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In this paper, a new numerical technique is proposed for the simulations of advection-diffusion-reaction type elliptic and
parabolic interface models. The proposed technique comprises of the Haar wavelet collocation method and the finite difference
method. In this technique, the spatial derivative is approximated by truncated Haar wavelet series, while for temporal
derivative, the finite difference formula is used. The diffusion coefficients, advection coefficients, and reaction coefficients are
considered discontinuously across the fixed interface. The newly established numerical technique is applied to both linear and
nonlinear benchmark interface models. In the case of linear interface models, Gauss elimination method is used, whereas for
nonlinear interface models, the nonlinearity is removed by using the quasi-Newton linearization technique. The L∞ errors are
calculated for different number of collocation points. The obtained numerical results are compared with the immersed
interface method. The stability and convergence of the method are also discussed. On the whole, the numerical results show
more efficiency, better accuracy, and simpler applicability of the newly developed numerical technique compared to the
existing methods in literature.

1. Introduction

Interface models play an important role in many disciplines
including electromagnetic wave propagation, material sci-
ence, fluid dynamics, and biological systems. The shared
boundary between the two intervals in case of one-
dimensional domains or between two regions in case of
higher-dimensional domains is known as an interface. These
domains (intervals or regions) are kept together with the help
of suitable jump constraints. These phenomena can be mod-
eled by using partial differential equations (PDEs) or ordinary
differential equations (ODEs), where the parameters in these
differential equations across the interface separating the two
materials or states are discontinuous. Interface model is a

mathematical model which considers two identical or different
materials at different states having a shared boundary. The
example of interface models with same materials in different
states is water and ice, while water and oil is an example of
interface models with different materials [1, 2]. These models
frequently arise in heat conduction, Navier-Stokes flows, crys-
tal growth, wave propagation through nonhomogeneous
media, and models of solidification. Most of the interface
model equations consist of highly varying coefficients [1, 3,
4]. The approximations of various physical and biomedical
models often consist of highly varying coefficients or heteroge-
neous ODE or PDE models [5].

The solution of these models is a challenge for many
standard numerical methods such as finite element method,
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finite volume method, and finite difference method. These
methods have either poor performance or unable to catch
the discontinuity in the solution. Due to the numerous
applications of such type of models, several numerical
methods have been introduced for the solution of these
models with regular and irregular geometries in literature.
Some of the numerical methods are immersed boundary
method (IBM) [6, 7], immersed interface method (IIM) [1,
8], ghost fluid method (GFM) [9], matched interface and
boundary method (MIBM) [10–12], the method based on
the integral equations approach [13], and finite element
methods [14–17].

Recently, wavelet analysis has got much popularity in the
approximation theory. Different wavelets and approximat-
ing functions are introduced for approximation purpose.
Wavelets have simple and fast algorithms, which result bet-
ter approximation. Among all these wavelets, Haar wavelet
has got great importance due to their simplicity and applica-
tions. Haar wavelet contains piecewise constant box func-
tions. The Haar wavelet collocation method (HWCM) got
attention of many authors due their simple nature, proper-
ties of orthogonality, and compact support. The Haar wave-
let contains piecewise constant functions; therefore,
complicated models can be approximated very easily using
these wavelets. Besides, several types of boundary conditions
including local and nonlocal conditions can be utilized. Var-
ious applications of HWCM in the approximation theory
can be seen in [18–27]. Some of the recent work using Haar
wavelets is given in [28–36].

In this article, a new approach based on Haar wavelet
and finite difference method is developed for the numerical
solution of advection-diffusion-reaction type elliptic and
parabolic interface models.

The article is organized as follow. In Section 3, definition
of the Haar wavelet and their integrals are presented. In Sec-
tion 4, construction of the newly proposed numerical
method based on Haar wavelet and FDM is given. The con-
vergence and stability analysis of the proposed numerical
method are discussed in Sections 5 and 6. In Section 7,
numerical validation of the method is given. In the last sec-
tion, conclusion is presented.

2. Governing Models

2.1. Elliptic Interface Model. Consider the following forms of
linear and nonlinear elliptic interface models:

α ηð Þvη ηð Þ − β ηð Þvη ηð Þ� �
η
+ σ ηð Þv ηð Þ = f ηð Þ, a < η < b, ð1Þ

ψ vηη ηð Þ, vη ηð Þ, v ηð Þ, α ηð Þ, β ηð Þ, σ ηð Þ, η� �
= f ηð Þ, a < η < b:

ð2Þ

At the interface point η = ζ, the interval I = ½a, b� is
divided into two subintervals I1 = ½a, ζ� and I2 = ½ζ, b�. The

functions involved in Equations (1) and (2) are of the form

α ηð Þ, β ηð Þ, v ηð Þ, σ ηð Þ, f ηð Þð Þ

=
α1 ηð Þ, β1 ηð Þ, v1 ηð Þ, σ1 ηð Þ, f1 ηð Þð Þ, for η ∈ I1,

α2 ηð Þ, β2 ηð Þ, v2 ηð Þ, σ2 ηð Þ, f2 ηð Þð Þ, for η ∈ I2:

(

ð3Þ

The Dirichlet boundary conditions at boundary points
η = a and η = b are given by

v að Þ = γ1,
v bð Þ = γ2:

ð4Þ

The following interface conditions are considered at the
interface point η = ζ:

v½ �ζ = v2 ζð Þ − v1 ζð Þ = μ1, ð5Þ

α − βvη
� �

ζ
= α2 − β2 ζð Þv2η ζð Þ� �

− α1 − β1 ζð Þv1η ζð Þ� �
= μ2,

ð6Þ
where f1ðηÞ, α1ðηÞ > 0, β1ðηÞ > 0, and σ1ðηÞ ≥ 0 and f2ðηÞ,
α2ðηÞ > 0, β2ðηÞ > 0, and σ2ðηÞ ≥ 0 are known functions
defined on I1 and I2, respectively.

2.2. Parabolic Interface Model. The following forms of linear
and nonlinear parabolic interface models are considered:

vt η, tð Þ + α η, tð Þvη η, tð Þ = β η, tð Þvη η, tð Þ� �
η
− σ η, tð Þv η, tð Þ + f η, tð Þ, a

< η < b, 0 ≤ t ≤ 1,
ð7Þ

ψ vt η, tð Þ, vηη η, tð Þ, vη η, tð Þ, v η, tð Þ, α η, tð Þ, β η, tð Þ, σ η, tð Þ, η, t� �
= f η, tð Þ, a < η < b, 0 ≤ t ≤ 1:

ð8Þ
The interface point η = ζ divides the interval I into two

subintervals I1 and I2, where I, I1, and I2 are the same as
given in the above elliptic problem. The functions involved
in Equations (7) and (8) are of the following form:

α η, tð Þ, β η, tð Þ, v η, tð Þ, σ η, tð Þ, f η, tð Þð Þ

=
α1 η, tð Þ, β1 η, tð Þ, v1 η, tð Þ, σ1 η, tð Þ, f1 η, tð Þð Þ, for η ∈ I1,

α2 η, tð Þ, β2 η, tð Þ, v2 η, tð Þ, σ2 η, tð Þ, f2 η, tð Þð Þ, for η ∈ I2:

