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1. Introduction

In this work, we take into consideration the following nonlinear system of ordinary differential
equation [21]:

f
′′′′

− S (x f
′′′

+ 3 f
′′

− 2 f f
′′

) − M2 f
′′

= 0, x ∈ (0, 1), (1.1)

θ
′′

+ P1(2 f θ
′

− xθ
′

) + P2( f
′′2

+ 12δ2 f
′2

) = 0, (1.2)

subject to the boundary conditions

f (0) = 0, f
′

(0) − β f
′′

(0) = 0, θ(0) − γθ
′

(0) = 0, (1.3)
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f (1) =
1
2
, f

′

(1) + β f
′′

(1) = 0, θ(1) + γθ
′

(1) = 1, (1.4)

where S , P1, P2, δ, β and γ are real finite constants.
We can see these problems in paper production, polymer extraction, aerodynamics,

reaction-diffusion processes, fluid dynamics, biology and rheometry domains. These problems show
up mainly due to the suction and injection effects on the unsteady magneto-hydrodynamic flow [24].

Many methods have been improved for the analytical and approximate solution of nonlinear
ordinary differential systems. These techniques contain finite-difference methods [5, 31–33],
Adams-Bashforth method [20, 23], B-spline approximation method [8], Chebyshev finite difference
method [28], finite element method [6], He’s homotopy perturbation method [27], G′/G- method [22],
multi-step methods [14].

In recent years, much attempt has been done to the newly developed methods to introduce an
analytic and approximate solution of nonlinear boundary value problems [10–13, 15–19, 25]. For
more details see [1–3, 26, 34–37]. In this work, we present an approximate-analytical technique for
solving a coupled system of second and fourth order boundary value problems.

The rest of this paper is organized as follows. In Section 2, an overview of shifted Legendre
polynomials and their relevant properties required henceforward are presented. Also in this section,
we will recall a brief review of the reproducing kernel spaces. In Section 3, we construct an
orthogonal basis in the Legendre reproducing kernel space and construct a reproducing kernel space
which includes boundary conditions. In Section 4, our method to approximate the solution of
nonlinear system via shifted Legendre reproducing kernel basis function is considered. We present the
convergence analysis and error estimation in Section 5. We demonstrate the numerical results in
Section 6. We give the conclusion in the last section.

2. Legendre reproducing kernel functions

In this section, we will recall some basic polynomial functionals and define some new reproducing
kernel functions. The well-known shifted Legendre polynomials are described on [0, 1] and can be
obtained by the following iterative formula

P0(x) = 1, P1(x) = 2x − 1,
(n + 1)Pn+1(x) = (2n + 1)(2x − 1)Pn(x) − nPn−1(x), n ≥ 1. (2.1)

The polynomials Pn(x) are orthogonal on [0, 1] with ρ(x) = 1, in the sense that∫ 1

0
Pn(x)Pm(x)ρ(x)dx = γm,nδm,n, (2.2)

where

γm,n =


0, if m , n,

1, if m = n = 0,
1

2n+1 , if m = n , 0.

We use shifted Jacobi basis functions which provide the homogeneous boundary conditions as:

f (0) = 0 and f (1) = 0.
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Lemma 2.1. Let α, β ≥ 1 and α, β ∈ Z. We have {a j} such that

J−α,−βn (x) =

n∑
j=n−α−β

a jP j(x), n ≥ α + β, (2.3)

where P j(x) are the shifted Legender polynomial of degree j and J−α,−βn (x) is the shifted Jacobi
polynomial on [0, 1]. Then, we have

J−1,−1
n (x) =

2(n − 1)
2n − 1

(Pn−2(x) − Pn(x)), n ≥ 2. (2.4)

Proof. For the proof of Lemma 2.1 ( see [30], Lemma 1.4.3). �

Now, by utilizing the shifted Jacobi basis function and shifted Legendre functions, we will introduce
a reproducing kernel Hilbert space method.

f (0) = f (1) = 0.

Since Pn(1) = 1 and Pn(0) = (−1)n, we have

J−1,−1
n (0) = J−1,−1

n (1) = 0.

Therefore, we describe

un(x) =

√
(n + 2)(2n + 3)

(n + 1)
J−1,−1

n+2 (x), n = 0, 1, 2, ... , (2.5)

and

vn(x) =

√
2n + 1

2
Pn(x), n = 0, 1, 2, ... . (2.6)

Definition 2.2. [10] For a nonempty set E, let H be a Hilbert space of real value functions on some
set E. A function K : E × E −→ R is said to be the reproducing kernel function of H if and only if:

(i) For every y ∈ E, K(·, y) ∈ H.
(ii) For every y ∈ E and f ∈ H, 〈 f (·),K(·, y)〉 = f (y).
Also, a Hilbert space of function H that possesses a reproducing kernel K is a reproducing kernel

Hilbert space; we represent the reproducing kernel Hilbert space and it’s kernel by HK(E) and Ky

respectively.

