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In this article, we solve numerically the linear and non-linear fractional initial
value problems of multiple orders by developing a numerical method that is based
on the decomposition algorithm coupled with the operational matrices approach.
By means of this, the fractional initial value problems of multiple orders are
decomposed into a system of fractional initial value problems which are then
solved by using the operational matrices approach. The efficiency and advantage
of the developed numerical method are highlighted by comparing the results
obtained otherwise in the literature. The construction of the new derivative
operational matrix of fractional legendre function vectors in the Caputo sense is
also a part of this research. As applications, we solve several fractional initial
value problems of multiple orders. The numerical results are displayed in tables
and plots.
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Introduction

Our motivation in this study is to solve the following generalized linear and nonlinear
fractional differential equations of multiple orders (FDEMO):

cDPy(u) = F[u, y(u).c DOY(U).c DLy(),.... DMy (u)]

y(k)(()):hk, k=01,....,m 1)

wherem-1<5<m, 0< & <§ <...<§, <7, fingeneral is a non-linear function, and D°
is a fractional derivative of order § > 0 defined in Caputo sense
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Properties of fractional legendre function vectors
The fractional legendre function vectors (LFV) can be expressed as, see [1].

s _
) = (2k +1)(2u” -1)

FR/
k+1

k
FPkﬁ(u)——k+1FPk/il(u), k=12, )
where
FR/(u)=1, FRPu)=2u” -1

Equation (2) can also be written:

k
FRS (u) = 2 Asigu” 3)
s=0
The orthogonality conditions are:
1 ; for k=k/,
[FRZ (u)FRY (uyw(u)du = | B2k +1) 4)
0 0, for k=k’

where w(u) = u1 is a weight function.

Functions approximation using FLFV
Any function y(u) € L(0,1), can be expanded in the form of fractional LFV:

V) = Yo PR/ ) ©
Using (4), the series coefficients can be computed:
a = B2k +l)j y(u)FPkﬁ (Ww(u)du, k=0,1,2,--- (6)
0
By truncating (5) to M + 1 terms, we have:

M
~ FP?
y(u) kE:Oak e (u) "

=YTOu)
where
YT = (ao,al,...,aM)
and

O(u) = [FR{ (u), FR’ (u), FRf (u), -, FRE (u)]" ®)
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Operational matrices

Operational matrices together with spectra tau and spectral collocation methods have
been frequently used to solve ordinary and partial FDE, [1-5] and references therein. In this
study, we develop a generalized derivative operational matrix in Caputo sense of fractional
LFV. The operational matrix developed in [5] is a special case of our developed operational
matrix for p=1.

Lemma 1 The fractional derivative of order 6 > 0 of fractional LFV in Caputo sense
can be computed by using the following, see [1]:

I(sp+1) ush-?

k
Seph () = '
¢ D°FRZ(u) Szz;)pxs,k) T(sf—06+1) 9)

where A’y =0 when sfe R, and sf < §. For other cases, A sk = Agsk)-

The fractional derivative operational matrix of FLFV

In this section, we develop the generalized derivative operational matrix of fractional
LFV in Caputo sense.

Theorem 1 Suppose ®(u) be the fractional LFV as defined in (8), and also suppose &
> 0, then:

c DO(u) = D(EM M+ ©U) (10)

where D° is the derivative operational matrix of fractional LFV which elements can be
computed using:

k [5] .
Divsamen) = ;1A(k,j,s)' k=7,~--,M, =01, M (11)
Is

s
and
_S s (K T(sB+1)
Awjs) = ;4)( 1) (k=s)(sN)? T(sB—5+1)

% (1)1 (j+n)! BR2j+1)
(j=n)(r? B(s+r+1)-6

Proof Applying linearity of Caputo derivative on (8), and Lemma 1 we have:

k
SeEpB (i) = gykes (kK +s)! [(sB+1)  sps
CD I:F’k (U) _%1( 1) (k —S)!(S!)2 F(Sﬂ—5+1) u
v (12)

k :@,@J,_l,...’l\ﬂ
BB
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Now, the term u®# ~° can be approximated:
. M
us#d ~ Z:‘JB(“ »FP/ (u) (13)
J:
where

1
B j) = Aj+1)[ FP (u)u* v du
0 (14)

it vy e ()] 1
'B(ZJ+1)§)( b (j-nWr)? B(s+r+1)-6

Employing eq. (14) and eq. (13), into eq. (12), we have the required result.
Decomposition technique
Sety; =y in (1), and suppose:
g
cDyi=vy, (15)
Case 1 If m-1<9 < & <m, then we define:
9,-8
cD? ly, =y, (16)