(

ð9Þ

Subject to the following initial and Dirichlet boundary
conditions points η = a and η = b,

v η, 0ð Þ = v0 ηð Þ, on I,
v a, tð Þ = γ1 tð Þ,
v b, tð Þ = γ2 tð Þ:

ð10Þ
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The following interface conditions are considered at the
interface point η = ζ:

v½ �ζ = v2 ζ, tð Þ − v1 ζ, tð Þ = μ1 tð Þ, ð11Þ

α − βvη
� �

ζ
= α2 ζ, tð Þ − β2 ζ, tð Þv2η ζ, tð Þ� �

− α1 ζ, tð Þ − β1 ζ, tð Þv1η ζ, tð Þ� �
= μ2 tð Þ:

ð12Þ
The functions f1ðηÞ, α1ðηÞ > 0, β1ðηÞ > 0, and σ1ðηÞ ≥ 0

and f2ðηÞ, α2ðηÞ > 0, β2ðηÞ > 0, and σ2ðηÞ ≥ 0 are smooth
functions defined on I1 and I2, respectively.

3. Haar Wavelets

The ith wavelet of the Haar family over ½0, 1Þ is defined as
[37]

hi ηð Þ =
1 for η ∈ δ1, δ2½ Þ,
−1 for η ∈ δ2, δ3½ Þ,
0 elsewhere,

8>><
>>: i = 2, 3,⋯, ð13Þ

where

δ1 =
k
m
,

δ2 =
k + 0:5
m

,

δ3 =
k + 1
m

:

ð14Þ

In the above equations, m and k are integers such that
m = 2j, j = 0, 1,⋯, and k = 0, 1,⋯,m − 1. The level of the
resolution of the Haar wavelet and the translation parameter
are represented by the integers j and k, respectively. For
approximation purposes, we consider a maximal value J of
the integer j. The integer J is then called maximal level of
resolution. We also define M = 2J . The equation i =m + k
+ 1 shows the relation among i, m, and k. The minimal
and maximal values of i can be obtained from the equation
i =m + k + 1. If m = 1, k = 0, then minimal value is i = 2
and the maximal value is i = 2M = 2J+1. For i = 1, we get h1
ðηÞ, which is known as scaling function for Haar wavelet
family and is defined as

hi ηð Þ =
1 for η ∈ 0, 1½ Þ,
0 elsewhere:

(
ð15Þ

Any square integrable function f ðηÞ over the interval ð
0, 1Þ can be expressed as infinite sum of functions of the
Haar wavelet family as

f ηð Þ = 〠
∞

i=1
aihi ηð Þ: ð16Þ

For approximation purpose, the above series is truncated
to a finite sum in the following manner:

f ηð Þ = 〠
2M

i=1
aihi ηð Þ, ð17Þ

where M is the maximal resolution defined above. All other
members of the Haar family can be obtained from Equation
(13) by the process of dilation and translation. The following
notations are introduced for Haar integrals:

Pi,1 ηð Þ =
ðη
0
hi zð Þdz,

Pi,ν+1 ηð Þ =
ðη
0
pi,ν zð Þdz, ν = 1, 2,⋯:

ð18Þ

These integrals can be calculated utilizing Equation (13)
and are given below.

Pi,n ηð Þ

0 for η ∈ 0, δ1½ Þ,
1
n!

η − δ1ð Þn for η ∈ δ1, δ2½ Þ,
1
n!

η − δ1ð Þn − 2 η − δ2ð Þn½ � for η ∈ δ2, δ3½ Þ,
1
n!

η − δ1ð Þn − 2 η − δ2ð Þn + η − δ3ð Þn½ � for η ∈ δ3, 1½ Þ,
n = 1, 2,:⋯

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð19Þ

where i = 2, 3,⋯. For i = 1, we have

P1,n ηð Þ = ηn

n!
, n = 1, 2, 3,⋯: ð20Þ

4. Numerical Procedure

In this section, formulation of numerical technique both for
elliptic and parabolic advection-diffusion-reaction type
interface models is discussed. The interval of study is consid-
ered to be ½a, b� = ½0, 1�.
4.1. HWCM for Elliptic Model with Single Interface. In this
technique, the higher-order spatial derivative is approxi-
mated by truncated Haar series; the approximate expres-
sions for the lower order derivatives and for the unknown
function are calculated by integration process. The details
of the procedure are given below:

v1ηη ηð Þ = 〠
2M

i=1
aihi ηð Þ, η ∈ I1: ð21Þ

Integrating Equation (21), from η to ζ, we get

v1η = v1η ζð Þ + 〠
2M

i=1
ai pi,1 ηð Þ − pi,1 ζð Þ� �

, η ∈ I1: ð22Þ

3Journal of Function Spaces



Again integrating from 0 to η, we have

v1 ηð Þ = γ1 + ηv1η ζð Þ + 〠
2M

i=1
ai pi,2 ηð Þ − ηpi,1 ζð Þ� �

, η ∈ I1: ð23Þ

Similarly, we can approximate the second function v2ðηÞ
over the second subinterval I2 = ½ζ, 1� as follows:

v2ηη ηð Þ = 〠
2M

i=1
bihi ηð Þ, η ∈ I2: ð24Þ

Integrating Equation (24), we get the expressions v2ðηÞ
and v2ηðηÞ as follows:

v2η ηð Þ = v2η ζð Þ + 〠
2M

i=1
bipi,1 ηð Þ, η ∈ I2, ð25Þ

v2 ηð Þ = γ2 − 1 − ηð Þv2η ζð Þ + 〠
2M

i=1
bi pi,2 ηð Þ − pi,2 1ð Þ� �

, η ∈ I2:

ð26Þ
After substituting the Haar expression, Equations (5)

and (6) become

γ2 − 1 − ζð Þv2η ζð Þ + 〠
2M

i=1
bi pi,2 ζð Þ − pi,2 1ð Þ� � !

− γ1 + ζv1η ζð Þ + 〠
2M

i=1
ai pi,2 ζð Þ − ζpi,1 ζð Þ� � !

= μ1,

ð27Þ

α2 ζð Þ − β2 ζð Þ v2η ζð Þ + 〠
2M

i=1
bipi,1 ζð Þ

 ! !

− α1 ζð Þ − β1 ζð Þ v1η ζð Þ + 〠
2M

i=1
ai pi,1 ζð Þ − pi,1 ζð Þ� � ! !

= μ2:

ð28Þ
The remaining procedure will be explained separately for

both linear and nonlinear cases.

4.1.1. Linear Case. Substituting the values of v1ðηÞ, v1ηðηÞ,
and v1ηηðηÞ in Equation (1) and simplifying, we have

α1 ηð Þ − β1η ηð Þ
� �

v1η ζð Þ + 〠
2M

i=1
ai pi,1 ηð Þ − pi,1 ζð Þ� � !