Theorem 2.3. [7] Let H be n-dimensional Hilbert space, {wi}
n
i=1 is an orthonormal basis of H, then

the reproducing kernel of H as:

Kn(x, y) =

n∑
j=0

w j(x)w j(y), x, y ∈ [0, 1]. (2.7)

Theorem 2.4. ( [29] Theorem 1.24) For the orthonormal system {wn}
∞
n=1, formula (2.7) yields the

Christoffel-Darboux formula:

Kn(x, y) =
kn(wn+1(x)wn(y) − wn(x)wn+1(y))

kn+1(x − y)
. (2.8)
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Where, kn > 0 is the coefficient of xn in wn(x). We get

Kn(x, x) =
kn

kn+1
(w′n+1(x)wn(x) − w′n(x)wn+1(x)). (2.9)

Definition 2.5. Let Hω,K1,n[0, 1] be the weighted inner product space of Jacobi functions described
as (2.5) on [0, 1] with degree less than or equal to n. The inner product and norm are given
respectively by

〈u1, u2〉Hω,K1,n
=

∫ 1

0
u1(x)u2(x)ω(x)dx, ∀u1, u2 ∈ Hω,K1,n[0, 1],

‖u‖Hω,K1,n
= 〈u, u〉

1
2
Hω,K1,n

, ∀u ∈ Hω,K1,n[0, 1],

where ω(x) = (1 − x)−1(1 + x)−1 and K1,n(x, y) the reproducing kernel of Hω,K1,n[0, 1] is constructed
using (2.8) with wn(x) := un(x). From definition

L2
ω[0, 1] = {u :

∫ 1

0
|u(x)|2ω(x)dx < ∞},

for any fixed n, Hω,K1,n[0, 1] is a subspace of L2
ω[0, 1] and

〈u1, u2〉Hω,K1,n
= 〈u1, u2〉L2

ω
, ∀u1, u2 ∈ Hω,K1,n[0, 1].

From Definition 2.5, Hω,K1,n[0, 1] is a finite dimensional inner product space. Every finite
dimensional inner product space is a Hilbert space. Therefore, from this result and Theorem 2.3,
Hω,K1,n[0, 1] is a reproducing kernel Hilbert space.

Definition 2.6. Let HK2,n[0, 1] be the inner product space of Legendre functions described as (2.6) on
[0, 1] with degree less than or equal to n. The inner product and norm are given respectively by

〈v1, v2〉HK2,n
=

∫ 1

0
v1(x)v2(x)dx, ∀v1, v2 ∈ HK2,n[0, 1],

‖v‖HK2,n
= 〈v, v〉

1
2
HK2,n

, ∀v ∈ HK2,n[0, 1],

where the reproducing kernel K2,n(x, y) of HK2,n[0, 1] is constructed using (2.8) with wn(x) := vn(x).
From definition

L2[0, 1] = {v :
∫ 1

0
|v(x)|2dx < ∞},

for any fixed n, HK2,n[0, 1] is a subspace of L2[0, 1] and

〈v1, v2〉HK2,n
= 〈v1, v2〉L2 , ∀v1, v2 ∈ HK2,n[0, 1].
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3. Construction of reproducing kernel spaces

Hω,R1[0, 1] and HR2[0, 1] are described by:

Hω,R1[0, 1] = { f (x) : f (x) ∈ Hω,K1,n[0, 1], f ′(0) − β f ′′(0) = 0, f ′(1) + β f ′′(1) = 0},
HR2[0, 1] = {θ(x) : θ(x) ∈ HK2,n[0, 1], θ(0) − γθ′(0) = 0, θ(1) + γθ′(1) = 0}.

Clearly, Hω,R1[0, 1] and HR2[0, 1] are closed subspaces of Hω,K1,n[0, 1] and HK2,n[0, 1], respectively.
Let T1 f = f ′(0)− β f ′′(0) and T2 f = f ′(1) + β f ′′(1) be the boundary condition of function f (x). Put

R1,1(x, y) = K1,n(x, y) −
T1,xK1,n(x, y)T1,yK1,n(x, y)

T1,xT1,yK1,n(x, y)
, (3.1)

and

R1(x, y) = R1,1(x, y) −
T2,xR1,1(x, y)T2,yR1,1(x, y)

T2,xT2,yR1,1(x, y)
, (3.2)

where, the symbol T1,x shows that the operator T1 implements to the function of x.

Theorem 3.1. If T1,xT1,yK1,n(x, y) , 0 and T2,xT2,yR1,1(x, y) , 0, then R1(x, y) given by (3.2) satisfies
the boundary conditions T1 f = 0 and T2 f = 0 exactly.

