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4 Department of Mathematics, Çankaya University, Ankara, Turkey
5 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung, Taiwan
6 Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
7 Department of Mathematics and Computer Sciences, Faculty of Science, Menoufia University,

Shebin Elkom 32511, Egypt

* Correspondence: Emails: saimarashid@gcuf.edu.pk, fahd@cankaya.edu.tr.
Abstract: The main objective of the investigation is to broaden the description of Caputo fractional
derivatives (in short, CFDs) (of order 0 < α < r) considering all relevant permutations of entities
involving t1 equal to 1 and t2 (the others) equal to 2 via fuzzifications. Under gH-differentiability, we
also construct fuzzy Elzaki transforms for CFDs for the generic fractional order α ∈ (r − 1, r).
Furthermore, a novel decomposition method for obtaining the solutions to nonlinear fuzzy fractional
partial differential equations (PDEs) via the fuzzy Elzaki transform is constructed. The aforesaid
scheme is a novel correlation of the fuzzy Elzaki transform and the Adomian decomposition method.
In terms of CFD, several new results for the general fractional order are obtained via
gH-differentiability. By considering the triangular fuzzy numbers of a nonlinear fuzzy fractional
PDE, the correctness and capabilities of the proposed algorithm are demonstrated. In the domain of
fractional sense, the schematic representation and tabulated outcomes indicate that the algorithm
technique is precise and straightforward. Subsequently, future directions and concluding remarks are
acted upon with the most focused use of references.

Keywords: fuzzy set theory; Elzaki transform; Adomian decomposition method; nonlinear partial
differential equation; Caputo fractional derivative
Mathematics Subject Classification: 46S40, 47H10, 54H25



14947

1. Introduction

The idea of differential and integral calculus is essential for stronger and more comprehensive
descriptions of natural reality. It aids in the modelling of the early evolution and forecasting the future
of the respective manifestations. Furthermore, thanks to its capability to express more fascinating
ramifications of heat flux [1–3], neural network [4], hydrodynamics [5], circuit theory [6],
aquifers [7], chemical kinetics [8], epidemics [9–11], simulations [12], inequality theory [13–15] and
henceforth. Numerous researchers have subsequently been drawn to the investigation of fractional
calculus [16–22].

Fractional calculus is particularly effective at modelling processes or systems relying on hereditary
patterns and legacy conceptions, and traditional calculus is a restricted component of fractional
calculus. This approach seems to be as ancient as a classical notion, but it has just subsequently been
applied to the detection of convoluted frameworks by numerous investigators, and it has been
demonstrated by various researchers [23–25]. Fractional calculus has been advocated by a number of
innovators [26–29]. Li et al. [30] contemplated a novel numerical approach to time-fractional
parabolic equations with nonsmooth solutions. She et al. [31] developed a transformed method for
solving the multi-term time-fractional diffusion problem. Qin et al. [32] presented a novel scheme to
capture the initial dramatic evolutions of nonlinear sub-diffusion equations. Many scholars analyze
simulations depicting viruses, bifurcation, chaos, control theory, image processing, quantum fluid
flow, and several other related disciplines using the underlying concepts and properties of operators
shown within the framework of fractional calculus [33–40].

Fuzzy set theory (FST) is a valuable tool for modelling unpredictable phenomena. As a result,
fuzzy conceptions are often leveraged to describe a variety of natural phenomena. Fuzzy PDEs are
an excellent means of modelling vagueness and misinterpretation in certain quantities for specified
real-life scenarios, see [41–43]. In recent years, FPDEs have been exploited in a variety of disciplines,
notably in control systems, knowledge-based systems, image processing, power engineering, industrial
automation, robotics, consumer electronics, artificial intelligence/expert systems, management, and
operations research.

Because of its relevance in a wide range of scientific disciplines, FST has a profound correlation
with fractional calculus [44]. Kandel and Byatt [45] proposed fuzzy DEs in 1978, while Agarwal
et al. [46] were the first to investigate fuzziness and the Riemann-Liouville (RL) differentiability
concept via the Hukuhara-differentiability (HD) concept. FST and FC both use a variety of
computational methodologies to gain a better understanding of dynamic structures while reducing the
unpredictability of their computation. Identifying precise analytical solutions in the case of FPDEs is
a complicated process.

Due to the model’s intricacy, determining an analytical solution to PDEs is generally problematic.
As a result, there is a developing trend of implementing mathematical approaches to get an exact
solution. The Adomian decomposition method (ADM) is a prominent numerical approach that is
widely used. Several researchers have employed different terminologies to address FPDEs. Nemati
and Matinfar [47] constructed an implicit finite difference approach for resolving complex fuzzy
PDEs. Also, to demonstrate the competence and acceptability of the synthesized trajectory,
experimental investigations incorporating parabolic PDEs were provided. According to Allahviranloo
and Kermani [48], an explicit numerical solution to the fuzzy hyperbolic and parabolic equations is
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provided. The validity and resilience of the proposed system were investigated in order to
demonstrate that it is inherently robust. Arqub et al. [49] expounded the fuzzy FDE via the
non-singular kernel considering the differential formulation of the Atangana-Baleanu operator.
Authors [50] contemplated the numerical findings of fuzzy fractional initial value problems utilizing
the non-singular kernel derivative operator.

Integral transforms are preferred by investigators when it pertains to identifying results for crucial
difficulties. The Elzaki transformation [51], proposed by T. Elzaki in 2011, was used on the biological
population model, the Fornberg–Whitham Model, and Fisher’s models in [52–54].

The purpose of this study is to furnish a relatively effective Adomian decomposition approach [55]
that can address complex partial fuzzy DEs by leveraging the fuzzy Elzaki transform. It can address
the dynamics of partial fuzzy differential equations by utilizing the fuzzy Elzaki transform. A
revolutionary computational concept is characterized by generating the result of a nonlinear fuzzy
fractional PDE. To solve the nonlinear elements of the equation, the Adomian polynomial [56]
methodology is implemented. The innovative decomposition approach is known as the “fuzzy Elzaki
technique”.

In this research, CFDs of order α ∈ (0, r) for a fuzzy-valued mapping by employing all conceivable
configurations of objects with t1 equal to 1 and t2 (the others) equal to 2 are presented. Also, a new
result in connection between Caputo’s fractional derivative and the Elzaki transform via fuzzification
is also presented. Taking into consideration gH-differentiabilty for a new algorithm, the fuzzy Elzaki
decomposition process, which is intended to generate the parameterized representation of fuzzy
functions, is regarded as a promising technique for addressing fuzzy fractional nonlinear PDEs
involving fuzzy initial requirements. The Elzaki transform, implemented here, is generally a
modification of the Laplace and Sumudu transforms. The varying fractional order and uncertainty
parameter, ℘ ∈ [0, 1], are utilized to reveal a demonstration case for the suggested approach. Both 2D
and 3D models illustrate the test’s superiority to previous approaches. As a result, the new revelation
provides a couple of responses that are very identical to the earlier ones. We do, however, have the
option of selecting the most suitable one. Ultimately, as part of our attempt to close remarks, we
highlighted the information gathered during our investigation.

