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In this article, we solve numerically the linear and non-linear fractional initial 
value problems of multiple orders by developing a numerical method that is based 
on the decomposition algorithm coupled with the operational matrices approach. 
By means of this, the fractional initial value problems of multiple orders are 
decomposed into a system of fractional initial value problems which are then 
solved by using the operational matrices approach. The efficiency and advantage 
of the developed numerical method are highlighted by comparing the results 
obtained otherwise in the literature. The construction of the new derivative 
operational matrix of fractional legendre function vectors in the Caputo sense is 
also a part of this research. As applications, we solve several fractional initial 
value problems of multiple orders. The numerical results are displayed in tables 
and plots.  
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Introduction 

Our motivation in this study is to solve the following generalized linear and nonlinear 

fractional differential equations of multiple orders (FDEMO):  

 0 1( ) = [ , ( ), ( ), ( ), , ( )]n
C C C Cy u f u y u y u y u y u

   

 ( )  (0) = , = 0,1, ,k
ky h k m  (1) 

where m – 1 < d ≤ m, 0 10 < < < < <n    , f in general is a non-linear function, and C


 

is a fractional derivative of order d > 0 defined in Caputo sense  

–––––––––––––– 
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Properties of fractional legendre function vectors 

The fractional legendre function vectors (LFV) can be expressed as, see [1]. 
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where 

 0 1( ) =1, ( ) = 2 1FP u FP u u     

Equation (2) can also be written: 
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The orthogonality conditions are:  
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where w(u) = u 
b–1 is a weight function.  

Functions approximation using FLFV 

Any function y(u) ÎL(0,1), can be expanded in the form of fractional LFV: 

 
=0

( ) = ( )k k
k

y u a FP u


  (5) 

Using (4), the series coefficients can be computed: 

 

1

0

= (2 1) ( ) ( ) ( )d , = 0,1,2,k ka k y u FP u w u u k    (6) 

By truncating (5) to M + 1 terms, we have:  

 =0

( ) ( )

= ( )
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 (7) 

where  

 0 1= ( , , , )T
Ma a a  

and  

 0 1 2( ) = [ ( ), ( ), ( ), , ( )]TMu FP u FP u FP u FP u     (8) 
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Operational matrices 

Operational matrices together with spectra tau and spectral collocation methods have 

been frequently used to solve ordinary and partial FDE, [1-5] and references therein. In this 

study, we develop a generalized derivative operational matrix in Caputo sense of fractional 

LFV. The operational matrix developed in [5] is a special case of our developed operational 

matrix for =1 .  

Lemma 1 The fractional derivative of order d > 0 of fractional LFV in Caputo sense 

can be computed by using the following, see [1]: 
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  (9) 

where A¢(s,k)  = 0 when sbÎℝ+ and sb < d. For other cases, A¢(s,k)  = A(s,k).  

The fractional derivative operational matrix of FLFV 

In this section, we develop the generalized derivative operational matrix of fractional 

LFV in Caputo sense.  

Theorem 1 Suppose ( )u  be the fractional LFV as defined in (8), and also suppose d 

> 0, then: 

 ( 1, 1)( ) D ( )C M Mu u 
    (10) 

where Dd is the derivative operational matrix of fractional LFV which elements can be 

computed using:  
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Proof Applying linearity of Caputo derivative on (8), and Lemma 1 we have: 
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Now, the term us b – d can be approximated:  

 ( , )

=0

( )
M

s
r j j

j

u B FP u     (13) 

where  

 

1
1

( , )

0

2
=0

= (2 1) ( ) d

( )! 1
= (2 1) ( 1)

( 1)( )!( !)

s
r j j

j
j r

r

B j FP u u u u

j r
j

s rj r r

   


 

 






 

  





 (14) 

Employing eq. (14) and eq. (13), into eq. (12), we have the required result.  

Decomposition technique 

Set y1 = y in (1), and suppose: 

 1
1 2=C y y


 (15) 

Case 1 If 1 21 <m m    , then we define: 

 2 1
2 3=C y y

 
 (16) 

Claim: 2
3 = .Cy y


 

If 1 = 1,m   then: 

  
1 ( 1) ( 1)2 2 2 2

2 1 1= = = 
m m

C C C C Cy y y y
         

Hence the claim is verified. 

