
(dcap[k+1]>=(ajan[i][0].cap + blackb[j].cap)) 
        { 
         cost=dcost[k+1]-
dcost[veh]; 
         kucuk=k; 
         break; 
        } 
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       } 
      } 
 
     } 
    for(k=1;(k<=nodesayisi+1 && gec==1);k++) 
    { 
     temp1=-dist[ajan[i][k-1].no][blackb[j].bas] - 
dist[blackb[j].son][ajan[i][k].no] + dist[ajan[i][k-1].no][ajan[i][k].no] + blackb[j].savings; 
     temp2=-dist[ajan[i][k-1].no][blackb[j].bas] - 
dist[blackb[j].son][ajan[i][k].no] + dist[ajan[i][k-1].no][ajan[i][k].no] + blackb[j].savings; 
     if(temp1>=temp2) 
     { 
      if((initializor==1)&&(conv<=10)) 
       temp=temp1*alpha[k+1]; 
      else 
      temp=temp1*alpha[k+1]-cost; 
      duz=1; 
     } 
     else  
     { 
      if((initializor==1)&&(conv<=10)) 
       temp=temp2*alpha[k+1]; 
      else 
       temp=temp2*alpha[k+1]-cost; 
 
      duz=0; 
     } 
     if(temp> min) 
     { 
      min = temp; 
      bestplace = k; 
     } 
     if(ajan[i][k].no==0) break; 
    } 
    if(min>=0) 
    { 
     if(kandir==2) 
     { 
      min=min * 
pow(((double)(ajan[ajanno][0].cap)/((double)vehiclecapacity[ajanno])),((double)run)/10); 
     } 
 
     keep[i][j].savings = min; 
     keep[i][j].place = bestplace; 
     keep[i][j].yon=duz; 
    }  
    else 
    { 
     keep[i][j].savings=-1; 
     keep[i][j].place=-1; 
    } 
    temp=-1; 
    bestplace=-1; 
    min=-1; 
   } 
   else 
   { 
     keep[i][j].savings=-8; 
     keep[i][j].place=-8; 
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   } 
  } 
 } 
} 
void sendToCentralAgent(void) 
{ 
 int i,j,k; 
  
 if((selector>=1) && (selector<2)) 
  selectranking(selector); 
 else 
  selectbest(); 
 for(i=0;i<=nodesayisi+1;i++) 
 { 
  blackb[i].savings=-10; 
  blackb[i].sayi=0; 
  blackb[i].cap=0; 
 } 
} 
void selectbest(void) 
{ 
 int i,j,k; 
 int eniyiajan, eniyisehir,verenajan; 
 bool assigned[300]; 
 for(i=0;i<nodesayisi+2;i++) 
  assigned[i]=false; 
 double max; 
 for(j=1;j<=nodesayisi;j++) 
 { 
  max=-0.5; 
  for(i=0;i<nodesayisi;i++) 
  { 
   if((keep[i][j].savings>= max) && assigned[i]==false) 
   { 
    max = keep[i][j].savings; 
    eniyiajan=i; 
    assigned[i]=true; 
   } 
  } 
  if(max>=0 ) 
  { 
   update(j,j,eniyiajan,keep[eniyiajan][j].place); 
  } 
 } 
} 
 