Proof. By applying the operator T1,x to R1,1(x, y) in Eq (3.1), we get

T1,xR1,1(x, y) = T1,xK1,n(x, y) −
T1,xK1,n(x, y)T1,xT1,yK1,n(x, y)

T1,xT1,yK1,n(x, y)
= 0. (3.3)

Furthermore, by applying the operator T1,xT2,y to R1,1(x, y), we have

T1,xT2,yR1,1(x, y) = T1,xT2,yK1,n(x, y) −
T2,yT1,xK1,n(x, y)T1,xT1,yK1,n(x, y)

T1,xT1,yK1,n(x, y)
= T1,xT2,yK1,n(x, y) − T2,yT1,xK1,n(x, y) = 0. (3.4)

Then, by applying the operator T1,x to R1(x, y) in Eq (3.2) and using Eqs (3.3) and (3.4), we get

T1,xR1(x, y) = T1,xR1,1(x, y) −
T2,xR1,1(x, y)T1,xT2,yR1,1(x, y)

T2,xT2,yR1,1(x, y)
= 0.

Also, by applying the operator T2,x to R1(x, y) in Eq (3.2), we have

T2,xR1(x, y) = T2,xR1,1(x, y) −
T2,xR1,1(x, y)T2,xT2,yR1,1(x, y)

T2,xT2,yR1,1(x, y)
= 0.

�

Theorem 3.2. [9] If T1,xT1,yK1,n(x, y) , 0 and T2,xT2,yR1,1(x, y) , 0, then, we obtain

R1(x, y) = R1,1(x, y) −
T2,xR1,1(x, y)T2,yR1,1(x, y)

T2,xT2,yR1,1(x, y)
.
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Let T3θ = θ(0) − γθ′ and T4θ = θ(1) + γθ′(1) = 0 be the boundary condition of function θ(x). Put

R2,2(x, y) = K2,n(x, y) −
T3,xK2,n(x, y)T3,yK2,n(x, y)

T3,xT3,yK2,n(x, y)
, (3.5)

and
R2(x, y) = R2,2(x, y) −

T4,xR2,2(x, y)T4,yR2,2(x, y)
T4,xT4,yR2,2(x, y)

. (3.6)

Theorem 3.3. If T3,xT3,yK2,n(x, y) , 0 and T4,xT4,yR2,2(x, y) , 0, then R2(x, y) given by (3.6) satisfies
the boundary conditions T3θ = 0 and T4θ = 0 exactly.

Proof. The proof of this theorem is similar to the proof of Theorem 3.1. �

Theorem 3.4. If T3,xT3,yK2,n(x, y) , 0 and T4,xT4,yR2,2(x, y) , 0, then HR2[0, 1] is a reproducing kernel
space and its reproducing kernel is

R2(x, y) = R2,2(x, y) −
T4,xR2,2(x, y)T4,yR2,2(x, y)

T4,xT4,yR2,2(x, y)
.

Note that Rx(y) = R(x, y), R1,x(y) = R1(x, y) and R2,x(y) = R2(x, y). Henceforth and not to conflict
unless stated otherwise, we denote H[0, 1] = Hω,R1 ⊕ HR2 , L[0, 1] = L2

ω[0, 1] ⊕ L2[0, 1] and Rx(y) =

(R1,x(y),R2,x(y))T .

Definition 3.5. (a) The Hilbert space H[0, 1] is described by:

H[0, 1] = {z = (z1, z2)T : z1 ∈ Hω,R1[0, 1] and z2 ∈ HR2[0, 1]}.

The inner product in H[0, 1] is building as

〈z,w〉H = 〈z1,w1〉Hω,R1
+ 〈z2,w2〉HR2

and the norm is ‖z‖H = ‖z1‖Hω,Kn
+ ‖z2‖HKn

where z,w ∈ H[0, 1].
(b) The Hilbert space L[0, 1] is described by:

L[0, 1] = {z = (z1, z2)T : z1 ∈ L2
ω[0, 1] and z2 ∈ L2[0, 1]}.

The inner product in L[0, 1] is building as

〈z,w〉L = 〈z1,w1〉L2
ω

+ 〈z2,w2〉L2

and the norm is ‖z‖L = ‖z1‖L2
ω

+ ‖z2‖L2 where z,w ∈ L[0, 1].

4. Representation of approximate solutions

We assume
f (x) = F(x) + β1dβ(x) (4.1)

and
θ(x) = Θ(x) + γ1(x + γ), (4.2)

AIMS Mathematics Volume 7, Issue 6, 10651–10670.
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where
β1 =

1
10 + 24β + 24β2 , dβ(x) = 2x3 + (3 + 6β)x2 + (6β + 12β2)x

and γ1 = 1
2γ+1 , then Eqs (1.1) and (1.2) changes to the following problem:

F′′′′ − S xF′′′ + (2S β1dβ(x) − 3S − M2)F′′ + 2S β1cβ(x)F = −2S FF′′ + g1(x),
2P2β1cβ(x)F′′ + 24P2δ