The following is a synopsis of the persisting sections with regard to introduction and
implementation: Section 2 represents the fundamentals and essential details of fractional calculus and
fuzzy set theory. Problem formulation, implementation, and execution were all used in Section 3.
Section 4 utilized the Caputo fractional derivative formulation via fuzzification in generic order and
some further results. Section 5 utilized numerical algorithms and mathematical debates with some
tabulation and graphical results. Ultimately, Section 6 utilized concluding and future highlights.

2. Preliminaries

This section consists of some significant concepts and results from fractional calculus and FST. For
more details, see [28, 57].

Here, there be a space of all continuous fuzzy-valued mappings CF[ã, b̃] on [ã, b̃]. Moreover, the
space of all Lebesgue integrable fuzzy-valued mappings on the bounded interval [ã, b̃] ⊂ R are
represented by LF[ã, b̃].

Definition 2.1. ( [58]) A fuzzy number (FN) is a mapping f : R 7→ [0, 1], that fulfills the subsequent
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assumptions:
(i) f is upper semi-continuous on R;
(ii) f(x) = 0 for some interval [c̃, d̃];
(iii) For ã, b̃ ∈ R having c̃ ≤ ã ≤ b̃ ≤ d̃ such that f is increasing on [c̃, ã] and decreasing on [b̃, d̃]

and f(x) = 1 for every x ∈ [ã, b̃];
(iv) f(℘x + (1 − ℘)y) ≥ min{f(x), f(y)} for every x, y ∈ R, ℘ ∈ [0, 1].

The set of all FNs is denoted by the letter E1. If ã ∈ R, it can be regarded as a FN; ˜̃a = χ{ã} is the
characteristic function, and therefore R ⊂ E1.

Definition 2.2. ( [59]) The ℘-level set of f is the crisp set [f]℘, if ℘ ∈ [0, 1] and f ∈ E1, then

[f]℘ =
{
x ∈ R : f(x) ≥ ℘

}
. (2.1)

Also, any ℘-level set is closed and bounded, signifies by [f(℘), f̄(℘)], ∀℘ ∈ [0, 1], where f, f̄ : [0, 1] 7→
R are the lower and upper bounds of [f]℘, respectively.

Definition 2.3. ( [59]) For each ℘ ∈ [0, 1], a parameterize formulation of FN f is an ordered pair
f = [f(℘), f̄(℘)] of mappings f(℘) and f̄(℘) that addresses the basic conditions:

(i) There be a bounded left continuous monotonic increasing mapping f(℘) on [0, 1];
(ii) There be a bounded left continuous monotonic decreasing f̄(℘) on [0, 1];
(iii) f(℘) ≤ f̄(℘).

Furthermore, the addition and scalar multiplication of FNs f1 = [f1(℘), f̄1(℘)] and f2 = [f2(℘), f̄2(℘)]
are presented as follows:

[f1 ⊕ f2]℘ = [f1]℘ + [f2]℘ = [f1(℘) + f2(℘), f̄1(℘) + f̄2(℘)]

and [k � f]℘ =

[kf(℘), kf̄(℘)], k > 0,
[kf̄(℘), kf(℘)], k < 0.

(2.2)

As a distance between FNs, we employ the Hausdorff metric.

Definition 2.4. ( [58]) Consider the two FNs f1 = [f1(℘), f̄1(℘)] and f2 = [f2(℘), f̄2(℘)] defined on E1.

Then the distance between two FNs is presented as follows:

d(f1, f2) = sup
℘∈[0,1]

max
{
|f1(℘) − f2(℘)|, |f̄1(℘) − f̄2(℘)|

}
. (2.3)

Definition 2.5. ( [60])A FN f has the following forms:
(i) If f(1) ≥ 0, then f is positive;
(ii) If f(1) > 0, then f is strictly positive;
(iii) If f̄(1) ≤ 0, then f is negative;
(iv) If f(1) < 0, then f is strictly negative.
The set of non-negative and non-positive FNs are indicated by E+ and E−, respectively.

Consider D be the set represents the domain of fuzzy-valued mappings f. Define the mappings
f(., .;℘), f̄(., .;℘) : D 7→ R, ∀℘ ∈ [0, 1]. These mappings are known to be the left and right ℘-level
mappings of the map f.
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Definition 2.6. ( [61]) A fuzzy valued mapping f : D 7→ E1 is known to be continuous at (s0, ξ0) ∈ D
if for every ε > 0 exists δ > 0 such that d(f(s, ξ), f(s0, ξ0)) < ε whenever |s − s0| + |ξ − ξ0| < δ. If f is
continuous for each (s1, ξ1) ∈ D, then f is said to be continuous onD.

Definition 2.7. ( [62]) Suppose x1, x2 ∈ E1 and y ∈ E1 such that the subsequent satisfies:
(i) x1 = x2 ⊕ y

or
(ii) y = x1 ⊕ (−1) � x2.

Then, y is known to be the generalized Hukuhara difference ( gH -difference) of FNs x1 and x2 and
is denoted by x1 	 gHx2.

Again, suppose x1, x2 ∈ E1, then x1 	 gHx2 = y⇔
(i) y = (x1(℘) − x2(℘), x̄1(℘) − x̄2(℘))

or
(ii) y = (x̄1(℘) − x̄2(℘), x1(℘) − x2(℘)).

The association regarding the gH -difference and the Housdroff distance is demonstrated by the
following lemma.

Lemma 2.8. ( [62]) For all f1, f2 ∈ E1, then

d(f1, f2) = sup
℘∈[0,1]

‖[f1]℘ 	 gH [f2]℘‖, (2.4)

where, for an interval [ã, b̃], the norm is ‖[ã, b̃]‖ = max
{
|ã|, |b̃|

}
.

Definition 2.9. ( [63]) Let f : D 7→ E1 and (x0, ξ) ∈ D. A mapping f is known as the strongly strongly
generalized Hukuhara differentiable on (x0, ξ) ( gH -differentiable for short) if there exists an element
∂ f2(x0,ξ)

∂x ∈ E1, then the subsequent holds:
(i) The following gH -differences exist, if ∀ ε > 0 sufficiently small, then

f(x0 + ε, ξ) 	 gH f(x0, ξ), f(x0, ξ) 	 gH f(x0 + ε, ξ),

the following limits hold as:

lim
ε 7→0

f(x0 + ε, ξ) 	 gH f(x0, ξ)
ε

= lim
ε 7→0

f(x0, ξ) 	 gH f(x0 + ε, ξ)
ε

=
∂f(x0, ξ)
∂x

. (2.5)

(ii) The following gH -differences exist, if ∀ ε > 0 reasonably small, then

f(x0, ξ) 	 gH f(x0 + ε, ξ), f(x0 − ε, ξ) 	 gH f(x0, ξ),

the following limits hold as:

lim
ε 7→0

f(x0, ξ) 	 gH f(x0 + ε, ξ)
−ε

= lim
ε 7→0

f(x0 − ε, ξ) 	 gH f(x0, ξ)
−ε

=
∂f(x0, ξ)
∂x

. (2.6)

Lemma 2.10. ( [64]) Suppose a continuous fuzzy-valued mapping f : D 7→ E1 and
f(x, ξ) =

[
f(x, ξ;℘), f̄(x, ξ;℘)

]
, ∀℘ ∈ [0, 1]. Then
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(i) If f(x, ξ) is (i)-differentiable for x under Definition 2.9(i), then we have the following:

∂f(x0, ξ)
∂x

=

(∂f(x0, ξ)
∂x

,
∂f̄(x0, ξ)
∂x

)
. (2.7)

(ii) If f(x, ξ) is (ii)-differentiable for x under Definition 2.9(ii), then we have the following:

∂f(x0, ξ)
∂x

=

(
∂f̄(x0, ξ)
∂x

,
∂f(x0, ξ)
∂x

)
. (2.8)

Theorem 2.11. ( [65]) Suppose f : R+ 7→ E1 and ∀ ℘ ∈ [0, 1].
(i) There be Riemann-integrable mappings f(x; ξ;℘) and f̄(x; ξ;℘) on [0, b̃] for each b̃ ≥ 0.
(ii)M(℘) > 0 and M̄(℘) > 0 are the constants, then

b̃∫
0

|f(x; ξ;℘)|dx ≤ M(℘),

b̃∫
0

|f̄(x; ξ;℘)|dx ≤ M̄(℘), ∀ b̃ ≥ 0.