void update(int sira, int verenajan, int alanajan, int konacakyer) 
{ 
 int i,j,k,tut,go1,go2; 
 int flag=0,clack=0,gec=0,tec=0; 
 int hold,cold,thold,tcold,say=0; 
 double cost; 
 if(((tradeyaptim[alanajan]==0) && (tradeyaptim[verenajan]==0))&& 
(ajan[verenajan][1].no!=0)&&((blackb[verenajan].cap==ajan[verenajan][0].cap)&&(ajan[alanajan][1
].no!=0))&&(blackb[verenajan].bas!=0)) 
 { 
  cost=0; 
  for(j=0;j<=nodesayisi+1;j++) 
  { 
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    if((ajan[verenajan][j+1].no==blackb[verenajan].bas) && (clack !=1)) 
   { 
    flag=1; 
    tut=ajan[verenajan][0].cap; 
    ajan[verenajan][0].cap=ajan[verenajan][0].cap - 
blackb[verenajan].cap; 
    for(k=0;;k++) 
    { 
     ajan[299][k].no=ajan[verenajan][j+k+1].no; 
     ajan[299][k].cap=ajan[verenajan][j+k+1].cap; 
     say++; 
     if(ajan[299][k].no==blackb[verenajan].son) 
      break; 
    } 
   } 
   else if(flag==1) 
   { 
    for(k=0;;k++) 
    { 
     ajan[verenajan][j+k].no=ajan[verenajan][j+say+k].no; 
     ajan[verenajan][j+k].cap=ajan[verenajan][j+say+k].cap; 
     if (k>=say) 
      break; 
    } 
   } 
  if(ajan[verenajan][j+1].no==0) 
    break; 
  } 
  ajan[alanajan][0].cap=ajan[alanajan][0].cap + blackb[verenajan].cap; 
  if(keep[alanajan][konacakyer].yon==1) 
  { 
   for(k=0;k<say;k++) 
   { 
    gec=ajan[alanajan][konacakyer+k].no; 
    tec=ajan[alanajan][konacakyer+k].cap; 
    ajan[alanajan][konacakyer+k].no=ajan[299][k].no; 
    ajan[alanajan][konacakyer+k].cap=ajan[299][k].cap; 
    ajan[299][k].no=gec; 
    ajan[299][k].cap=tec; 
   } 
  } 
  else 
  { 
   for(k=0;k<say;k++) 
   { 
    gec=ajan[alanajan][konacakyer+k].no; 
    tec=ajan[alanajan][konacakyer+k].cap; 
    ajan[alanajan][konacakyer+k].no=ajan[299][say-k-1].no; 
    ajan[alanajan][konacakyer+k].cap=ajan[299][say-k-1].cap; 
    ajan[299][say-k-1].no=gec; 
    ajan[299][say-k-1].cap=tec; 
   } 
 
  } 
  for(k=doluluk[alanajan]+say;k>=konacakyer+say;k--) 
  { 
   ajan[alanajan][k].no=ajan[alanajan][k-say].no; 
   ajan[alanajan][k].cap=ajan[alanajan][k-say].cap; 
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  } 
  for(k=konacakyer+say;k<konacakyer+2*say;k++) 
  { 
   ajan[alanajan][k].no=ajan[299][-konacakyer-say+k].no; 
   ajan[alanajan][k].cap=ajan[299][-konacakyer-say+k].cap; 
  } 
  tradeyaptim[alanajan]=1; 
  tradeyaptim[verenajan]=1; 
  doluluk[alanajan]=doluluk[alanajan]+say; 
  doluluk[verenajan]=doluluk[verenajan]-say; 
  if(!((initializor==1)&& (conv<=10))) 
  { 
  vehiclecapacity[verenajan]=0; 
  vehiclecapacity[alanajan]=0; 
  
  for(i=1;i<300;i++) 
  { 
   vehiclecapacity[verenajan] = vehiclecapacity[verenajan] + 
ajan[verenajan][i].cap; 
   if(ajan[verenajan][i+1].cap==0) 
    break; 
  } 
 
  for(i=1;i<300;i++) 
  { 
   vehiclecapacity[alanajan] = vehiclecapacity[alanajan] + 
ajan[alanajan][i].cap; 
   if(ajan[alanajan][i+1].cap==0) 
    break; 
  } 
  if(ajan[verenajan][1].cap==0) 
   go1=0; 
  else go1=1; 
  go2=1; 
  for(k=0;dcap[k]>0;k++) 
  { 
    if(k==0) 
    if((vehiclecapacity[verenajan]>0 &&
 vehiclecapacity[verenajan]<=dcap[k]) && (go1==1)) 
    { 
     vehiclecapacity[verenajan]=dcap[k]; 
     go1=0; 
    } 
    if((vehiclecapacity[alanajan]>0 &&
 vehiclecapacity[alanajan]<=dcap[k]) && (go2==1)) 
    { 
     vehiclecapacity[alanajan]=dcap[k]; 
     go2=0; 
    } 
    else 
     if((vehiclecapacity[verenajan]>dcap[k-1] && 
vehiclecapacity[verenajan]<=dcap[k]) && (go1==1)) 
     { 
      vehiclecapacity[verenajan]=dcap[k]; 
      go1=0; 
     } 
 
    if((vehiclecapacity[alanajan]>dcap[k-1] &&
 vehiclecapacity[alanajan]<=dcap[k]) && (go2==1)) 
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    { 
     vehiclecapacity[alanajan]=dcap[k]; 
     go2=0; 
    } 
    if((go1==0) && (go2==0)) 
     break; 
  } 
 } 
} 
    