If 1  , then, 1
1(0) = 0,C y


 and as 2 1 <1:    
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Therefore 2 1 2
3 2= = .C Cy y y

  
 

Case 2 Consider 1 21 < .m m     If 1 = 1,m   then define:  

 
1

2
2 3=C y y

 
 (17) 

As 
1 12 1 2 2

2 1 1= . = .
m m

C C C Cy y y
        

If 1 21< < ,m m    then define:  

 1
2 3=

m

C y y


 (18) 

Claim: 
( )

3 = .my y  As 1 ,   then 1
1 2(0) = (0) = 0C y y


 and 10 < <1,m   

 
1 ( ) ( ) ( ) ( )1 1 1 1 1

2 1 RL RL RL1 1 1  = = = = =
m m m m m m m m

C C Cy y D I I y D Iy y y
        

 



Talib, I
 

 

Hence y3 = y(m). Further we define:  

 2
3 4=

m

C y y
 

 (19) 

Claim: 2
4 = .Cy y


 As ( )2 2 2

4 3= = = .
m m m

C C Cy y y y
   

 

The process will be continued until the decomposition of the problem (1) into a system 

of fractional initial value problems (FIVP). 

Test examples 

In this section, the applicability of the method is analyzed by solving various problems 

and comparing their analytical solutions with their approximate solutions obtained using our 

method. In addition to that, the approximate results obtained by using our method are compared 

with the results obtained otherwise in the literature.  

Example 1 Consider the following linear FIVP of multiple orders [6]:  

 
0

0( ) = ( ) ( ) ( ), [0,1], 0 < < 1,

(0) = 0

C Cy u a y u y u x u u

y

     
 (20) 

The source term is given:  

 

3 9
5

2 4
2

5 15
( ) =

132
8

4

u u
x u u


 

 
 
 

 

The exact solution of (20) at = 1, = 1,a   and 0 =1/4  is: 

 2( ) =y u u u  

The problem (20) can be decomposed into a system of FIVP by applying the algorithm 

studied in section Decomposition technique:  

 0
1 2 1( ) = ( ), (0) = 0C y u y u y


 

 0
2 2 1 2( ) = ( ) ( ) ( ), (0) = 0C y u y u y u x u y

 
    (21) 

 

Figure 1. Plots of approximate solution and exact solution of Example 1 at various values of M, and b 
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Table 1. Approximate results of Example 1 at various values of M, and b 

 

Example 2 Consider the following nonlinear FIVP of multiple orders [3]: 

 
20

0( ) = ( ) ( ) ( ), [0,1], 2 < < 3

(0) = 0,  (0) = 0, (0) = 2

C Cy u a y u y u x u u

y y y

     

 
 (22) 

The source term is given: 

 4( ) =x u u  

The exact solution of (22) at d = 3, a = 1, and 0 = 2.5  is: 

 2( ) =y u u  

Table 2. Approximate results of Example 2 are compared with the results obtained  
in, [3] Example 4, at M = 3  

Our method Method in [6], Example 3 

M b L¥  L2 L¥ L2 

3   1 1.6 · 10–3 3.7 · 10–3  –   –  

4 1 3.36 · 10–4 7.40 · 10–4 1.21 · 10–3 5.92 · 10–4 

6 0.5 4.81 · 10–6 5.71 · 10–6  –   – 

8 0.5 2.35 · 10–7 2.87 · 10–7 5.80 · 10–5 2.50 · 10–5 

9 0.5 7.01 · 10–8 8.81 · 10–8  –   – 

16 1 2.13 · 10–12 3.15 · 10–12 2.45 · 10–6 9.89 · 10–7 

u  y(u)  Our method Method in [3]  

0 0 0 0 

0.1 0.01 0.01 0.01 

0.2 0.04 0.04 0.04 

0.3 0.09 0.09 0.09 

0.4 0.16 0.16 0.16 

0.5 0.25 0.25 0.25 

0.6 0.36 0.36 0.36 

0.7 0.49 0.49 0.49 

0.8 0.64 0.64 0.64 

0.9 0.81 0.81 0.81 

1.0 1.0 1.0 1.0 
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