Then, the mapping f is improper fuzzy Riemann-integrable on [0,∞) and the subsequent satisfies:

FR

∞∫
0

f(x)dx =

( ∞∫
0

f(x;℘)dx,
∞∫

0

f̄(x;℘)dx
)
. (2.9)

Theorem 2.12. ( [16]) Suppose there be a positive integer r and a continuous mapping Dr−1f defined
on J = [0,∞) and a collection of piece wise continuous mappings C defined on J ′ = (0,∞) is
integrable on finite sub-interval of J = [0,∞) and assume that ν > 0. Then

(i) If Drf is in C, then

D−νf(x) = D−ν−r[Drf(x)
]
+ Xr(x, ν).

(ii) If there be a continuous mapping Drf on J , then for x > 0

Dr[D−νf(x)
]

= D−ν
[
Drf(x)

]
+ Xr(x, ν − r),

where

Xr(x, ν) =

r−1∑
κ=0

xν+κ

Γ(ν + κ + 1)
Dκf(0).

3. Fuzzy Elzaki transform

Definition 3.1. ( [51]) Suppose a continuous fuzzy-valued mapping f : R+ 7→ E1 and for ω > 0, there
be an improper fuzzy Riemann-integrable mapping f(ξ) � exp(−ξ/ω) defined on [0,∞). Then we have

FR

∞∫
0

ωf(ξ) exp(−ξ/ω)dξ, ω ∈ (p1, p2),
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which is known as the Fuzzy Elzaki transform and represented as

W(ω) = E[f(ξ)] = FR

∞∫
0

ωf(ξ) exp(−ξ/ω)dξ.

The parameterized version of fuzzy Elzaki transform:

E
[
f(ξ)

]
=

[
E
[
f(ξ;℘)

]
,E

[
f̄(ξ;℘)

]]
,

where

E
[
f(ξ;℘)

]
=

∞∫
0

ωf(ξ;℘) exp(−ξ/ω)dξ,

E
[
f̄(ξ;℘)

]
=

∞∫
0

ωf̄(ξ;℘) exp(−ξ/ω)dξ.

4. Fuzzy Elzaki transform of the fuzzy CFDs of orders r − 1 < α < r

This section consists of CFDs of the general fractional order 0 < α < r. Also, we obtain fuzzy
Elzaki transform for CFD of the generic order r − 1 < α < r for fuzzy valued mapping f under
gH-differentiability.

For the sake of simplicity, for 0 < α < r and f(x) ∈ CF[0, b̃]
⋂
LF[0, b̃], denoting

G(x) =
1

Γ(dαe − α)

x∫
0

f(ξ)dξ
(x − ξ)1−dαe+α 	

dαe−α∑
κ=0

Dκf(0)xdαe−α+κ

Γ(1 + dαe − α + κ)
. (4.1)

Definition 4.1. Suppose f(x) ∈ CF[0, b̃]
⋂
LF[0, b̃] and dαe and bαc indicates α values that have been

rounded forward and descends to the closest integer value, respectively. It is clear that G(x) and the
mappings G 1, 2,..., ι,1 and G 1, 2,..., ι,2 are stated as

G 1, 2,..., ι,1(x0) = lim
ε 7→0+

G 1, 2,..., ι(x0 + ε) 	 G 1, 2,..., ι(x0)
ε

= lim
ε 7→0+

G 1, 2,..., ι(x0) 	 G 1, 2,..., ι(x0 − ε)
ε

, (4.2)

G 1, 2,..., ι,2(x0) = lim
ε 7→0+

G 1, 2,..., ι(x0) 	 G 1, 2,..., ι(x0 + ε)
−ε

= lim
ε 7→0+

G 1, 2,..., ι(x0 − ε) 	 G 1, 2,..., ι(x0)
−ε

, (4.3)

for ι = 0, 1, 2, ..., r− 2 such that 1, 2, ..., ι are all possible arrangements of ι objects that represents the
numbers in the following principal:

ιPt1t2 =
ι!

t1!t2!
, t1 + t2 = ι,

where t1 of them equal 1 (means CD in the first version) and t2 of them equal 2 (means CD in the
second version). Also, 1, 2, ..., 0.
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Now, f(x) is the Caputo fractional type fuzzy differentiable mapping of order 0 < α < r, α ,
1, 2, ... r − 1 at x0 ∈ (0, b̃) if ∃ an element

( cDαf
)
(x0) ∈ CF such that ∀℘ ∈ [0, 1] and for ε > 0 close to

zero. Then
(i) If dαe = 1, then

( cDαf
)
(x0) = lim

ε 7→0+

G 1, 2,..., dαe(x0 + ε) 	 G 1, 2,..., ι(x0)
ε

= lim
ε 7→0+

G 1, 2,..., dαe(x0) 	 G 1, 2,..., dαe(x0 − ε)
ε

. (4.4)

(ii) If dαe = 2, then

( cDαf
)
(x0) = lim

ε 7→0+

G 1, 2,..., dαe(x0) 	 G 1, 2,..., ι(x0 + ε)
−ε

= lim
ε 7→0+

G 1, 2,..., dαe(x0 − ε) 	 G 1, 2,..., dαe(x0)
−ε

, (4.5)

for α ∈ (κ − 1, κ), κ = 1, 2, ..., r such that 1, 2, ..., dαe are all the suitable arrangements of dαe objects
that have the following representation:

dαePt1t2 =
dαe!
t1!t2!

, t1 + t2 = dαe.

Theorem 4.2. Suppose f(x) ∈ CF[0, b̃]
⋂
LF[0, b̃] be a fuzzy-valued mapping such that

f(x) =
[
f(x;℘), f̄(x;℘)

]
for ℘ ∈ [0, 1], x0 ∈ (0, b̃) and G(x) is stated in (4.1).