  
} 
 
void improve(int ajanno) 
{ 
 int i,j,k,temp,cemp; 
 double old,pro, pro1,pro2; 
 for(i=0;i<=nodesayisi-1;i++) 
 { 
  for(j=i+2;j<nodesayisi+1;j++) 
  { 
   if(ajan[ajanno][i].no==ajan[ajanno][j+1].no) break; 
   if(ajan[ajanno][j].no==0) break; 
   old = dist[ajan[ajanno][i].no][ajan[ajanno][i+1].no] + 
dist[ajan[ajanno][j].no][ajan[ajanno][j+1].no]; 
   pro1 = dist[ajan[ajanno][i].no][ajan[ajanno][j+1].no] + 
dist[ajan[ajanno][j].no][ajan[ajanno][i+1].no]; 
   pro2 =  dist[ajan[ajanno][i].no][ajan[ajanno][j].no] + 
dist[ajan[ajanno][i+1].no][ajan[ajanno][j+1].no]; 
   if(( pro1 < pro2 ) && (old >= pro1)) 
   { 
    temp=ajan[ajanno][i+1].no; 
    ajan[ajanno][i+1].no=ajan[ajanno][j+1].no; 
    ajan[ajanno][j+1].no=temp; 
    cemp=ajan[ajanno][i+1].cap; 
    ajan[ajanno][i+1].cap=ajan[ajanno][j+1].cap; 
    ajan[ajanno][j+1].cap=cemp; 
   } 
   else if(old>=pro2) 
   { 
    temp=ajan[ajanno][j].no; 
    ajan[ajanno][j].no=ajan[ajanno][i+1].no; 
    ajan[ajanno][i+1].no=temp; 
    cemp=ajan[ajanno][i+1].cap; 
    ajan[ajanno][i+1].cap=ajan[ajanno][j+1].cap; 
    ajan[ajanno][j+1].cap=cemp; 
   } 
  } 
 } 
} 
void hepsiniduyur(int ajanno) 
{ 
 int i, j, k; 
 double maximumsaver=0; 
 double temp=0; 
 int place = -1; 
 for(i=1;;i++) 
 { 
  if(ajan[ajanno][i].no==0) 
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   break; 
  else 
  { 
   temp=(dist[ajan[ajanno][i-1].no][ajan[ajanno][i].no] + 
dist[ajan[ajanno][i].no][ajan[ajanno][i+1].no]) - dist[ajan[ajanno][i-1].no][ajan[ajanno][i+1].no]; 
   if(temp >= 0) 
   { 
    if((blackb[ajan[ajanno][i].no].ownerid==ajanno) && 
(blackb[ajan[ajanno][i].no].savings==maximumsaver)) 
     dahaoncevermistim[ajanno]++; 
    else  
    dahaoncevermistim[ajanno] = 0; 
   
    if(dahaoncevermistim[ajanno]>=4) 
    { 
    blackb[ajan[ajanno][i].no].ownerid=-1; 
    blackb[ajan[ajanno][i].no].savings=-1; 
    } 
    else 
    { 
    blackb[ajan[ajanno][i].no].ownerid=ajanno; 
    blackb[ajan[ajanno][i].no].savings=temp; 
    } 
   } 
  } 
 } 
} 
 
 
void  selectranking(double etha) 
{ 
 int i,j,k,count,current,temp; 
 int feasibles[300]; 
 double probability[300]; 
 bool assigned[300]; 
 for(i=0;i<nodesayisi+2;i++) 
  assigned[i]=false; 
 double attim; 
 for(j=0;j<nodesayisi+1;j++) 
 { 
  count=0; 
  for(i=0;i<nodesayisi;i++) 
   if(keep[i][j].savings>=0) 
   { 
    feasibles[count]=i; 
    count++; 
   } 
 for(i=0;i<count;i++) 
 { 
  current=feasibles[i]; 
  for(k=0;k<i;k++) 
  { 
   if(keep[current][j].savings > keep[feasibles[k]][j].savings) 
   { 
    temp=feasibles[k]; 
    feasibles[k]=current; 
    current=temp; 
 
   } 
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  } 
  feasibles[k]=current; 
 