− β1 ηð Þ〠
2M

i=1
aihi ηð Þ + σ1 ηð Þ γ1 + ηv1η ζð Þ + 〠

2M

i=1
ai pi,2 ηð Þ − ηpi,1 ζð Þ� � !

= f1 ηð Þ, η ∈ I1:
ð29Þ

Similarly, substituting the values of v2ðηÞ, v2ηðηÞ, and

v2ηηðηÞ in Equation (1), we get

α2 ηð Þ − β2η ηð Þ
� �

v2η ζð Þ + 〠
2M

i=1
bipi,1 ηð Þ

 !
− β2 ηð Þ〠

2M

i=1
bihi ηð Þ + σ2 ηð Þ

� γ2 − 1 − ηð Þv2η ζð Þ + 〠
2M

i=1
bi pi,2 ηð Þ − pi,2 1ð Þ� � !

= f2 ηð Þ, η ∈ I2:

ð30Þ

The following discrete points are used for single interface
problem:

ηc′ =

ζ c′ − 0:5
� �

2M , for c′ = 1, 2,⋯, 2M,

ζ + 1 − ζð Þ c′ − 2M − 0:5
� �
2M , for c′ = 2M + 1, 2M + 2,⋯, 4M:

8>>>>><
>>>>>:

ð31Þ

After discretization, we get the subsequent forms of
Equations (29) and (30):

〠
2M

i=1
ai α1 ηj

� �
− β1η ηj

� �� �
pi,1 ηj

� �
− pi,1 ζð Þ

� ��
− β1 ηj

� �
hi η j

� �
+ σ1 ηj

� �
pi,2 ηj

� �
− ηjpi,1 ζð Þ

� ��
+ α1 η j

� �
− β1η η j

� �� �
+ σ1 ηj

� �
ηj

� �
u1η ζð Þ

= f1 ηj

� �
− γ1σ1 ηj

� �
, j = 1, 2,⋯, 2M,

ð32Þ

〠
2M

i=1
bi α2 ηj

� �
− β2η ηj

� �� �
pi,1 ηj

� �
− β2 ηj

� �
hi ηj

� ��
+ σ2 ηj

� �
pi,2 ηj

� �
− pi,2 1ð Þ

� ��
+ α2 ηj

� �
− β2η ηj

� �� ��
− σ2 ηj

� �
1 − ηj

� ��
u2η ζð Þ = f2 ηj

� �
− γ2σ2 ηj

� �
, j

= 2M + 1, 2M + 2,⋯, 4M:

ð33Þ

Equations (32) and (33) combined with Equations (27)
and (28) give a linear system of 4M + 2 equations with 4
M + 2 unknowns ai, i = 1, 2,⋯, 2M, bi, i = 1, 2,⋯, 2M, v1η
ðζÞ, and v2ηðζÞ. We can write the above system in matrix
form as follows:

SX =Q, ð34Þ

4 Journal of Function Spaces



where

S =

s11 ⋯ s1,2M 0 ⋯ 0 s1,4M+1 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

s2M,1 ⋯ s2M,2M 0 ⋯ 0 s2M,4M+1 0
0 ⋯ 0 s2M+1,2M+1 ⋯ s2M+1,4M 0 s2M+1,4M+2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ 0 s4M,2M+1 ⋯ s4M,4M 0 s4M,4M+2

s4M+1,1 ⋯ s4M+1,2M s4M+1,2M+1 ⋯ s4M+1,4M s4M+1,4M+1 s4M+1,4M+2

s4M+2,1 ⋯ s4M+2,2M s4M+2,2M+1 ⋯ s4M+2,4M s4M+2,4M+1 s4M+2,4M+2

2
666666666666666664

3
777777777777777775

,

ð35Þ

X = a1, a2,⋯,a2M, b1, b2,⋯,b2M, v1η ζð Þ, v2η ζð Þ� �T , ð36Þ

Q = q1, q2,⋯q4M+2:½ �T : ð37Þ
The entries of the matrix S are given by

sj,i = α1 ηj

� �
− β1η η j

� �� �
pi,1 η j

� �
− pi,1 ζð Þ

� �
− β1 ηj

� �
hi ηj

� �
+ σ1 ηj

� �
pi,2 ηj

� �
− ηjpi,1 ζð Þ

� ��
1 ≤ i, j ≤ 2M,

sj,i = α2 η j

� �
− β2η ηj

� �� �
pi,1 ηj

� �
− β2 ηj

� �
hi ηj

� �
+ σ2 ηj

� �
pi,2 ηj

� �
− pi,2 1ð Þ

� ��
2M + 1 ≤ i, j ≤ 4M,

sj,4M+1 = α1 ηj

� �
− β1η ηj

� �
+ σ1 η j

� �
η j, 1 ≤ j ≤ 2M,

sj,4M+2 = α2 ηj

� �
− β2η ηj

� �
− σ2 ηj

� �
1 − η j

� �
, 2M + 1 ≤ j ≤ 4M,

s4M+1,i =

− pi,2 ζð Þ − ζpi,1 ζð Þ� �
, for i = 1, 2,⋯, 2M,

pi−2M,2 ζð Þ − pi−2M,2 1ð Þ� �
, for i = 2M + 1, 2M + 2,⋯, 4M,

−ζ, for i = 4M + 1,
− 1 − ζð Þ, for i = 4M + 2,

8>>>>><
>>>>>:

s4M+2,i =

β1 ζð Þ pi,1 ζð Þ − pi,1 ζð Þ� �
, for i = 1, 2,⋯, 2M,

−β2 ζð Þpi−2M,1 ζð Þ, for i = 2M + 1, 2M + 2,⋯, 4M,
β1 ζð Þ, for i = 4M + 1,
−β2 ζð Þ, for i = 4M + 2:

8>>>>><
>>>>>:

ð38Þ

Finally, we obtained the following entries of the matrix Q
:

qj =

f1 ηj

� �
− σ1 ηj

� �
γ1, for j = 1, 2,⋯, 2M,

f2 ηj

� �
− σ2 ηj

� �
γ2, for j = 2M + 1, 2M + 2,⋯, 4M,

μ1 + γ1 − γ2, for j = 4M + 1,
μ2 + α1 ζð Þ − α2 ζð Þ, for j = 4M + 2:

8>>>>>>><
>>>>>>>:

ð39Þ

Equation (34) can be solved by any linear solver in order
to get the unknown Haar coefficients. Now utilizing these

unknown Haar coefficients in Equations (23) and (26), we
can easily obtain the approximate solution of the problem.