Assume that 0 < α < r and ` is the number of repetitions of 2 among 1, 2, ..., dαe for α ∈ (κ −
1, κ), κ = 1, 2, ..., r, say, κ1 , κ2 , ..., κ` such that κ1 < κ2 < ... < κ`, i.e., κ1 = κ2 = ... = κ` = 2 and
0 ≤ ` ≤ dαe. Then we have the following

If ` is even number, then(
cDβ

1, 2,... dαe
f
)
(x0) =

[( cDαf
)
(x0;℘),

( cDαf̄
)
(x0;℘)

]
. (4.6)

If ` is odd number, then(
cDβ

1, 2,... dαe
f
)
(x0) =

[( cDαf̄
)
(x0;℘),

( cDαf
)
(x0;℘)

]
, (4.7)

where

( cDαf
)
(x0;℘) =

[ 1
Γ(dαe − α)

x∫
0

Ddαef(ξ;℘)dξ
(x − ξ)1−dαe+α

]
x=x0

,

( cDαf̄
)
(x0;℘) =

[ 1
Γ(dαe − α)

x∫
0

Ddαef̄(ξ;℘)dξ
(x − ξ)1−dαe+α

]
x=x0

, Dκf(ξ) =
dκf(ξ)

dξκ
. (4.8)

Proof. Let ` is an even number and then ` = 2s1, s1 ∈ N. Here, we have two assumptions as follows:
The first assumption is

(
cDβ

1,..., κ1 ,..., κ2 ,..., dαe
f
)
(x0) is the Caputo type fuzzy fractional differentiable

mapping in the first form ( dαe = 1) and in view of (4.4) from Definition 4.1, we have

G 1,..., dαe(x0 + ε) 	 G 1,..., dαe(x0)

=
[
G
1,..., dαe

(x0 + ε;℘) − G
1,..., dαe

(x0;℘), Ḡ 1,..., dαe(x0 + ε;℘) − Ḡ 1,..., dαe(x0;℘)
]
,
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G 1,..., dαe(x0) 	 G 1,..., dαe(x0 − ε)

=
[
G
1,..., dαe

(x0;℘) − G
1,..., dαe

(x0 − ε;℘), Ḡ 1,..., dαe(x0;℘) − Ḡ 1,..., dαe(x0 − ε;℘)
]
. (4.9)

Conducting product on both sides by 1/ε, ε > 0, and then applying ε 7→+, yields(
RLDαf

)
(x0) =

[ d
dx
G
1,..., dαe

(x0;℘),
d

dx
Ḡ 1,..., dαe(x0;℘)

]
. (4.10)

Thus, G 1,..., κ1−1 is identical to the specified restrictions mentioned in (4.2) of Definition 4.1, then by
employing (4.2) for (κ1 − 1) times, we have that

G 1,..., κ1−1(x0) =
[
G

(κ1−1)(x0;℘), Ḡ(κ1−1)(x0;℘)
]
. (4.11)

Since G 1 , .., κ1(x0) is identical to the specified restrictions stated in (4.3) of Definition 4.1 then by
employing (4.3), we have

G 1,..., κ1−1(x0) =
[
Ḡ(κ1)(x0;℘),G(κ1)(x0;℘)

]
. (4.12)

Since G 1 , .., κ2−1(x0) is identical to the specified restrictions stated in (4.2) of Definition 4.1 then by
employing (4.2), we have

G 1,..., κ2−1(x0) =
[
Ḡ(κ2−1)(x0;℘),G(κ2−1)(x0;℘)

]
. (4.13)

Since G 1 , .., κ2(x0) is identical to the specified restrictions stated in (4.3) of Definition 4.1 then by
employing (4.3), we have

G 1,..., κ2
(x0) =

[
G

(κ2−1)(x0;℘), Ḡ(κ2−1)(x0;℘)
]
. (4.14)

On the other hand, from (4.14) we notice that we will have a similar equation, following the application
of (4.2) and (4.3) for any even number of κ1 , κ2 , ..., κm of (4.14). Thus, for G 1,..., 2s1

(x0), we have

G 1,..., κ2s1
(x0) =

[
G

(κ2s1 )(x0;℘), Ḡ(κ2s1 )(x0;℘)
]
, (4.15)

where 2s1 is even number.
Consequently, since G 1 , .., dαe(x0) is identical to the specified restrictions stated in (4.2) of

Definition 4.1 then by employing (4.2) for (dαe − κ2s1), we have

G 1,..., dαe(x0) =
[
G

(dαe)(x0;℘), Ḡ(dαe)(x0;℘)
]
, (4.16)

then, we have

G
1,..., dαe

(x0;℘) = G(dαe)(x0;℘),

Ḡ 1,..., dαe(x0;℘) = Ḡ(dαe)(x0;℘). (4.17)

Plugging (4.17) and (4.10) gives the subsequent( cDαf
)
(x0) =

[
DdβeG(x0;℘),DdβeḠ(x0;℘)

]
, D = d/dx. (4.18)
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Thus,

( cDαf
)
(x0) =

[
Ddβe

( 1
Γ(dαe − α)

x∫
0

f(ξ;℘)dξ
(x − ξ)1−dαe+α −

dαe−α∑
κ=0

Dκf(0)xdαe−α+κ

Γ(1 + dαe − α + κ)

)∣∣∣∣∣∣
x=x0

,

Ddβe
( 1
Γ(dαe − α)

x∫
0

f̄(ξ;℘)dξ
(x − ξ)1−dαe+α −

dαe−α∑
κ=0

Dκ f̄(0)xdαe−α+κ

Γ(1 + dαe − α + κ)

)∣∣∣∣∣∣
x=x0

]
. (4.19)

Utilizing the fact of (4.1) we have

( cDαf
)
(x0) =

[
Ddαe

(
D−(dαe−α)f

)
(x0;℘) −

( dαe∑
κ=0

Dκf(0;℘)Ddαexdαe−α+κ

Γ(1 + dαe − α + κ)

)∣∣∣∣∣
x=x0

,

Ddαe
(
D−(dαe−α)f̄

)
(x0;℘) −

( dαe∑
κ=0

Dκ f̄(0;℘)Ddαexdαe−α+κ

Γ(1 + dαe − α + κ)

)∣∣∣∣∣
x=x0

]
, (4.20)

where (D−(dαe−α)f)(x0;℘) and (D−(dαe−α)f̄)(x0;℘) are the RL fractional integrals of the mappings f(x0;℘)
and f̄(x0;℘) at x = x0, respectively. By the use of continuity of Drf having r = dαe, ν = dαe − α and by
the virtue of Theorem 2.12, Drx` =

Γ(`+1)
Γ(`+1−r)x

`−r, we have

( cDαf
)
(x0) =

[
D−(dαe−α)(Ddαef(x0;℘)

)
+ Q(x0,−α) −

dαe∑
κ=0

Dκf(0;℘)xκ−α

Γ(1 − α + κ)

∣∣∣∣∣
x=x0

,

D−(dαe−α)(Ddαef̄(x0;℘)
)

+ Q̄(x0,−α) −
dαe∑
κ=0

Dκ f̄(0;℘)xκ−α

Γ(1 − α + κ)

∣∣∣∣∣
x=x0

]
. (4.21)

Thus, ( cDαf
)
(x0) =

[
D−(dαe−α)(Ddαef(x0;℘)

)
,D−(dαe−α)(Ddαef̄)(x0;℘)

]
=
[( cDαf

)
(x0;℘),

( cDαf̄
)
(x0;℘)

]
. (4.22)

If ` is an odd, solution is similar as we did before. �

Theorem 4.3. Assume that there be a fuzzy-valued mapping f(x) ∈ CF[0,∞)
⋂
LF[0,∞) such that

f(x) =
[
f(x;℘), f̄(x, ℘)