2β1dβ(x)F′ + 2P1γ1F + Θ′′ + P1(2β1dβ(x) − x)Θ′

= −2P1FΘ′ + P2F′′2 + 12P2δ
2F′2 + g2(x),

(4.3)

and the boundary conditions changes to the following conditions:

F(0) = 0, F′(0) − βF′′(0) = 0, Θ(0) − γΘ′(0) = 0, (4.4)
F(1) = 0, F′(1) + βF′′(1) = 0, Θ(1) + γΘ′(1) = 0, (4.5)

where

cβ(x) = 12x + 12β + 6,
g1(x) = −2S β2

1dβ(x)cβ(x) + 12S β1x + M2β1cβ(x),
g2(x) = P1γ1x − 2P1γ1β1dβ(x) − P2β

2
1c2
β(x) − 12P2δ

2β2
1d2

β(x).

Put

L11F = F′′′′ − S xF′′′ + (2S β1dβ(x) − 3S − M2)F′′ + 2S β1cβ(x)F,
L12Θ = 0,
L21F = 2P2β1cβ(x)F′′ + 24P2δ

2β1dβ(x)F′ + 2P1γ1F,

L22Θ = Θ′′ + P1(2β1dβ(x) − x)Θ′,

L =

(
L11 L12

L21 L22

)
, N1(F,Θ) = 2S FF′′,

N2(F,Θ) = 2P1FΘ′ − P2F′′2 − 12P2δ
2F′2,

Φ = (F,Θ)T , Φ
′

= (F
′

,Θ
′

)T and Φ
′′

= (F
′′

, 0)T ,

then,the coupled differential systems of Eqs (1.1) and (1.2) can be written as follows:

LΦ(x) = g(x) − N(Φ(x),Φ
′

(x),Φ
′′

(x)), (4.6)

with boundary conditions:

(
eT

1 Φ(0)
)
e1 = 0,

(
eT

1 Φ′(0)
)
e1 − β

(
eT

1 Φ′′(0)
)
e1 = 0,(

eT
2 Φ(0)

)
e2 − γ

(
eT

2 Φ′(0)
)
e2 = 0,(

eT
1 Φ(1)

)
e1 = 0,

(
eT

1 Φ′(1)
)
e1 + β

(
eT

1 Φ′′(1)
)
e1 = 0,(

eT
2 Φ(1)

)
e2 + γ

(
eT

2 Φ′(1)
)
e2 = 0,

(4.7)

where g = (g1, g2)T , N = (N1,N2)T , Φ ∈ H[0, 1], g − N ∈ L[0, 1], e1 = (1, 0)T , e2 = (0, 1)T and
L : H[0, 1]→ L[0, 1].

Here,
(
eT

1 Φ(i)
)
e1 = (F(i), 0)T and

(
eT

2 Φ(i)
)
e2 = (0,Θ(i))T , i = 0, 1.
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Lemma 4.1. ( [10], Lemma 4.1) The operators L22 : HR2[0, 1] → L2[0, 1] and Li1[0, 1] : Hω,R1 →

L2
ω[0, 1], i = 1, 2, are linear bounded operators.

Theorem 4.2. The operator L : H[0, 1]→ L[0, 1] is bounded linear operator.

Proof. For each Φ ∈ H[0, 1], using Definition 3.5, we have

‖LΦ‖L =

√√
2∑

i=1

‖Li1F‖2Lω + ‖L22Θ‖
2
L

≤

√√
(

2∑
i=1

‖Li1‖‖F‖Hω,R1
)2 + (‖L22‖‖Θ‖HR2

)2

≤

√(
‖L11‖

2 + ‖L21‖
2 + ‖L22‖

2)(‖F‖2Hω,R1
+ ‖Θ‖2HR2

)
≤

√
‖L11‖

2 + ‖L21‖
2 + ‖L22‖

2 ‖Φ‖H.

The boundedness of L22 and Li1 for i = 1, 2, shows that L is bounded. The proof is complete. �

Let D = {xi}
∞
i=1 is countable dense subset in the domain [0, 1], then for any fixed xi ∈ [0, 1], we have

Ψi j(x) :=L∗R(x, xi)e j = L∗Rxi(x)e j = 〈L∗Rxi(x),Rx(y)〉H e j

=〈Rxi(x),LyRx(y)〉Le j = LyRx(y)e j|y=xi

=LyRy(x)e j|y=xi , j = 1, 2, i = 1, 2, 3, ... ,

where L∗ =

(
L∗11 L

∗
21

0 L∗22

)
is the adjoint operator of L and the subscript y in the operator Ly indicates

that the operator L applied to the function y. For any fixed xi ∈ (0, 1), Ψi j(x) ∈ H[0, 1].

Theorem 4.3. If {xi}
∞
i=1 is distinct points dense on [0, 1] and L−1 is existent, then

ImL∗ = Hω,R1([0, 1]) ⊕ HR2([0, 1]), (KerL∗)⊥ = ImL = L2
ω([0, 1]) ⊕ L2([0, 1]).