4.1.2. Nonlinear Case. In nonlinear case, first we linearize
Equation (2) by using the following quasi-Newton lineariza-
tion technique [38]:

v
dv
dη

� 	n+1
= vn

dv
dη

� 	n+1
+ vn+1

dv
dη

� 	n

− vn
dv
dη

� 	n

: ð40Þ

After linearizing Equation (2), substituting the Haar
approximations for v and its derivatives and then discretiz-
ing, we get

ψ 〠
2M

i=1
aihi ηj

� �
, v1η ζð Þ + 〠

2M

i=1
ai pi,1 η j

� �
− pi,1 ζð Þ

� �
, γ1

 

+ ηjv1η ζð Þ + 〠
2M

i=1
ai pi,2 ηj

� ��
− ηjpi,1 ζð Þ

�
, α1 η j

� �
, β1 η j

� �
, σ1 η j

� �
, η jÞ

= f1 η j

� �
, j = 1, 2,⋯, 2M,

ð41Þ

ψ 〠
2M

i=1
bihi ηj

� �
, v2η ζð Þ + 〠

2M

i=1
bipi,1 ηj

� �
, γ2 − 1 − ηj

� �
v2η ζð Þ

 

+ 〠
2M

i=1
bi pi,2 ηj

� �
− pi,2 1ð Þ

� �
, α2 ηj

� �
, β2 ηj

� �
, σ2 ηj

� �
, ηj

!

= f2 ηj

� �
, j = 2M + 1, 2M + 2,⋯, 4M:

ð42Þ

Equations (41) and (42) along with Equations (27) and
(28) give a linear system of size ð4M + 2Þ × ð4M + 2Þ with
the unknown Haar coefficients ai, i = 1, 2, 3,⋯:,2M, bi, i = 1
, 2, 3,⋯:,2M and the values v1ηðζÞ and v2ηðζÞ. The above
linear system can be solved by using any linear solver.

4.2. HWCM for Parabolic Model with Single Interface. This is
a parabolic interface model. The time derivative is approxi-
mated by using the following forward difference formula:

vt η, tð Þ = v η, tn+1
� �

− v η, tnð Þ
Δt

+ O Δtð Þ: ð43Þ

Now approximating the highest order spatial derivative
v1ηηðη, tÞ over the first subinterval I1 = ½0, ζ� by truncated
Haar series,

v1ηη η, tð Þ = 〠
2M

i=1
aihi ηð Þ, η ∈ I1: ð44Þ

Integrating Equation (44), we get the approximate
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expressions for v1ηðη, tÞ and v1ðη, tÞ as follows:

v1η η, tð Þ = v1η ζ, tð Þ + 〠
2M

i=1
ai pi,1 ηð Þ − pi,1 ζð Þ� �

, η ∈ I1, ð45Þ

v1 η, tð Þ = γ1 tð Þ + ηv1η ζ, tð Þ + 〠
2M

i=1
ai pi,2 ηð Þ − ηpi,1 ζð Þ� �

, η ∈ I1:

ð46Þ

Similarly, approximating v2ηηðη, tÞ over the second sub-
interval I2 = ½ζ, 1� as follows,

v2ηη η, tð Þ = 〠
2M

i=1
bihi ηð Þ, η ∈ I2: ð47Þ

Integrating Equation (47), we obtain the approximate
expressions for v2ηðη, tÞ and v2ðη, tÞ as follows:

v2η η, tð Þ = v2η ζ, tð Þ + 〠
2M

i=1
bipi,1 ηð Þ, η ∈ I2, ð48Þ

v2 η, tð Þ = γ2 tð Þ − 1 − ηð Þv2η ζ, tð Þ + 〠
2M

i=1
bi pi,2 ηð Þ − pi,2 1ð Þ� �

, η ∈ I2:

ð49Þ

Substituting the values of v1ðζ, tÞ, v2ðζ, tÞ, α1ðζ, tÞ, α2ðζ
, tÞ, β1ðζ, tÞ, and β2ðζ, tÞ in Equations (11) and (12), the
interface conditions imply that

γ2 tð Þ − 1 − ζð Þv2η ζ, tð Þ + 〠
2M

i=1
bi pi,2 ζð Þ − pi,2 1ð Þ� � !

− γ1 tð Þ + ζv1η ζ, tð Þ + 〠
2M

i=1
ai pi,2 ζð Þ − ζpi,1 ζð Þ� � !

= μ1 tð Þ,

ð50Þ

α2 ζ, tð Þ − β2 ζ, tð Þ v2η ζ, tð Þ + 〠
2M

i=1
bipi,1 ζð Þ

 ! !

− α1 ζ, tð Þ − β1 ζ, tð Þ v1η ζ, tð Þ + 〠
2M

i=1
ai pi,1 ζð Þ − pi,1 ζð Þ� � ! !

= μ2 tð Þ:
ð51Þ

The remaining procedure is explained for linear and
nonlinear cases separately in the upcoming section.

4.2.1. Linear Case. Substituting Equations (43) and (46) in
Equation (7) and simplifying, we have

1 + Δtσ1 η, tð Þð Þ γ1 tð Þ + ηv1η ζ, tð Þ + 〠
2M

i=1
ai pi,2 ηð Þ − ηpi,1 ζð Þ� � !

+ Δt α1 η, tð Þ − β1η η, tð Þ
� �

v1η ζ, tð Þ + 〠
2M

i=1
ai pi,1 ηð Þ − pi,1 ζð Þ� � !

− Δtβ1 η, tð Þ〠
2M

i=1
aihi ηð Þ = Δt f1 η, tð Þ + v10 ηð Þ, η ∈ I1:

ð52Þ

Similarly by using Equation (43) and Equations
(47)–(49) in Equation (7) and simplifying, we have

1 + Δtσ2 η, tð Þð Þ γ2 tð Þ − 1 − ηð Þv2η ζ, tð Þ + 〠
2M

i=1
bi pi,2 ηð Þ − pi,2 1ð Þ� � !

+ Δt α2 η, tð Þ − β2η η, tð Þ
� �

v2η ζ, tð Þ + 〠
2M

i=1
bipi,1 ηð Þ

 !

− Δtβ2 η, tð Þ〠
2M

i=1
bihi ηð Þ = Δt f2 η, tð Þ + v20 ηð Þ, η ∈ I2:

ð53Þ

The following nodes are defined for interface conditions
at η = ζ:

ηc′ =

ζ c′ − 0:5
� �

2M , for c′ = 1, 2,⋯, 2M ;

ζ + 1 − ζð Þ c′ − 2M − 0:5
� �
2M , for c′ = 2M + 1, 2M + 2,⋯, 4M:

8>>>>><
>>>>>:

ð54Þ

Discretizing, we get the following systems of linear equa-
tions:

〠
2M

i=1
ai 1 + Δtσ1 ηj, t

� �� �
pi,2 ηj

� �
− ηjpi,1 ζð Þ

� ��
+ Δt α1 ηj, t

� �
− β1η ηj, t

� �� �
pi,1 ηj

� �
− pi,1 ζð Þ

� �
− Δtβ1 ηj, t

� �
hi ηj

� ��
+ 1 + Δtσ1 ηj, t

� �� �
ηj + Δt α1 ηj, t

� ���
− β1η ηj, t

� ��
Þv1η ζ, tð Þ = Δt f1 ηj, t

� �
+ v10 tð Þ

− 1 + Δtσ1 ηj, t
� �� �

γ1 tð Þ, j = 1, 2,⋯, 2M,

ð55Þ

〠
2M

i=1
bi 1 + Δtσ2 ηj, t

� �� �
pi,2 η j

� �
− pi,2 1ð Þ

� �
+ Δt α2 η j, t

� �
− β2η η j, t

� �� �
pi,1 ηj

� ��
− Δtβ2 ηj, t

� �
hi ηj

� ��
+ − 1 + Δtσ2 ηj, t

� �� ��
1 − ηj

� ��
+ Δt α2 η j, t

� �
− β2η η j, t

� �� �
v2η ζ, tð Þ

�
= Δt f2 η j, t

� �
+ v20 ηð Þ − γ2 tð Þ 1 + Δtσ2 η j, t

� �� �
, j = 2M + 1, 2M + 2,⋯, 4M:

ð56Þ
Equations (55) and (56) combined with Equations (50)
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and (51) give a linear system of size ð4M + 2Þ × ð4M + 2Þ
with 4M + 2 unknown coefficients ai, i = 1, 2,⋯, 2M, bi, i
= 1, 2,⋯, 2M, v1ηðζ, tÞ, and v2ηðζ, tÞ. In matrix form, the
above system can be written as

SX =Q, ð57Þ

where S and Q are given in Equations (35) and (37), respec-
tively, and

X = a1 tð Þ, a2 tð Þ,⋯,a2M tð Þ, b1 tð Þ, b2 tð Þ,⋯,b2M tð Þ, v1η ζ, tð Þ, v2η ζ, tð Þ� �T
:

ð58Þ

The entries of the matrix S are given by

sj,i = 1 + Δtσ1 ηj, t
� �

pi,2 ηj

� �
− ηjpi,1 ζð Þ

�� �
+ Δt α1 ηj, t

� �
− β1η ηj, t

� �� �
pi,1 ηj

� �
− pi,1 ζð Þ

� �
− Δtβ1 ηj, t

� �
hi ηj

� �
, 1 ≤ i, j ≤ 2M,

sj,i = 1 + Δtσ2 ηj, t
� �� �

pi,2 ηj

� �
− pi,2 1ð Þ

� ��
+ Δt α2 ηj, t

� ��
− β2η ηj, t

� ��
pi,1 ηj

� �
− Δtβ2 ηj, t

� �
hi ηj

� �
, 2M + 1 ≤ i, j ≤ 4M,

sj,4M+1 = 1 + Δtσ1 ηj, t
� �� �

ηj + Δt α1 ηj, t
� �

− β1η ηj, t
� �� �

, 1 ≤ j ≤ 2M,

sj,4M+2 = − 1 + Δtσ2 ηj, t
� �� �

1 − ηj

� �
+ Δt α2 ηj, t

� ��
− β2η ηj, t

� ��
, 2M + 1 ≤ j ≤ 4M,

s4M+1,i =

− pi,2 ζð Þ − ζpi,1 ζð Þ� �
, for i = 1, 2,⋯, 2M,

pi−2M,2 ζð Þ − pi−2M,2 1ð Þ� �
, for i = 2M + 1, 2M + 2,⋯, 4M,

−ζ, for i = 4M + 1,
− 1 − ζð Þ, for i = 4M + 2,

8>>>>><
>>>>>:

s4M+2,i =

β1 ζ, tð Þ pi,1 ζð Þ − pi,1 ζð Þ� �
, for i = 1, 2,⋯, 2M,

−β2 ζ, tð Þpi−2M,1 ζð Þ, for i = 2M + 1, 2M + 2,⋯, 4M,
β1 ζ, tð Þ, for i = 4M + 1,
−β2 ζ, tð Þ, for i = 4M + 2:

8>>>>><
>>>>>:

ð59Þ

Finally, we can write the elements of the matrix Q as fol-
lows:

qj =

Δt f1 ηj, t
� �

+ v10 ηð Þ − 1 + Δtσ1 ηj, t
� �� �

γ1 tð Þ, for j = 1, 2,⋯, 2M,

Δt f2 ηj, t
� �

+ v20 ηð Þ − 1 + Δtσ2 ηj, t
� �

γ2 tð Þ
�

, for j = 2M + 1, 2M + 2,⋯, 4M,

μ1 ζ, tð Þ + γ1 tð Þ − γ2 tð Þ, for j = 4M + 1,
μ2 ζ, tð Þ + α1 ζ, tð Þ − α2 ζ, tð Þ, for j = 4M + 2:

8>>>>>>><
>>>>>>>:

ð60Þ

From Equation (57), we get

X = S−1Q: ð61Þ

Solving system (61) by any linear solver, we obtained the

values of the unknown Haar coefficients ai, i = 1, 2,⋯, 2M,
bi, i = 1, 2,⋯, 2M, v1ηðζ, tÞ, and v2ηðζ, tÞ. By utilizing these
unknown Haar coefficients in Equations (46) and (49), we
can easily obtain the approximate solution of the problem.

4.2.2. Nonlinear Case. In nonlinear interface models first, we
linearize problem (8) by using the following quasi-Newton
Linearization technique [38]:

v
∂v
∂η

� 	n+1
= vn

∂v
∂η

� 	n+1
+ vn+1

∂v
∂η

� 	n

− vn
∂v
∂η

� 	n

: ð62Þ

Now substituting the approximate expressions for
higher-order derivatives, unknown function v, and temporal
derivative in the linearized equation and discretizing, we
obtain the following systems of equations.

ψ v1t ζ, tð Þ, 〠
2M

i=1
aihi ηj

� �
, v1η ζ, tð Þ + 〠

2M

i=1
ai pi,1 ηj

� �
− pi,1 ζð Þ

� �
, γ1 tð Þ + ηjv1η ζ, tð Þ

 

+ 〠
2M

i=1
ai pi,2 ηj

� �
− ηjpi,1 ζð Þ

� �
, α1 η j, t
� �

, β1 ηj, t
� �

, σ1 ηj, t
� �

, ηj, t
!

= f1 η j, t
� �

, j = 1, 2,⋯, 2M,

ð63Þ

ψ v2t ζ, tð Þ, 〠
2M

i=1
bihi ηj

� �
, v2η ζ, tð Þ + 〠

2M

i=1
bipi,1 η j

� �
, γ2 tð Þ

 

− 1 − ηj

� �
v2η ζ, tð Þ + 〠

2M

i=1
bi pi,2 ηj

� ��
− pi,2 1ð Þ�, α2 ηj, t

� �
, β2 η j, t
� �

, σ2 ηj, t
� �

, η j, tÞ

= f2 η j, t
� �

, j = 2M + 1, 2M + 2,⋯, 4M:

ð64Þ
Equations (63) and (64) together with Equations (50)

and (51) give a linear system of size ð4M + 2Þ × ð4M + 2Þ.
Solving the system by any linear solver, we can get the
unknown Haar coefficients. Using these unknown Haar
coefficients, we can easily obtain the approximate solution.