]
for ℘ ∈ [0, 1]. Also, let r − 1 < α < r and ` is the quantity replicated of two

amongest 1, 2, 3, ..., r say κ1 , κ2 , κ3 , ..., κ` such that κ1 < κ2 < ... < κm; i.e., κ1 , κ2 , κ3 , ..., κ` = 2
and 0 ≤ ` ≤ r. Then,

(1) If ` is even number, then

E
[(

cDα
1, 2,..., r

f
)
(x)

]
= ω−αE

[
f(x)

]
	 ω2−αf(0) ⊗

r−1∑
κ=1

ω2−α+κf(κ)(0), (4.23)

then

⊗ =

	, i f such quantity is replication o f two amongest 1, 2, ... r−(κ+1) is an even number,

−, i f such quantity is replication o f two amongest 1, 2, ... r−(κ+1) is an odd number.
(4.24)
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(2) If ` is odd number, we have

E
[(

cDα
1, 2,..., r

f
)
(x)

]
= −ω2−αf(0) 	 (−ω−α)E

[
f(x)

]
⊗

r−1∑
κ=0

ω2−α+κf(0), (4.25)

⊗ =

	, i f such quantity is replication o f two amongest 1, 2, ... r−(κ+1) is an odd number,

−, i f such quantity is replication o f two amongest 1, 2, ... r−(κ+1) is an even number.
(4.26)

Proof. Considering
( cDα

1, 2,..., r
f
)
(x), that can be expressed as

( cDα
1,..., κ1 ,..., κ2 ,..., κ` ,..., r

f
)
(x). Also, assume

that ` is an odd number, then by means of Theorem 4.2 and r − 1 < α < r, we have( cDα
1, 2,..., r

f
)
(x) =

[( cDαf̄
)
(x;℘),

( cDαf
)
(x;℘)

]
. (4.27)

Thus, we have ( cDαf
)
(x;℘) =

( cDαf̄
)
(x;℘),( cDαf

)
(x;℘) =

( cDαf
)
(x;℘). (4.28)

Using the fact of (4.28), we have

E
[( cDα

1, 2,..., r
f
)
(x)

]
= E

[( cDαf
)
(x;℘),

( cDαf
)
(x;℘)

]
=

[
E
[( cDαf̄

)
(x;℘)

]
,E

[( cDαf
)
(x;℘)

]]
. (4.29)

In view of Elzaki transform of the Caputo fractional derivative of order α ( [66]), we have

E
[( cDαf

)
(x;℘)

]
= ω−αE

[
f(x;℘)

]
−

r−1∑
κ=0

ω2−α+κf(κ)(0;℘)

= ω−αE
[
f(x;℘)

]
− ω2−αf(0;℘) −

r−1∑
κ=1

ω2−α+κf(κ)(0;℘). (4.30)

The aforementioned expression can be represented as

E
[( cDαf

)
(x;℘)

]
=ω−αE

[
f(x;℘)

]
− ω2−αf(0;℘)

−

κ1−1∑
κ=1

ω2−α+κf(κ)(0;℘) −
κ2−1∑
κ=κ1

ω2−α+κf(κ)(0;℘) − ...

−

κ`−1∑
κ=κ`−1

ω2−α+κf(κ)(0;℘) −
r−1∑
κ=κ`

ω2−α+κf(0;℘). (4.31)

Repeating the same process, we can write
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E
[( cDαf̄

)
(x;℘)

]
=ω−αE

[
f̄(x;℘)

]
− ω2−αf̄(0;℘)

−

κ1−1∑
κ=1

ω2−α+κ f̄(0;℘) −
κ2−1∑
κ=κ1

ω2−α+κ f̄(0;℘) − ...

d −
κ`−1∑
κ=κ`−1

ω2−α+κf(κ)(0;℘) −
r−1∑
κ=κ`

ω2−α+κf(κ))(0;℘). (4.32)

Even though κ1 = κ2 = ... = κ` = 2 and ` is an odd number, then we have the subsequent forms

f(κ)(0;℘) = f(κ)(0;℘),
f̄(κ)(0;℘) = f(κ)(0;℘), ∀ κ ∈ [1, κ1 − 1],

f(κ)(0;℘) = f(κ)(0;℘)
f̄(κ)(0;℘) = f(κ)(0;℘), ∀ κ ∈ [κ1, κ2 − 1],
...

f(κ)(0;℘) = f(κ)(0;℘),
¯f(κ)(0;℘) = f(κ)(0;℘), ∀ κ ∈ [κ`−1, κ` − 1],

f(κ)(0;℘) = f(κ)(0;℘),
f̄(κ)(0;℘) = f(κ)(0;℘), ∀ κ ∈ [κ`, r − 1]. (4.33)

When ` is odd number and utilizing Theorem 4.2, we get the aforementioned equations.
In view of (4.32), (4.31) and (4.29) reduce to

E
[(

cDα
1, 2,..., r

f
)
(x)

]
= −ω2−αf(0) 	 (−ω−α)E

[
f(x)

]
⊗

r−1∑
κ=1

ω2−α+κ f (κ)(0;℘). (4.34)

where ⊗ defined in (4.26).
Adopting the same way, we can prove ` to be even number on parallel lines. �

Corollary 1. Assume that f(x) ∈ CF[0,∞)
⋂
L∞[0,∞). Also, let α ∈ (2, 3). Then we obtain the

following:
If

( cDα
1,1f

)
(x) is c[(i) − α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
1,1,1f

)
(x)

]
= ω−αE

[
f(x)

]
	 ω−α+2f(0) 	 ω−α+3f′(0) 	 ω−α+4f′′(0).

If
( cDα

1,1f
)
(x) is c[(ii) − α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
1,1,1f

)
(x)

]
= −ω−α+2f(0) 	 (−ω−α)E

[
f(x)

]
− ω−α+3f′(0) − ω−α+4f′′(0).

If
( cDα

1,2f
)
(x) is c[(i) − α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
1,2,1f

)
(x)

]
= −ω−α+2f(0) 	 (−ω−α)E

[
f(x)

]
− ω−α+3f′(0) 	 ω−α+4f′′(0).
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If
( cDα

1,2f
)
(x) is c[(ii) − α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
1,2,2f

)
(x)

]
= ω−αE

[
f(x)

]
	 ω−α+2f(0) 	 ω−α+3f′(0) − ω−α+4f′′(0).

If
( cDα

2,1f
)
(x) is c[(i) − α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
2,1,1f

)
(x)

]
= −ω−α+2f(0) 	 (−ω)−αE

[
f(x)

]
	 ω−α+3f′(0) 	 ω−α+4f′′(0).

If
( cDα

2,1f
)
(x) is c[(ii) − α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
2,1,2f

)
(x)

]
= ω−αE

[
f(x)

]
	 ω−α+2f(0) − ω−α+3f′(0) − ω−α+4f′′(0).

If
( cDα

2,2f
)
(x) is c[(i) − α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
2,2,1f

)
(x)

]
= ω−αE

[
f(x)

]
	 ω−α+2f(0) − ω−α+3f′(0) 	 ω−α+4f′′(0).

If
( cDα

2,2f
)
(x) is c[(ii) − α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
2,2,2f

)
(x)

]
= −ω−α+2f(0) 	 (−ω)−αE

[
f(x)

]
	 ω−α+3f′(0) − ω−α+4f′′(0).