Proof. Clearly ψi j(x) ∈ Hω,R1([0, 1]) ⊕ HR2([0, 1]). For any Φ ∈ (ImL∗)⊥, since ψi j(x) = L∗Rxi(x)e j, we
have

〈Φ(x), ψi j(x)〉H = 0. (4.8)

On the other hand,

Φ(x) = F(x)e1 + Θ(x)e2 =

2∑
j=1

〈Φ(.),Rx(.)e j〉H e j.

Thus, by Eq (4.8), we get

LΦ(xi) =

2∑
j=1

〈LΦ(y),Rx(y)e j〉H e j = 0, i = 1, 2, . . . .

Note that {xi}
∞
i=1 is dense on [0, 1]. Hence (LΦ)(x) = 0. So from the existence L−1, we have Φ(x) = 0.

That is (ImL∗)⊥ = 0. Therefore ImL∗ = Hω,R1([0, 1])⊕HR2([0, 1]). Similarly, we can show (KerL∗)⊥ =

L2
ω([0, 1]) ⊕ L2([0, 1]). �

AIMS Mathematics Volume 7, Issue 6, 10651–10670.
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Corollary 4.4. For Eqs (1.1)–(1.4), if {xi}
∞
i=1 is distinct points dense on [0, 1] and L−1 is existent, then

{ψi j(x)}(∞,2)
(i, j)=(1,1) is the complete function system of the space H([0, 1]).

By Gram-Schmidt process, we acquire an orthogonal basis {ψi j(x)}(∞,2)
(i, j)=(1,1) of H([0, 1]), such that

ψi j(x) =

i∑
l=1

j∑
k=1

α
i j
lkψi j(x), i = 1, 2, ... , j = 1, 2,

where αi j
lk represents orthogonal coefficients, which are given by the following relations [4]:

α
1 j
1k =

1
‖ψ1k‖H

, α
i j
lk =

1

ai j
lk

, l = i , 1,

α
i j
lk = −

1

ai j
lk

l−1∑
s=i

cs j
lkα

i j
sk, l < i,

such that ai j
lk =

√
‖ψlk‖

2
H −

∑l−1
s=i(c

s j
lk )2 and cs j

lk = 〈ψlk, ψsk〉
2
H
.

Lemma 4.5. Let {ψi j(x)}(∞,2)
(i, j)=(1,1) be an orthonormal basis of H then we have

R(x, y) =

∞∑
i=1

2∑
j=1

ψi j(x)ψi j(y).

Proof. Let g ∈ H, then

〈g(y),R(x, y)〉H = 〈g(y),
∞∑

i=1

2∑
j=1

ψi j(x)ψi j(y)〉H

=

∞∑
i=1

2∑
j=1

〈g(y), ψi j(y)〉Hψi j(x)

= g(x).

�

Theorem 4.6. If {xi}
∞
i=1 is dense on [0, 1] and L−1 is existent, then the solution of Eq (4.6) satisfies the

form

Φ(x) =

∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lkGk(xl,Φ(xl),Φ

′

(xl),Φ
′′

(xl))ψi j(x) (4.9)

where
G(x,Φ(x),Φ

′

(x),Φ
′′

(x)) = g(x) − N(Φ(x),Φ
′

(x),Φ
′′

(x)) = (G1,G2)T .

Proof. Since {ψi j(x)}(∞,2)
(i, j)=(1,1) is orthonormal system,Φ(x) is expressed as
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Φ(x) = 〈Φ(y),R(x, y)〉H

= 〈Φ(y),
∞∑

i=1

2∑
j=1

ψi j(x)ψi j(y)〉H

=

∞∑
i=1

2∑
j=1

〈Φ(y), ψi j(y)〉Hψi j(x)

=

∞∑
i=1

2∑
j=1

〈Φ(y),
i∑

l=1

j∑
k=1

α
i j
lkψlk(y)〉Hψi j(x)

=

∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lk〈Φ(y), ψlk(y)〉Hψi j(x)

=

∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lk〈Φ(y),L∗rlk(y)〉Hψi j(x)

=

∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lk〈LΦ(y), rlk(y)〉Lψi j(x)

=

∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lkGk(xl,Φ(xl),Φ

′

(xl),Φ
′′

(xl))ψi j(x),

where rlk(y) = Rxl(y)ek.This completes the proof. �

Now, let

HN[0, 1] = S pan{ψ11, ψ12, ψ21, ψ22, . . . , ψN1, ψN2}.

Define H[0, 1]−orthogonal projection TN : H[0, 1]→ HN[0, 1] such that for Φ ∈ H[0, 1],

〈TNΦ − Φ, ζ〉H = 0, ∀ζ ∈ HN[0, 1],

or equivalently,

TNΦ =

N∑
i=1

2∑
j=1

〈Φ, ψi j〉ψi j.