 } 
 for(i=0;i<count;i++) 
 { 
  probability[i]=((double)1/(double)count)*(etha-(2*(etha-
1)*((double)(i))/((double)(count-1)))); 
 } 
 attim = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) ); 
 for(i=0;i<count;i++) 
 { 
  if(attim<=probability[i] && assigned[feasibles[i]]!=true) 
  { 
   update(j,j,feasibles[i],keep[feasibles[i]][j].place); 
   assigned[feasibles[i]]=true; 
   break; 
  } 
  else attim=attim-probability[i]; 
 } 
}} 
 
void find2write(int ajanno) 
{ 
 int i, j, k,t ,zap,oran, ilk, son,kap,sayi,hount,eskibas,eskison,kucuk; 
 double maximumsaver=0,kar; 
 double temp=0,avg; 
 int place = -1; 
 eskibas=blackb[ajanno].bas; 
 eskison=blackb[ajanno].son; 
 for(i=1;;i++) 
 { 
  kar=0; 
  zap=0; 
  if(ajan[ajanno][i].no==0) 
  { 
   blackb[ajanno].bas=-1; 
   blackb[ajanno].son=-1; 
   break; 
  } 
  else 
  { 
   for(j=i;ajan[ajanno][j].no!=0;j++) 
   { 
    temp=(dist[ajan[ajanno][i-1].no][ajan[ajanno][i].no] + 
dist[ajan[ajanno][j].no][ajan[ajanno][j+1].no]) - dist[ajan[ajanno][i-1].no][ajan[ajanno][j+1].no]; 
    zap=zap+ajan[ajanno][j].cap; 
    if(method==2) 
    if((dahaoncevermistim[ajanno]>=4) && 
(blackb[ajanno].bas==ilk) && (blackb[ajanno].son==son)) 
    { 
     i++; 
     temp=(dist[ajan[ajanno][i-1].no][ajan[ajanno][i].no] + 
dist[ajan[ajanno][i].no][ajan[ajanno][i+1].no]) - dist[ajan[ajanno][i-1].no][ajan[ajanno][i+1].no]; 
    } 
    for(k=0;dcap[k]>=0;k++) 
    { 
     if(vehiclecapacity[ajanno]==dcap[k]) 
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     { 
      kucuk=k-1; 
      break; 
     } 
    } 
    if(ajan[ajanno][0].cap-zap==0) 
    { 
     kar=dcost[k]; 
    } 
   
  else if(vehiclecapacity[ajanno]-zap <= dcap[k-1]) 
   { 
    for(t=0;dcap[t]<=vehiclecapacity[ajanno]-zap;t++); 
    kar=-dcost[k]+dcost[t]; 
   } 
   if(i==1) 
   { 
    if((initializor==1) && (conv<=10)) 
     maximumsaver=alpha[kucuk+1]*temp; 
    else  
     maximumsaver=alpha[kucuk+1]*temp+kar; 
    place=i; 
    oran=maximumsaver/(j-i+1); 
    sayi=j-i+1; 
    ilk=ajan[ajanno][i].no; 
    son=ajan[ajanno][j].no; 
    kap=zap; 
 
   } 
   else 
   { 
    if((oran <= temp/(j-i+1))) 
    { 
 
      if((initializor==1) && (conv<=10)) 
       maximumsaver=alpha[kucuk+1]*temp; 
      else  
      
 maximumsaver=alpha[kucuk+1]*temp+kar; 
      place=i; 
      oran=temp/(j-i); 
      ilk=ajan[ajanno][i].no; 
      son=ajan[ajanno][j].no; 
      kap=zap; 
      sayi=j-i+1; 
    } 
   } 
   } 
  } 
 } 
 if(maximumsaver >= 0) 
 { 
  if((eskibas==ilk) && (eskison==son)) 
   dahaoncevermistim[ajanno]++; 
  else  
   dahaoncevermistim[ajanno] = 0; 
 
  if(kandir>0) 
  { 
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    avg=0; 
    hount=0; 
    for(i=0;i<nodesayisi;i++) 
    { 
     if((i!=ajanno) && ajan[ajanno][1].no!=0) 
     { 
      avg = avg + 
(double)ajan[ajanno][0].cap/(double)vehiclecapacity[ajanno]; 
      hount++; 
     } 
    } 
    avg=avg/hount; 
  
   if((dahaoncevermistim[ajanno]>=1) ) 
 