Claim: y; = CDLgZ y.
If § =m-1 then:

3, —(m-1)
C

9,91 g 9 9
cD? y,=cD?2 D 1)Y1=CDZV1=CDZY

Hence the claim is vsrified.
If §eN, then, ;D1y,(0)=0, andas & -4 <1:

9,-8 3 149 -8 m-9
271 1y, ) = 172 1y(M)
cD (cD1y;)=Dg| R 1

1+m-4 m-39, 9, 3
=Dg.| zyl(m) S 2Y1(m)=cD2y1:cDZY

Therefore y, = D2 1y, = . D2y
Case 2 Consider m—1<9 <m<&,. If 4 =m-1, then define:

9, —91
cD? Y,=Y; (17)

As ;D2 My, =D <D™y, = D2y,
If m-1<3 <m<$,, then define:

92—m+1

-9
¢y, =y (18)
Claim: y; = y™. As & ¢N, then D1y, (0) = y,(0)=0 and 0<m—g <1,

m-4

m-9 4 1+3 —m
Py, = P Py, = 1
c Y2 =c c Y1 = Dg, |

m-39
aul 1yfm) = Dy, |y1(m) - yl(m) - y(m)
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Hence ys = y™. Further we define:

m

9. —
cD? y3=y, (19)
Claim: y, = ¢D2y. As y, = D2 "y, =, D2 "y = D2y,
The process will be continued until the decomposition of the problem (1) into a system
of fractional initial value problems (FIVVP).
Test examples

In this section, the applicability of the method is analyzed by solving various problems
and comparing their analytical solutions with their approximate solutions obtained using our
method. In addition to that, the approximate results obtained by using our method are compared
with the results obtained otherwise in the literature.

Example 1 Consider the following linear FIVP of multiple orders [6]:

D’y =acDOy(W) -y +xw), uelol], 0<% <5< (20)
y(0)=0
The source term is given:

3 9
5u2 > +15\/;u4

X(u) =—+u?
(%)
4
The exact solution of (20) at 5§ =1,a=-1, and &, =1/4 is:

y(u) =u®Ju

The problem (20) can be decomposed into a system of FIVVP by applying the algorithm
studied in section Decomposition technique:

DOy (U) = Y (u), ¥,(0)=0

5-9
cD Oy, (u) =-y,(u) -y, (u) + x(u), y,(0)=0 (21)
1r ‘ 1 1T , 1
y(u) Exact solution W) Exact solution

0.9 Approximate solution at M =7 ¥ 0.9] Approximate solutionat M=7, =04
0.8 Approximate solution at M =5 0.8 . Approximate solutionatM =7, =06
0.7 Approximate solution at M =3 ' 0.7 Approximate solution at M=7, §=0.8
0.6 ’ 0.6
0.5 d 0.5
0.4 d 0.4
0.3 A 0.3 '
0.2 A 0.2 .
0.1 e 0.1} —

[ ] a Ob—s—te—2er?

0 01 02 03 04 05 06 07 08 O.QU 1 0 01 02 03 04 05 06 07 08 09 u1

Figure 1. Plots of approximate solution and exact solution of Example 1 at various values of M, and g
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Table 1. Approximate results of Example 1 at various values of M, and g

Our method Method in [6], Example 3
M B L* L2 L” L2
3 1 1.6-10°3 3.7-103 - -
4 1 3.36-10* 7.40 - 10 1.21-10°3 5.92-10*
6 0.5 4.81-10° 571-10° - -
8 0.5 2.35-107 2.87-107 5.80 - 105 2.50-10°
9 0.5 7.01-108 8.81-108 - -
16 1 2.13-10% 3.15-10%? 2.45-10° 9.89 - 107

Example 2 Consider the following nonlinear FIVP of multiple orders [3]:
cD°y(U) =acDOy(u) -y (U) +x(u), ue[0l], 2<<5<3 22)
y(0)=0, y'(0)=0, y(0)=2
The source term is given:
x(u)=u*
The exact solution of (22) at6 =3,a=1,and 4 =25 is:
y(u) = u?

Table 2. Approximate results of Example 2 are compared with the results obtained
in, [3] Example 4, at M =3

u y(u) Our method Method in [3]
0 0 0 0
0.1 0.01 0.01 0.01
0.2 0.04 0.04 0.04
0.3 0.09 0.09 0.09
0.4 0.16 0.16 0.16
0.5 0.25 0.25 0.25
0.6 0.36 0.36 0.36
0.7 0.49 0.49 0.49
0.8 0.64 0.64 0.64
0.9 0.81 0.81 0.81
1.0 1.0 1.0 1.0
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