Then, we get the approximate solution as:

ΦN(x) =

N∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lkGk

(
xl,Tl−1Φ(xl), (Tl−1Φ)

′

(xl), (Tl−1Φ)
′′

(xl)
)
ψi j(x). (4.10)

Here, T0Φ(x) is any fixed function in H([0, 1]).
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5. Convergence and error estimation

Theorem 5.1. Assume that the problem (4.6) has a unique solution. If {xi}
∞
i=1 is dense on [0, 1], then

ΦN(x) in (4.10) is convergence to the Φ(x) and for any fixed Φ0(x) ∈ H([0, 1]), ΦN(x) is also
represented by

ΦN(x) =

N∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lkGk(xl,Φ(xl),Φ

′

(xl),Φ
′′

(xl))ψi j(x). (5.1)

Proof. We have

LΦN(x) =

N∑
i=1

2∑
j=1

βi jLψi j(x),

where

βi j =

i∑
l=1

j∑
k=1

α
i j
lkGk

(
xl,Tl−1Φ(xl), (Tl−1Φ)

′

(xl), (Tl−1Φ)
′′

(xl)
)
.

Then for s ≤ N and p ≤ 2, we have

(LΦN)p(xs) =

N∑
i=1

2∑
j=1

βi j〈Lψi j(x), rsp(x)〉H

=

N∑
i=1

2∑
j=1

βi j〈ψi j(x),L∗rsp(x)〉H

=

N∑
i=1

2∑
j=1

βi j〈ψi j(x), ψsp(x)〉H.

Therefore

s∑
s′=1

p∑
p′=1

β
i j
s′ p′

(LΦN)p′ (xs′ ) =

N∑
i=1

2∑
j=1

βi j

〈
ψi j(x),

s∑
s′=1

p∑
p′=1

β
i j
s′ p′
ψs′ p′ (x)

〉
H

=

N∑
i=1

2∑
j=1

βi j〈ψi j(x), ψs′ p′ (x)〉H

= βsp.

If s = 1, we get

(LΦN) j(x1) = G j
(
x1,T0Φ(x1), (T0Φ)

′

(x1), (T0Φ)
′′

(x1)
)
, j = 1, 2,

that is,
LΦN(x1) = G

(
x1,T0Φ(x1), (T0Φ)

′

(x1), (T0Φ)
′′

(x1)
)
.

For s = 2, we have

(LΦN) j(x2) = G j
(
x2,T1Φ(x2), (T1Φ)

′

(x2), (T1Φ)
′′

(x2)
)
, j = 1, 2,
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that is,
LΦN(x2) = G

(
x2,T1Φ(x2), (T1Φ)

′

(x2), (T1Φ)
′′

(x2)
)
.

Hence it can be obtained by induction,

LΦN(xn) = G
(
xn,Tn−1Φ(xn), (Tn−1Φ)

′

(xn), (Tn−1Φ)
′′

(xn)
)
.

Since {xn}
∞
n=1 is dense, for any x ∈ [0, 1] there exists a subsequence {xni}

∞
i=1 such that xni → x, as i→ ∞.

Then, we reach:

lim
i→+∞
LΦN(xni) = lim

i→+∞
G
(
xni ,Tni−1Φ(xni), (Tni−1Φ)

′

(xni), (Tni−1Φ)
′′

(xni)
)

= G
(
x,Φ(x),Φ

′

(x),Φ
′′

(x)
)

= LΦ(x).

(5.2)

Moreover, according to (4.10) we have

lim
s→+∞

LΦN(xns) (5.3)

= lim
s→+∞

N∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lkGk

(
xl,Tl−1Φ(xl), (Tl−1Φ)

′

(xl), (Tl−1Φ)
′′

(xl)
)
Lψi j(xns)

=

+∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lkGk

(
xl,Tl−1Φ(xl), (Tl−1Φ)

′

(xl), (Tl−1Φ)
′′

(xl)
)
Lψi j(x)

= lim
N→+∞

L
N∑

i=1

2∑
j=1

i∑
l=1

j∑
k=1

α
i j
lkGk

(
xl,Tl−1Φ(xl), (Tl−1Φ)

′

(xl), (Tl−1Φ)
′′

(xl)
)
Lψi j(xns)

= lim
N→+∞

LΦN(x). (5.4)

So, from Eqs (5.2) and (5.3), we conclude that

lim
N→+∞

LΦN(x) = LΦ(x). (5.5)

Thus, we obtain
lim

N→+∞
ΦN(x) = L−1 lim

N→+∞

(
LΦN(x)

)
= L−1

(
Φ(x)

)
= Φ(x).