5. Fuzzy Elzaki decomposition method for finding solution of nonlinear fuzzy partial
differential equation

In this note, we coupled the fuzzy Elzaki transform and the ADM for obtaining the solution of
NFPDE. The generic form of NFPDE is presented as follows:

p∑
ι=0

cι � Dα
ξ f(x, ξ) ⊕

q∑
j=1

c j �
∂ jf(x, ξ)
∂x j ⊕

2∑
η=0

2∑
σ=η

cησ �
∂ηf(x, ξ)
∂xη

�
∂σf(x, ξ)
∂xσ

= g(x, ξ), (5.1)

subject to initial conditions

∂ιf(x, 0)
∂ξι

= ψι(x), ι = 0, 1, ..., p − 1, (5.2)

where f, g : [0, b̃] × [0, d̃] 7→ E1, ψι : [0, b̃] 7→ E1 are continuous fuzzy mappings and
cι, ι = 1, 2, ..., p, c j, j = 1, 2, ..., q, cησ, η = 0, 1, 2, σ = 0, 1, 2, are non-negative constants.

Implementing the fuzzy Elzaki transform on (5.1), yields

p∑
ι=0

cι � E
[
Dα
ξ f(x, ξ)

]
⊕

q∑
j=1

c j � E
[
∂ jf(x, ξ)
∂x j

]
⊕

2∑
η=0

2∑
σ=η

cησ � E
[
∂ηf(x, ξ)
∂xη

]
� E

[
∂σf(x, ξ)
∂xσ

]
= E

[
g(x, ξ)

]
.

(5.3)

Consider ∂ηf(x,ξ)
∂ξη

, η = 0, 1, 2 be a positive fuzzy-valued mappings.
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Then, the parametric version of (5.3) is as follows:

p∑
ι=0

cιE
[
Dα
ξ f(x, ξ;℘)

]
+

q∑
j=1

c jE

[∂ jf(x, ξ;℘)
∂x j

]
+

2∑
η=0

2∑
σ=η

cησE
[∂ηf(x, ξ;℘)

∂xη
∂σf(x, ξ;℘)

∂xσ
]

= E
[
g(x, ξ;℘)

]
,

(5.4)

and

p∑
ι=0

cιE
[
Dα
ξ f̄(x, ξ;℘)

]
+

q∑
j=1

c jE

[
∂ jf̄(x, ξ;℘)

∂x j

]
+

2∑
η=0

2∑
σ=η

cησE
[
∂ηf̄(x, ξ;℘)

∂xη
∂σf̄(x, ξ;℘)

∂xσ
]

= E
[
ḡ(x, ξ;℘)

]
.

(5.5)

Case I. Consider the mapping f(x, ξ;℘) be [(i) − α]-differentiable of the qth-order with respect to x.
In view of (5.4), then from (4.31) and (4.32) and IC, we have

1
ωα

p∑
ι=0

cιE
[
f(x, ξ;℘)

]
=E

[
g(x, ξ;℘)

]
+

p∑
ι=1

ω2ψ
0
(x;℘) −

q∑
j=1

c jE

[∂ jf(x, ξ;℘)
∂x j

]
−

2∑
η=0

2∑
σ=η

cησE
[∂ηf(x, ξ;℘)

∂xη
∂σf(x, ξ;℘)

∂xσ
]
.

It follows that

E
[
f(x, ξ;℘)

]
=

( p∑
ι=0

cι
ωα

)−1[
E
[
g(x, ξ;℘)

]
+

p∑
ι=1

ω2ψ
0
(x;℘) −

q∑
j=1

c jE

[∂ jf(x, ξ;℘)
∂x j

]
−

2∑
η=0

2∑
σ=η

cησE
[∂ηf(x, ξ;℘)

∂xη
∂σf(x, ξ;℘)

∂xσ
]]
.

Now, employing the inverse Elzaki fuzzy transform to the aforementioned formulation, gives

f(x, ξ;℘) =E−1
[( p∑

ι=0

cι
ωα

)−1(
E
[
g(x, ξ;℘)

]
+

p∑
ι=1

ω2ψ
0
(x;℘)

)]

− E−1
[( p∑

ι=0

cι
ωα

)−1( q∑
j=1

c jE

[∂ jf(x, ξ;℘)
∂x j

]
+

2∑
η=0

2∑
σ=η

cησE
[∂ηf(x, ξ;℘)

∂xη
∂σf(x, ξ;℘)

∂xσ
)]]
. (5.6)

In view of the Adomian decomposition technique, this approach has infinite series solution for the
subsequent unknown mappings:

f(x, ξ;℘) =

∞∑
r=0

fr(x, ξ;℘). (5.7)
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The non-linearity is dealt by an infinite series of the Adomian polynomials Aησ
r , η = 0, 1, 2, σ = 0, 1, 2

has the subsequent representation:

∂ηf(x, ξ;℘)
∂xη

∂σf(x, ξ;℘)
∂xσ

=

∞∑
r=0

Aησ
r , (5.8)

where

Aησ
r =



∂ηf0
∂xη

∂σf0
∂xσ , r = 0,

∂ηf0
∂xη

∂σf1
∂xσ +

∂ηf1
∂xη

∂σf0
∂xσ , r = 1,

∂ηf0
∂xη

∂σf2
∂xσ +

∂ηf1
∂xη

∂σf1
∂xσ +

∂ηf2
∂xη

∂σf0
∂xσ , r = 2,

....

(5.9)

Inserting (5.8) and (5.9) in (5.7) refers to the following equation:

∞∑
r=0

fr(x, ξ;℘) =E−1
[( p∑

ι=0

cι
ωα

)−1(
E
[
g(x, ξ;℘)

]
+

p∑
ι=1

ω2ψ
0
(x;℘)

)]

− E−1
[( p∑

ι=0

cι
ωα

)−1( q∑
j=1

c jE

[ ∞∑
r=0

∂ jfr(x;℘)
∂x j

]
+

2∑
η=0

2∑
σ=η

cησE
[ ∞∑

r=0

Aησ
r

])]
. (5.10)

The recursive terms of Elzaki decomposition method can be computed for r ≥ 0 as follows:

f0(x, ξ;℘) =E−1
[( p∑

ι=0

cι
ωα

)−1(
E
[
g(x, ξ;℘)

]
+

p∑
ι=1

ω2ψ
0
(x, ξ;℘)

)]
,

fr+1(x, ξ;℘) = − E−1
[( p∑

ι=0

cι
ωα

)−1( q∑
j=1

c jE

[ ∞∑
r=0

∂ jfr(x, ξ;℘)
∂x j

]
+

2∑
η=0

2∑
σ=η

cησE
[ ∞∑

r=0

Aησ
r

])]
. (5.11)

Case II. Suppose the mapping f(x, ξ;℘) be [(i) − α]-differentiable of the qth order in regard to x and
[(ii) − α] differentiable of the 2pth order in regard to ξ. Then, the parametric version of (5.3) has the
following representation:

p∑
ι=0

c2ιE
[
D2α
ξ f(x, ξ;℘)

]
+

p∑
ι=1

c2ι−1E
[
Dα
ξ f(x, ξ;℘)

]
+

q∑
j=1

c jE

[∂ jf(x, ξ;℘)
∂x j

]
+

2∑
η=0

2∑
σ=η

cησE
[∂ηf(x, ξ;℘)

∂xη
∂σf(x, ξ;℘)

∂xσ
]

= E
[
g(x, ξ;℘)