5. Convergence

Lemma 1 [39]. Assume that v ∈ C2ð−∞,∞Þ with jv′j ≤ K , ∀
η ∈ ða, bÞ, K > 0, and v =∑∞

i=0λihiðxÞ, and then, jλij ≤ K
2−ð3j−2Þ/2.

Lemma 2 [39]. Let v ∈ C2ð−∞,∞Þ be continuous on ða, bÞ.
Then, the error norm at Jth level satisfies

EJ



 

2 ≤ K2

12
2−2J , ð65Þ

where jv′j ≤ K , ∀η ∈ ða, bÞ and K > 0, andM is a positive real
number related to the Jth level resolution of the wavelet given
by M = 2J .
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Theorem 3. If vðηÞ is the exact solution and v2MðηÞ is the
approximate solution of Equation (1), the error norm at Jth

level resolution is given by

EJ



 


η
= v − v2M


 

 = O 2−3 2Jð Þ� �

: ð66Þ

Proof. The error estimate of the proposed method at Jth level
resolution is given as

EJ



 


η
= v − v2M


 

 = 〠

∞

i=2M+1
ai pi,2 ηð Þ − ηpi,1 ζð Þ� ������

�����, ð67Þ

which implies that

EJ



 

2
η
=
ð∞
−∞

〠
∞

i=2M+1
ai pi,2 ηð Þ − ηpi,1 ζð Þ� �

, 〠
∞

l=2M+1
al pl,2 ηð Þ − ηpl,1 ζð Þ� �* +

dη
�����

�����
= 〠

∞

i=2M+1
〠
∞

l=2M+1

ðb
a
aial pi,2 ηð Þ − ηpi,1 ζð Þ� �

pl,2 ηð Þ − ηpl,1 ζð Þ� �
dη

�����
�����

≤ 〠
∞

i=2M+1
〠
∞

l=2M+1
aialKi,l

�����
�����,

ð68Þ

where Ki,l = Supi,l
Ð b
aðpi,2ðηÞ − ηpi,1ðζÞÞðpl,2ðηÞ − ηpl,1ðζÞÞdη.

Now, Equation (68) can be written as

EJ



 

2
η
≤ 〠

∞

i=2M+1
ai a2M+1Ki,2M+1 + a2M+2Ki,2M+2+⋯ð Þ�� ��

≤ 〠
∞

i=2M+1
aiKi a2M+1 + a2M+2+⋯ð Þj j, whereKi

= SuplKi,l ≤ 〠
∞

i=2M+1
aiKia2M+1j j + aiKia2M+2j j+⋯ð Þ

≤ 〠
∞

i=2M+1
aiKia2M+1j j + aiKia2M+2j j+⋯ð Þ:

ð69Þ

Now, using Lemmas 1 and 2, inequality (69) can be writ-

ten as

EJ



 

2
η
≤ K

2− 3:2 J+1ð Þ
1 − 2−3/2 〠

∞

i=2M+1
aiKij j ≤ K1K

2− 3:2 J+1ð Þ
1 − 2−3/2 whereK1 = SupKi,

ð70Þ

in which on further simplification and taking squire root, we
get

EJ



 


η
≤

ffiffiffiffiffiffiffiffiffi
K1K

p 2− 3:2 J+1ð Þ
1 − 2−3/2 ≤ O 2−3 2 Jð Þ� �

: ð71Þ

It is concluded that error norm is inversely proportional to
level of the Haar wavelet resolution J . Hence, the error of
the HWCM decreases as J increases, i.e.,

EJ



 


η
⟶ 0asJ ⟶∞,⇒ EJ



 


η
⟶ 0 asM⟶∞: ð72Þ

Theorem 4. If vðη, tpÞ is the exact solution and v2Mðη, tpÞ is
the approximate solution of Equation (7) and if p = 0, 1, 2
⋯ P, where P is a positive integer, then the error norm at
J-th level resolution is given by

Error = EJ



 


η
+ EJ



 


tp
= O 2−3 2Jð Þ� �

+ O Δtð Þ: ð73Þ

Proof. For p = 0, 1, 2⋯ P,

EJ



 


η
= O 2−3 2 Jð Þ� �

, ð74Þ

see Theorem 3.
For time derivatives, we have used first-order finite dif-

ference approximation in Equation (43), so

EJ



 


tp
= O Δtð Þ: ð75Þ

Hence,

Error = EJ



 


η
+ EJ



 


tp
= O 2−3 2 Jð Þ� �

+ O Δtð Þ: ð76Þ
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Figure 1: The stability analysis of the proposed method for different examples at N = 64, Δt = 0:01/32, t = 1, a = 0, and b = 1.
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6. Stability

In this section, we study the computational stability of the
proposed technique. For this purpose, we have observed
the maximum eigenvalues of matrix S at every time step,
which represent the corresponding Haar weights. All the
maximum eigenvalues of matrix S stay away from zero
(see Figure 1), and this leads to a sufficient condition for
the proposed technique to be stable. We can write Equations
(1) and (2) in the form

vt =Lv η, tð Þ + f η, tð Þ, ð77Þ

where L is the operator.

Lvt =
∂
∂η

B η, tð Þ ∂
∂η

� 	
− α η, tð Þ − δ η, tð Þ


 �
v η, tð Þ + f η, tð Þ,

ð78Þ

I − δtLf gv η, tð Þ = v η, t0ð Þ + δt f η, tð Þ, ð79Þ

v η, tð Þ = I − δtLf g−1v η, t0ð Þ + δt I − δtLf g−1 f η, tð Þ:
ð80Þ

Here, t is the next time level and t0 is the previous time
level. After introducing the Haar wavelet, Equation (80) can
be written as

v η, tð Þ = I − δtHf g−1v η, t0ð Þ + δt I − δtHf g−1 f η, tð Þ, ð81Þ

where H is the weight Haar matrix for operator L and I is

the identity matrix. If the maximum eigenvalue of H is λ,
then from Equation (81), the stability condition will be [23,
24]

1
1 − δtλ

≤ 1: ð82Þ

Here, δt is the time step which is always positive, i.e., δ
t > 0. We have discussed the following three different cases
related to Equation (82).

Case 1. If λ = 0, then Equation (82) gives

1
1 − δtλ

= 1
1 = 1, ð83Þ

which is identically satisfied.

Case 2. If λ < 0, i.e., λ = −ξ2, where ξ ∈ℝ, then Equation (82)
gives

1
1 − δtλ

= 1
1 + δtξ2

< 1: ð84Þ

The inequality holds because the denominator is greater
than the numerator.

Case 3. If λ > 0, i.e., λ = ξ2, then Equation (82) gives

1
1 − δtλ

= 1
1 − δtξ2

> 1, ð85Þ

which is does not holds as the denominator is smaller than
the numerator.

Thus, Equation (82) is valid for Cases 1 and 2, which are
verified computationally in Figure 1.

Furthermore, examples (1) and (2) are linear and non-
linear steady problems. Therefore, we have found their
eigenvalues and listed them in Tables 1 and 2. From the
tables, we can observe that all the eigenvalues lie on the left
half of the complex plane. Therefore, systems (34) and (42)
are stable, because we have a result that state that “A system
AX = B will be stable if and only if the real part of all eigen-
values of the matrix A lie on the left half of the complex
plane” [40].