�

Theorem 5.2. Let Φn(x) = (Fn(x),Θn(x))T be approximate solution that has obtained from the present
method in the space H[0, 1] and Φ(x) = (F(x),Θ(x))T be exact solution for the differential
equation (4.6) with boundary conditions (4.7). Also, assume that xn → x (n → ∞), ‖Φn‖H is bounded
and G(t,Φ(t),Φ′(t),Φ′′(t)) is continuous for t ∈ [0, 1], then

G(xn,Φn−1(xn),Φ′n−1(xn),Φ′′n−1(xn))→ G(x,Φ(x),Φ′(x),Φ′′(x)),

as n→ ∞.
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Proof. For any x ∈ [0, 1], using the boundedness of ‖∂i
xR1(x, y)‖Hw,R1

(i = 0, 1, 2) and reproducing
property of R1(x, y), we have

‖F(i)
n (x) − F(i)(x)‖ =‖(Fn(x) − F(x))(i)‖ = |∂i

x〈Fn(y) − F(y),R1(x, y)〉Hw,R1
|

=|〈Fn(y) − F(y), ∂i
xR1(x, y)〉Hw,R1

|

≤‖Fn − F‖Hw,R1
‖∂i

xR1(x, y)‖Hw,R1

≤αi‖Fn − F‖Hw,R1
→ 0, (5.6)

where for i = 0, 1, 2, αi are positive constants.
Similarly, for each x ∈ [0, 1] and i = 0, 1, we get

‖Θ(i)
n (x) − Θ(i)(x)‖ =‖(Θn(x) − Θ(x))(i)‖ = |∂i

x〈Θn(y) − Θ(y),R2(x, y)〉HR2
|

=|〈Θn(y) − Θ(y), ∂i
xR2(x, y)〉HR2

|

≤‖Θn − Θ‖HR2
‖∂i

xR2(x, y)‖HR2

≤βi‖Θn − Θ‖HR2
→ 0, (5.7)

where for i = 0, 1, 2, βi are positive constants.
Furthermore, if Φ ∈ H[0, 1], then Φ(x) = (F(x),Θ(x))T where F(x) ∈ Hw,R1[0, 1] and Θ(x) ∈

HR2[0, 1]. Thus for i = 0, 1, 2, we have

‖Φ(i)
n (x) − Φ(i)(x)‖ =

√
|F(i)

n (x) − F(i)(x)|2 + |Θ
(i)
n (x) − Θ(i)(x)|2

=
√
α2

i ‖F
(i)
n (x) − F(i)(x)‖2

Hw,R1
+ β2

i ‖Θ
(i)
n (x) − Θ(i)(x)‖2

HR2
→ 0. (5.8)

Note that, since Φn ∈ H[0, 1], exist a constant c1 such that

|Φ′n−1(x)| ≤ c1, ∀x ∈ [0, 1].

Therefore

|Φn−1(xn) − Φ(x)| =|Φn−1(xn) − Φn−1(x) + Φn−1(x) − Φ(x)|
=|Φn−1(xn) − Φn−1(x)| + |Φn−1(x) − Φ(x)|
=|Φ′n−1(y1)||xn − x| + |Φn−1(x) − Φ(x)| → 0, as n→ ∞, (5.9)

where y1 lies between xn and x. Now will show that Φ′n−1(xn) → Φ′(x). Since Φn(x) ∈ H[0, 1], exist a
constant c2 such that |Φ′′n−1(x)| ≤ c2, so we get

|Φ′n−1(xn) − Φ′(x)| =|Φ′n−1(xn) − Φ′n−1(x) + Φ′n−1(x) − Φ′(x)|
=|Φ′n−1(xn) − Φ′n−1(x)| + |Φ′n−1(x) − Φ′(x)|
=|Φ′′n−1(y2)||xn − x| + |Φ′n−1(x) − Φ′(x)| → 0, as n→ ∞, (5.10)

where y2 lies between xn and x. Similarly, we can write

|Φ′′n−1(xn) − Φ′′(x)| → 0, as n→ ∞.

Now, from the continuation of G(t,Φ(t),Φ′(t),Φ′′(t)), it is implies that

G(xn,Φn−1(xn),Φ′n−1(xn),Φ′′n−1(xn))→ G(x,Φ(x),Φ′(x),Φ′′(x)), as n→ ∞.

�
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6. Numerical experiment

In this section, some illustrative examples demonstrate the applicability, efficiency and utility of the
proposed technique. The computations associated with the examples were performed using Maple16
on a personal computer.

Let us consider Eqs (1.1)–(1.4), using the shifted Legendre reproducing kernel Hilbert space
method. We apply the technique on this problem with N = 12 and

xi = −
1
2

cos(
iπ
N

) +
1
2
, i = 0, 1, 2, ...,N − 1.