]
,

and
p∑
ι=0

c2ιE
[
D2α
ξ f̄(x, ξ;℘)

]
+

p∑
ι=1

c2ι−1E
[
Dα
ξ f̄(x, ξ;℘)

]
+

q∑
j=1

c jE

[
∂ jf̄(x, ξ;℘)

∂x j

]
+

2∑
η=0

2∑
σ=η

cησE
[
∂ηf̄(x, ξ;℘)

∂xη
∂σf̄(x, ξ;℘)

∂xσ
]

= E
[
ḡ(x, ξ;℘)

]
.
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Utilizing the fact of Theorem 4.3 and ICs, we have

BE
[
f(x, ξ;℘)

]
+ CE

[
Dα
ξ f(x, ξ;℘)

]
=E

[
ḡ(x, ξ;℘) + F1(x;℘)

]
−

q∑
j=1

c jE

[∂ jf(x, ξ;℘)
∂x j

]
−

2∑
η=0

2∑
σ=η

cησE
[∂ηf(x, ξ;℘)

∂xη
∂σf(x, ξ;℘)

∂xσ
]
, (5.12)

and

BE
[
f̄(x, ξ;℘)

]
+ CE

[
f̄(x, ξ;℘)

]
=E

[
ḡ(x, ξ;℘) + F2(x;℘)

]
−

q∑
j=1

c jE

[
∂ jf̄(x, ξ;℘)

∂x j

]
−

2∑
η=0

2∑
σ=η

cησE
[
∂ηf̄(x, ξ;℘)

∂xη
∂σf̄(x, ξ;℘)

∂xσ
]
, (5.13)

where B =
p∑
ι=0

c2ιω
α, C =

p∑
ι=1

c2ι−1ω
2−α,

F1(x;℘) =

p∑
ι=0

c2ι

(
ω2−2αψ

0
(x;℘) + ω3−2αψ̄1(x;℘)

)
+

p∑
ι=0

c2ι−1

(
ω3−2αψ̄0(x;℘) + ω2−2αψ

0
(x;℘)

)
,

and

F2(x;℘) =

p∑
ι=0

c2ι

(
ω2−2αψ̄0(x;℘) + ω3−2αψ

1
(x;℘)

)
+

p∑
ι=0

c2ι−1

(
ω3−2αψ

0
(x;℘) + ω2−2αψ̄0(x;℘)

)
.

For the aforementioned Eqs (5.12) and (5.13), we obtain E
[
f(x, ξ;℘)

]
and E

[
f̄(x, ξ;℘)

]
similar to

Case I, we find the the general solution f(x;℘) =
[
f(x, ξ;℘), f̄(x, ξ;℘)

]
.

Example 5.1. Consider the fuzzy fractional partial differential equation as follows:

D2α
ξ f(x, ξ) ⊕

∂f(x, ξ)
∂x

�
∂f2(x, ξ)
∂x2 = g3(x, ξ), x ≥ 0, ξ > 0, (5.14)

subject to ICs

f(x, 0) =
(x2

2
℘,

x2

2
(2 − ℘)

)
, f′ξ(x, 0) = (0, 0), x > 0, (5.15)

and g3(x, ξ) =
(
℘ + x℘2, 2 − ℘ + x(2 − ℘)2

)
.

In order to find solution of (5.14), we have the following three cases.

Case I. If f(x, ξ) is [(i) − α]-differentiable.
Employing the Elzaki transform on (5.14), then we have

1
ω2αE

[
f(x, ξ;℘)

]
− ω2−2αf(x, 0;℘) = E

[
g3(x, ξ) −

∂f(x, ξ)
∂x

∂f2(x, ξ)
∂x2

]
,
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or equivalently, we have

E
[
f(x, ξ;℘)

]
− ω2f(x, 0;℘) = ω2αE

[
g3(x, ξ) −

∂f(x, ξ)
∂x

∂f2(x, ξ)
∂x2

]
.

Further, implementing the inverse fuzzy Elzaki transform, we have

f(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
g3(x, ξ) −

∂f(x, ξ)
∂x

∂f2(x, ξ)
∂x2

]]
.

Also, applying the scheme described in Section 4, we have

∞∑
r=0

fr(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
g3(x, ξ)

]
− ω2αE

[ ∞∑
r=0

Ar

]]
. (5.16)

Utilizing the iterative procedure defined in (5.11), we have

f0(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
g3(x, ξ)

]]
= ℘

x2

2
+ (℘ + x℘2)

ξ2α

Γ(2α + 1)
. (5.17)

Also,

fr+1(x, ξ;℘) = E−1
[
ω2αE

[ ∞∑
r=0

Ar

]]
. (5.18)

Utilizing the first few Adomian polynomials mentioned in (5.9), we have

f(x, ξ;℘) = E−1
[
ω2α[A0

]]
= −℘2x

ξ2α

Γ(2α + 1)
− ℘3 ξ4α

Γ(4α + 1)
,

f2(x, ξ;℘) = E−1
[
ω2α[A1

]]
= −℘3 ξ4α

Γ(4α + 1)
,

f3(x, ξ;℘) = 0,
.... (5.19)

In a similar way we obtained the upper solutions as follows:

f̄0(x, ξ;℘) =
x2

2
(2 − ℘) +

(
2 − ℘ + x(2 − ℘)2) ξ2α

Γ(2α + 1)
,

f̄(x, ξ;℘) = −x(2 − ℘)2 ξ2α

Γ(2α + 1)
− (2 − ℘)3 ξ4α

Γ(4α + 1)
,

f̄2(x, ξ;℘) = −(2 − ℘)3 ξ4α

Γ(4α + 1)
,

f̄3(x, ξ;℘) = 0,
.... (5.20)
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The series form solution of Example 5.1 is presented as follows:

f(x, ξ) =

((x2

2
+

ξ2α

Γ(2α + 1)

)
℘,

(x2

2
+

ξ2α

Γ(2α + 1)

)
(2 − ℘)

)
. (5.21)

The numerical solution to the fuzzy fractional nonlinear PDE is presented in this section. Incorporating
all of the data in regard to the numerous parameters involved in the related equation is a monumental
task. Uncertain responses subject to Caputo fractional order derivatives have been considered, as
previously said.

• Table 1 represents the obtained findings with x = 0.4 and ξ = 0.7. Table 1 also comprises the
outcomes of a Georgieva and Pavlova [67]. As a consequence, the findings acquired by fuzzy Elzaki
decomposition method are the same if α = 1, as those reported by a Georgieva and Pavlova [67].

• Figure 1 demonstrates the three-dimensional illustration of the lower and upper estimates for
different uncertainties ℘ ∈ [0, 1].

• Figure 2 shows the fuzzy responses for different fractional orders.

• Figure 3 illustrates the fuzzy responses for different uncertainty parameters.

• The aforementioned representations illustrate that all graphs are substantially identical in their
perspectives and have good agreement with one another, especially when integer-order derivatives are
taken into account.

Finally, this generic approach for dealing with nonlinear PDEs is more accurate and powerful than
the method applied by [67]. Our findings for the fuzzy Elzaki decomposition method, helpful for fuzzy
initial value problems, demonstrate the consistency and strength of the offered solutions.

Table 1. Lower and upper solutions of Case I of Example 5.1 for various fractional orders
in comparison with the solution derived by [67].