 maximumsaver=maximumsaver*log(1+((double)dahaoncevermistim[ajanno]+1)*((double)v
ehiclecapacity[ajanno])/((double)ajan[ajanno][0].cap)); 
  } 
 
   blackb[ajanno].ownerid=ajanno; 
   blackb[ajanno].savings=maximumsaver; 
   blackb[ajanno].bas=ilk; 
   blackb[ajanno].son=son; 
   blackb[ajanno].cap=kap; 
   blackb[ajanno].sayi=sayi; 
 } 
} 
void findandwrite(int ajanno) 
{ 
 int i, j, k; 
 double maximumsaver=0,avg=0; 
 double temp=0; 
 int place = -1; 
   
 for(i=0;i<nodesayisi;i++) 
 { 
  if(i!=ajanno) 
  avg = avg + ajan[i][0].cap; 
 } 
 avg=avg/nodesayisi; 
 for(i=1;;i++) 
 { 
  if(ajan[ajanno][i].no==0) 
   break; 
  else 
  { 
   temp=(dist[ajan[ajanno][i-1].no][ajan[ajanno][i].no] + 
dist[ajan[ajanno][i].no][ajan[ajanno][i+1].no]) - dist[ajan[ajanno][i-1].no][ajan[ajanno][i+1].no]; 
   if(i==1) 
   { 
    maximumsaver=temp; 
    place=i; 
   } 
   else 
   { 
    if(temp<=maximumsaver) 
    { 
     maximumsaver=temp; 
     place=i; 



 A70 

    } 
   } 
  } 
 } 
 if(maximumsaver >= 0) 
 { 
  if((blackb[ajan[ajanno][place].no].ownerid==ajanno) && 
(blackb[ajan[ajanno][place].no].savings==maximumsaver)) 
   dahaoncevermistim[ajanno]++; 
  else  
   dahaoncevermistim[ajanno] = 0; 
 
   
   
   blackb[ajan[ajanno][place].no].ownerid=ajanno; 
  if(ajan[ajanno][0].cap<=avg) 
  { 
  
 blackb[ajan[ajanno][place].no].savings=maximumsaver*log(1+((double)dahaoncevermistim
[ajanno]+1)*((double)vehiclecapacity[ajanno])/((double)ajan[ajanno][0].cap)); 
  } 
  else 
   blackb[ajan[ajanno][place].no].savings=maximumsaver;   
 } 
} 
void givesprice(int ajanno) 
{ 
 int i,j,k,stop = 0; 
 double temp=-1,  min=-1,avg=0; 
 int bestplace=-1; 
 for(i=0;i<nodesayisi;i++) 
 { 
  if(i!=ajanno) 
  avg = avg + ajan[i][0].cap; 
 } 
 avg=avg/nodesayisi; 
 for(i=0;i<=nodesayisi+1;i++) 
 { 
   
  for(j=1;j<=nodesayisi;j++) 
  { 
   if((i!= blackb[j].ownerid) && (i!=-1)) 
   { 
     if((ajan[i][0].cap + capacity[j])> vehiclecapacity[i]) 
    { 
     keep[i][j].savings=-1; 
     keep[i][j].place=-1; 
    } 
    else 
    for(k=1;k<=nodesayisi+1 ;k++) 
    { 
     temp=-dist[ajan[i][k-1].no][j] - dist[j][ajan[i][k].no] + 
dist[ajan[i][k-1].no][ajan[i][k].no] + blackb[j].savings; 
     if(temp> min) 
     { 
      min = temp; 
      bestplace = k; 
     } 
     if(ajan[i][k].no==0) break; 
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    } 
    if(min>=0 && ajan[ajanno][0].cap>0) 
    { 
     if(((double)ajan[ajanno][0].cap <= avg) && 
(ajan[ajanno][0].cap>0)) 
     { 
      keep[i][j].savings= min * 
pow(((double)(ajan[ajanno][0].cap)/((double)vehiclecapacity[ajanno])),((double)run)/10); 
     } 
     else 
      keep[i][j].savings= min; 
     keep[i][j].place=bestplace; 
    }  
    else 
    { 
     keep[i][j].savings=-1; 
     keep[i][j].place=-1; 
    } 
    temp=-1; 
    bestplace=-1; 
    min=-1; 
   } 
   else 
   { 
     keep[i][j].savings=-8; 
     keep[i][j].place=-8; 
   } 
  } 
 } 
} 

 
 
 