Table 1 demonstrate the obtained solutions of f ′′(x) and at x = 1 for various values of S , M, β and
compares the results with homotopy analysis method (HAM) presented in [21]. Table 2 demonstrates
the approximate solutions of velocity θ′(x) at x = 1 with N = 12 and P1 = M = P2 = 1.0, δ = 0.1 for
different values of S , β, γ and compares the result with the HAM presented in [21]. In [21], there is no
analysis about the convergence or error estimate of results, whereas in the current work we discussed
about the convergence of method and residual errors. Hence, we can claim from the error analysis
that out obtained results are more accurate than [21]. For example, the result of θ′(1) with respect to
S = 4.00 in [21] is 0.281319, but in the present techniqe we get 0.2880499297. It is evident that there
is little difference between the obtained results, which the present method gives more accurate results.

Table 1. Values of − f ′′(1) for different values of S , M and β.

S M β Hussain et al. [21] Present
1.00 1.00 0.00 3.180310 3.1803102750

0.05 2.414897 2.4148967196
0.10 1.945943 1.9459433694
0.15 1.629328 1.6293275195
0.20 – 1.4012474830
0.50 – 0.7614007594
1.00 – 0.4322969902

0.00 0.10 1.928044 1.9280441735
2.00 1.997081 1.9970814583
3.00 2.074769 2.0747689044

2.00 1.00 1.994008 1.9940077672
3.00 2.038898 2.0388977767
0.10 – 1.8996168697
0.50 – 1.9205892930
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Table 2. Results of θ′(1) for various values of S , β and γ with P1 = M = P2 = 1.0 and
δ = 0.1.

S β γ Hussain et al. [21] Present
1.00 0.10 0.00 0.415935 0.4159351994

0.01 0.396709 0.3967094545
0.05 0.326735 0.3267347576
0.10 0.252278 0.2522783590
0.50 – -0.0766615072

0.00 0.10 -0.687930 -0.6879304850
0.01 -0.514271 -0.5142710439
0.02 -0.368998 -0.3689980708
0.03 -0.246254 -0.2462544541
0.10 – 0.2522783590
0.50 – 0.7301443477
1.00 – 0.7892670209

2.00 0.10 0.263761 0.2637611894
3.00 0.273318 0.2733180923
4.00 0.281319 0.2880499297
0.10 – 0.2399056923
0.20 – 0.2413894057
0.50 – 0.2456708266

The effect of Hartmann number M on the radial velocity f ′(x) is exhibited in Figure 1. The radial
velocity f ′(x), decreased for higher values of the Hartmann number on 0.24 ≤ x ≤ 0.76. The influence
of parameter β on f ′(x) is plotted in Figure 2 with M = S = 1.0. This Figure suggests that the f ′(x)
show decreasing behavior with an increase in β. Figures 3 and 4 display the temperature profiles θ(x)
for the various embedded parameters viz thermal slip parameter γ and Eckert number P2 on interval
[0, 1]. It is seen that when γ = 0, which corresponds to no thermal slip, the temperature of the fluid
and that of the disks surfaces is the same, which in this case is 0 and 1 for lower and upper disks,
respectively.

Since the exact solution of problems (1.1)–(1.4) is not known, we discuss the absolute residual error
function which is a measure of how well the approximation satisfies the Eq (4.6) with S = P1 = M =

P2 = 1.0 and β = γ = δ = 0.1 as

Res(x) = |LΦ(x) + N(Φ(x),Φ
′

(x),Φ
′′

(x)) − g(x)|.

Note that the norm 2 of the residual function on the domain is

‖Res‖2 = (
∫ 1

0
|Res(x)|2dx)

1
2 ,

and it is employed in this paper to check the accuracy and the convergence of the proposed method.
The absolute residual errors are plotted in Figure 5.
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Figure 1. Influence of magnetic parameter M on the radial velocity f ′(x) for values of
S = 1.0 and β = 0.1.

Figure 2. Influence of parameter β on the radial velocity f ′(x) for values of S = 1.0 and
M = 1.0.

Figure 3. Influence of thermal slip parameter γ on the temperature profile θ(x) for values of
S = M = P1 = 1.0, β = δ = 0.1 and P2 = 0.0.
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Figure 4. Influence of parameter P2 on the temperature profile θ(x) for values of P1 = S =

M = 1.0 and β = γ = δ = 0.1.

Figure 5. Residual errors f ′(x) and θ(x), with S = P1 = M = P2 = 1.0 and β = γ = δ = 0.1,
respectively (from left to right).

7. Conclusions and perspectives

In this paper, the shifted Legendre reproducing kernel method is employed to compute
approximate solutions of a nonlinear system of ordinary differential equation. In this approach, a
truncated series based on shifted Legendre reproducing kernel functions with easily computable
components. The convergence analysis and error estimation of the approximate solution using the
proposed method are investigated. The validity and applicability of the method is demonstrated by
solving several numerical examples. The main advantage of the present method lies in the lower
computational cost and high accuracy. System of differential equations appear in various branches of
science and technology. Results of current study show that the shifted Legendre reproducing kernel
method is a reliable technique for the physical models in the system of differential equations form.
Moreover, this method could be developed for systems of differential equations with fractional order
derivatives or system of integro-differential equations.
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