Table 1: Analysis of errors for Example 1.

J N Ec Nð Þ proposed technique CPU time in sec Eigenvalues N IIM Rc Nð Þ
2 16 2:7551 × 10−4 0.454092 -1.7826 20 6:1 × 10−3 1.8275

3 32 7:3171 × 10−5 0.492690 -2.1337 40 1:4 × 10−3 1.9128

4 64 1:8859 × 10−5 0.582250 -2.4974 80 3:2779 × 10−4 1.9560

5 128 4:7873 × 10−6 1.096531 -2.8811 160 7:9702 × 10−5 1.9780

6 256 1:2060 × 10−6 2.806679 -3.2862 320 1:9644 × 10−5 1.9890

Table 2: Analysis of errors for Example 2.

J N
Ec Nð Þ

proposed
technique

CUP time
in sec

Eigenvalues
No. of

iterations
Rc Nð Þ

1 8 7:1012 × 10−4 0.009185 -3.2264 4

2 16 1:9064 × 10−4 0.031301 -3.2264 4 1.8972

3 32 4:9514 × 10−5 0.097082 -3.3663 4 1.9449

4 64 1:2626 × 10−5 0.392260 -3.2264 4 1.9714

5 128 3:1885 × 10−6 1.514269 -3.3663 4 1.9854

6 256 8:0118 × 10−7 6.019626 -3.3577 4 1.9927

7 512 2:0081 × 10−7 23.903250 -3.2264 4 1.9962
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7. Examples and Discussion

This section is devoted to apply HWCM on some bench-
mark test models. These problems include parabolic and
elliptic advection-diffusion-reaction type linear and nonlin-
ear models with single interface conditions. In nonlinear test
models, the quasi-Newton linearization technique given in
[41] is utilized. The initial guess for nonlinear elliptic prob-
lem is taken 0:1 and stopped the iterations when the crite-
rion of convergence 10−5 is satisfied. For calculating
experimental convergence rates, we have used the following
formula:

Rc Tð Þ = Log Ec T /2ð Þ/Ec Tð Þ½ �
Log 2ð Þ , ð86Þ

where EcðT Þ is the maximum absolute error at T colloca-
tion points.

Example 1. Consider the following initial-boundary value
linear elliptic interface model equation [41]:

v1η ηð Þ − η

3 v1η ηð Þ
� �

η
+ v1 ηð Þ = η3

3 , η ∈ 0,0:5½ �,

1
3 v2η ηð Þ − ηv2η ηð Þ

� �
η
+ 2v2 ηð Þ = −8η2 + 2η3, η ∈ 0:5,1ð �,

ð87Þ

with boundary conditions:

v1 0ð Þ = 0,
v2 1ð Þ = 1:

ð88Þ

and interface conditions:

v½ � = 1
3 ,

α − βvη
� �

= −1:
ð89Þ

The exact solution of the test problem is given by

v1 ηð Þ = η

3 , η ∈ 0,0:5½ �,
v2 ηð Þ = η, η ∈ 0:5,1ð �:

ð90Þ
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Figure 2: Comparability of exact and estimated solution for N = 32 (a) and plot of EcðT Þ (b) for Example 1.

Table 3: Analysis of errors for Example 3.

J N Δt
Ec Nð Þ proposed

technique
CPU time
in sec

N IIM

1 8 1/8 1:8394 × 10−3 0.279452 8 3:7 × 10−2

2 16 1/16 7:7251 × 10−4 0.345287 16 7:1 × 10−3

3 32 1/32 3:5115 × 10−4 0.612788 32 1:5 × 10−3

4 64 1/64 1:6775 × 10−4 2.966826 64 3:0 × 10−4

5 128 1/128 8:1976 × 10−5 20.057056 128 1:0 × 10−4

Table 4: Analysis of errors for Example 4.

J N Δt
Ec Nð Þ proposed

technique
CPU time
in sec

N IIM

1 8 0:1/8 1:5 × 10−3 0.395921 8 1:02 × 10−2

2 16 0:1/16 7:5054 × 10−4 0.748104 16 2:4 × 10−3

3 32 0:1/32 3:7709 × 10−4 3.148897 32 6:0 × 10−4

4 64 0:1/64 1:8867 × 10−4 25.324517 64 1:0 × 10−4

5 128 0:1/128 9:4324 × 10−5 194.237104 128 1:0 × 10−4
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Example 2. Consider the following initial-boundary value
nonlinear elliptic interface problem:

v1η ηð Þ − η

v1η
ηð Þ

� 	
η

+ 2v21 ηð Þ = 2η2, η ∈ 0,0:5½ �,

1
3 v2η ηð Þ − 2ηv2η ηð Þ

� �
η
+ 2v22 ηð Þ = e−η

2 22
3 η − 8η3 + 2e−η2

� 	
, η ∈ 0:5,1ð �,

ð91Þ

with boundary conditions:

v1 0ð Þ = 0,
v2 1ð Þ = e−1:

ð92Þ

and interface conditions:

v½ � = e−0:25 −
1
2 ,

α − βvη
� �

= e−0:25 −
1
6 :

ð93Þ

The exact solution of the test problem is given by

v1 ηð Þ = η, η ∈ 0,0:5½ �,
v2 ηð Þ = e−η

2 , η ∈ 0:5,1ð �:
ð94Þ

Example 3. Suppose the following initial-boundary value lin-
ear parabolic problem with single interface conditions [41]:

v1t η, tð Þ + v1η η, tð Þ − η

3 v1η η, tð Þ
� �

η
+ v1 η, tð Þ = −η3

3 sin tð Þ + η3

3 cos tð Þ, η ∈ 0,0:5½ �,

v2t η, tð Þ − ηv2η η, tð Þ
� �

η
= −η3 sin tð Þ + −9η2

� �
cos tð Þ, η ∈ 0:5,1ð �,

ð95Þ

subject to the following initial and boundary conditions:

v1 η, 0ð Þ = η3

3
v1 0, tð Þ = 0,

v2 1, tð Þ = cos tð Þ,

ð96Þ

and interface conditions:

v½ � = 2/3ð Þ 0:5ð Þ3 cos tð Þ,
α − βvη
� �

= −8/3ð Þ 0:5ð Þ3 cos tð Þ − 1:
ð97Þ

The exact solution of the test problem is given by

v1 η, tð Þ = η3

3 cos tð Þ, η ∈ 0,0:5½ �,

v2 η, tð Þ = η3 cos tð Þ, η ∈ 0:5,1ð �:
ð98Þ

Example 4. Consider another initial-boundary value linear
parabolic interface problem [41]:

v1t η, tð Þ + v1η η, tð Þ − η

3 v1η η, tð Þ
� �

η
+ v1 η, tð Þ

= − η + 1ð Þ sin tð Þ + 5
3 + η

� 	
cos tð Þ, η ∈ 0,0:5½ �,

v2t η, tð Þ − ηv2η η, tð Þ
� �

η
= −η sin tð Þ − cos tð Þ, η ∈ 0:5,1ð �,

ð99Þ

with the following initial and boundary conditions:

v1 η, 0ð Þ = η + 1
v1 0, tð Þ = cos tð Þ,
v2 1, tð Þ = cos tð Þ,

ð100Þ

and interface conditions:

v½ � = − cos tð Þ,

α − βvη
� �

= −
1
3 cos tð Þ − 1:

ð101Þ

Table 5: Analysis of errors for Example 5.

J N Δt Ec Nð Þ proposed technique CPU time in sec N IIM

2 16 0:001/16 3:6548 × 10−6 34.662755 20 2:9061 × 10−5

3 32 0:001/32 1:8282 × 10−6 272.116930 40 6:6497 × 10−6

4 64 0:001/64 9:1465 × 10−7 2460.769702 80 1:6343 × 10−6

5 128 0:001/128 4:5753 × 10−7 35500.767379 160 4:0802 × 10−7

Table 6: Analysis of errors Example 6.

J N Δt Ec Nð Þ proposed technique CPU time in sec

1 8 0:1/8 6:0232 × 10−4 0.157302

2 16 0:1/16 1:4666 × 10−4 1.147091

3 32 0:1/32 3:3345 × 10−5 11.147277

4 64 0:1/64 6:8252 × 10−6 81.104287

5 128 0:1/128 1:3904 × 10−6 588.111313
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The exact solution of the test problem is given by

v1 η, tð Þ = η + 1ð Þ cos tð Þ, η ∈ 0,0:5½ �,
v2 η, tð Þ = η cos tð Þ, η ∈ 0:5,1ð �:

ð102Þ

Example 5. Consider another linear parabolic interface
model:

v1t η, tð Þ + v1η η, tð Þ − η

3 v1η η, tð Þ
� �

η
= 2
3 cos tð Þ − η sin tð Þ, η ∈ 0,0:5½ �,

v2t η, tð Þ + v1η η, tð Þ − ηv2η η, tð Þ
� �

η
= − η + 1

2

� 	
sin tð Þ, η ∈ 0:5,1ð �,

ð103Þ

with the subsequent initial conditions and boundary condi-

tions:

v1 η, 0ð Þ = η,
v1 0, tð Þ = 0,

v2 1, tð Þ = 3
2 cos tð Þ,

ð104Þ

and interface conditions:

v½ � = 1
2 cos tð Þ,

α − βvη
� �

= −
1
3 cos tð Þ:

ð105Þ

The exact solution of the test problem is given by

v1 η, tð Þ = η cos tð Þ, η ∈ 0,0:5½ �,

v2 η, tð Þ = η + 1
2

� 	
cos tð Þ, η ∈ 0:5,1ð �:

ð106Þ

0

Exact solution

Approx. solution (HWCM), N = 32, 𝛥t = 0:01

Approx. solution (HWCM), N = 32, 𝛥t = 0:1

Approx. solution (HWCM), N = 64, 𝛥t = 0:001
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û

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

1

x
t

û

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

1

x

t

û
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û

0 6
0.80.5

Figure 3: Comparability of exact and estimated results for Example 3.
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Example 6. Consider the following nonlinear parabolic inter-
face model:

v1t η, tð Þ + v1η η, tð Þ − η

3 v1η η, tð Þ
� �

η
+ v21 η, tð Þ

= −η4e−t −
4
3 η

3e−t + η8e−2t , η ∈ 0,0:5½ �,

v2t η, tð Þ − ηv2η η, tð Þ
� �

η
+ v22 η, tð Þ

= −
1
2 η4 + 1

16

� 	
e−t − 8η3e−t + 1

4 η8 + η4

8 + 1
256

� 	
e−2t , η ∈ 0:5,1ð �,

ð107Þ

subject to the following initial and boundary conditions:

v1 η, 0ð Þ = η4,
v1 0, tð Þ = 0,

v2 1, tð Þ = 17
32 e

−t ,

ð108Þ

and interface conditions:

v½ � = 0,

α − βvη
� �

= −
e−t

24 − 1:
ð109Þ

The exact solution of the test problem is given by

v1 η, tð Þ = η4e−t , η ∈ 0,0:5½ �,

v2 η, tð Þ = 1
2 η4 + 1

16

� 	
e−t , η ∈ 0:5,1ð �:

ð110Þ

In this section, some numerical experiments comprising
linear and nonlinear elliptic and parabolic advection-
diffusion-reaction type interface models have been carried
out, in order to check the efficiency and better accuracy of
the newly proposed numerical technique for these types of
models. First, we have discussed elliptic interface models
and then parabolic interface models.

In the first two linear and nonlinear elliptic interface
models, the errors are decreased to 10-6 and 10-7 even for
small number of grid points. It is worth mentioning that

x

Exact solution

Approx. solution (HWCM), N = 32, 𝛥t = 0:01 Approx. solution (HWCM), N = 64, 𝛥t = 0:001
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Figure 4: Comparability of exact and estimated results for Example 4.
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more accurate numerical results can be obtained if we
increase the number grid points. In Table 1, the absolute
errors for distinct collocation points are listed. The graph
given in Figure 2 also demonstrates that the proposed tech-
nique captures the discontinuity very well, where the other
methods failed to do so. The computational rate of conver-
gence of the proposed method is approaching to 2, which is
theoretically confirmed by Majak et al. [42, 43]. The obtained
results are compared with the immersed interface method
from literature. The comparability shows that the newly pro-
posed technique is efficient and more accurate for elliptic type
interface models than the existing methods. The newly pro-
posed numerical technique is also tested on advection-
diffusion-reaction type parabolic interface models, comprising
of three linear and one nonlinear models. The obtained point
wise absolute errors are mentioned in Tables 3–6. The numer-
ical results are also demonstrated through 3D visualization of
the graphs listed in Figures 3 and 4. From the aforementioned
figures, it is clear that the newly proposed technique handled
the jump discontinuity at 0.5 and 0.7 very well. The approxi-
mate results are compared with the immersed interface
method from the existing literature. The comparability shows
that the proposed technique has better accuracy with simple
implementation.

8. Conclusion

In this article, Haar wavelet collocation technique is utilized
to solve interface models comprising advection-diffusion-
reaction type elliptic and parabolic models with discontinu-
ous coefficients. The newly proposed numerical technique is
applicable to both linear and nonlinear interface models.
The errors are decreased up to 10-6 and 10-7 for small num-
ber of collocation points, which is supposed to be better
accuracy for practical problems. The 3D graphs of the esti-
mated and exact solutions also demonstrate that the newly
proposed technique handle the jump discontinuity very well,
while the other existing techniques failed to capture it. The
stability and convergence of the said numerical technique
are also proved in the convergence and stability sections,
which made the method more powerful. The obtained
results are compared with the immersed interface method.
The comparability shows that the newly proposed technique
is efficient and has better accuracy than immersed interface
method.
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