℘ f(α = 0.7) f̄(α = 0.7) f(α = 1) f̄(α = 1) f [67] f̄ [67]

0.1 1.9420 × 10−2 3.6899 × 10−1 9.0000 × 10−3 1.7100 × 10−1 9.0000 × 10−3 1.7100 × 10−1

0.2 3.8841 × 10−2 3.4957 × 10−1 1.8000 × 10−2 1.6200 × 10−1 1.8000 × 10−2 1.6200 × 10−1

0.3 5.8262 × 10−2 3.30152 × 10−1 2.7000 × 10−2 1.5300 × 10−1 2.7000 × 10−2 1.5300 × 10−1

0.4 7.7682 × 10−2 3.1073 × 10−1 3.6000 × 10−2 1.4400 × 10−1 3.6000 × 10−2 1.4400 × 10−1

0.5 9.7103 × 10−2 2.9131 × 10−1 4.5000 × 10−2 1.3500 × 10−1 4.5000 × 10−2 1.3500 × 10−1

0.6 1.1652 × 10−2 2.71890 × 10−1 5.4000 × 10−2 1.2600 × 10−1 5.4000 × 10−2 1.2600 × 10−1

0.7 1.3594 × 10−2 2.5246 × 10−1 6.3000 × 10−2 1.1700 × 10−1 6.3000 × 10−2 1.1700 × 10−1

0.8 1.5536 × 10−2 2.3304 × 10−1 7.2000 × 10−2 1.0800 × 10−1 7.2000 × 10−2 1.0800 × 10−1

0.9 1.7478 × 10−2 2.1362 × 10−1 8.1000 × 10−2 9.9000 × 10−2 8.1000 × 10−2 9.9000 × 10−2

1.0 1.9420 × 10−1 1.9420 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2
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(a) (b)

Figure 1. Three-dimensional fuzzy responses of Example 5.1 for Case I at (a) ℘ = 0.7, (b)
℘ = 0.9 with fractional order α = 1.
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Figure 2. Two-dimensional fuzzy responses of Example 5.1 for Case I at (a) ℘ = 0.7 and ξ =

0.7, (b) ℘ = 0.4 and ξ = 0.1 with varing fractional orders.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Figure 3. Two-dimensional fuzzy responses of Example 5.1 for Case I at (a) α = 0.7 and ξ =

0.7, (b) α = 0.4 and ξ = 0.1 with varing uncertainity parameters ℘ ∈ [0, 1].
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Case II. If f(x, ξ) is [(ii) − α]-differentiable, taking into account (5.12) and (5.13), we find

1
ω2αE

[
f(x, ξ;℘)

]
= ω2−2αf(x, 0;℘) + E

[
g3(x, ξ)

]
− E

[∂f(x, ξ)
∂x

∂f2(x, ξ)
∂x2

]
,

1
ω2αE

[
f̄(x, ξ;℘)

]
= ω2−2αf̄(x, 0;℘) + E

[
ḡ3(x, ξ)

]
− E

[
∂f̄(x, ξ)
∂x

∂f̄2(x, ξ)
∂x2

]
. (5.22)

Employing the inverse fuzzy Elzaki transform to the aforementioned equations and incorporation
of Elzaki decomposition technique, we find the solution on same lines as we did in Case I.

Case III. If f(x, ξ) is [(i) − α]-differentiable and f′(x, ξ) is [(ii) − α]-differentiable, then

E(f′(x, ξ)) =
[
E
(
f′(x, ξ;℘)

)
,E

(
f̄′(x, ξ;℘)

)]
(5.23)

and

E(f′′(x, ξ)) =
[
E
(
f̄′′(x, ξ;℘)

)
,E

(
f′′(x, ξ;℘)

)]
. (5.24)

In view of (5.11) and Theorem 4.3 with IC, we follow the iterative process:
Employing the Elzaki transform on (5.14), then we have

1
ω2αE

[
f(x, ξ;℘)

]
− ω2−2αf(x, 0;℘) = E

[
ḡ3(x, ξ) −

∂f̄(x, ξ)
∂x

∂f̄2(x, ξ)
∂x2

]
.

or equivalently, we have

E
[
f(x, ξ;℘)

]
− ω2f(x, 0;℘) = ω2αE

[
ḡ3(x, ξ) −

∂f̄(x, ξ)
∂x

∂f̄2(x, ξ)
∂x2

]
.

Further, implementing the inverse fuzzy Elzaki transform, we have

f(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
ḡ3(x, ξ) −

∂f̄(x, ξ)
∂x

∂f̄2(x, ξ)
∂x2

]]
.

Also, applying the scheme described in Section 4, we have

∞∑
r=0

fr(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
ḡ3(x, ξ)

]
− ω2αE

[ ∞∑
r=0

Ār
]]
.

Utilizing the iterative procedure defined in (5.11), we have

f0(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
ḡ3(x, ξ)

]]
= ℘

x2

2
+

[
(2 − ℘) + x(2 − ℘)2] ξ2α

Γ(2α + 1)
.

Also,

fr+1(x, ξ;℘) = E−1
[
ω2αE

[ ∞∑
r=0

Ār
]]
.
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Utilizing the first few Adomian polynomials as follows:

Ar =



∂ηf0
∂xη

∂σf0
∂xσ , r = 0,

∂ηf0
∂xη

∂σf1
∂xσ +

∂ηf1
∂xη

∂σf0
∂xσ , r = 1,

∂ηf0
∂xη

∂σf2
∂xσ +

∂ηf1
∂xη

∂σf1
∂xσ +

∂ηf2
∂xη

∂σf0
∂xσ , r = 2,

....

Ār =



∂η f̄0
∂xη

∂σ f̄0
∂xσ , r = 0,

∂η f̄0
∂xη

∂σ f̄1
∂xσ + ∂η f̄1

∂xη
∂σ f̄0
∂xσ , r = 1,

∂η f̄0
∂xη

∂σ f̄2
∂xσ + ∂η f̄1

∂xη
∂σ f̄1
∂xσ + ∂η f̄2

∂xη
∂σ f̄0
∂xσ , r = 2,

....

f(x, ξ;℘) = E−1
[
ω2α[Ā0

]]
= −℘2(2 − ℘)

ξ4α

Γ(4α + 1)
− x(2 − ℘)2 ξ2α

Γ(2α + 1)
,

f2(x, ξ;℘) = E−1
[
ω2α[Ā1

]]
= ℘2(2 − ℘)

ξ4α

Γ(4α + 1)
,

f3(x, ξ;℘) = 0,
....

In a similar way we obtained the upper solutions as follows:

f̄0(x, ξ;℘) =
x2

2
(2 − ℘) +

(
2 − ℘ + x(2 − ℘)2) ξ2α

Γ(2α + 1)
,

f̄(x, ξ;℘) = −x(2 − ℘)2 ξ2α

Γ(2α + 1)
− (2 − ℘)3 ξ4α

Γ(4α + 1)
,

f̄2(x, ξ;℘) = −(2 − ℘)3 ξ4α

Γ(4α + 1)
,

f̄3(x, ξ;℘) = 0,
....

The series form solution of Example 5.1 is presented as follows:

f(x, ξ) =

((x2

2
℘ + (2 − ℘)

ξ2α

Γ(2α + 1)

)
,
(x2

2
(2 − ℘) + ℘

ξ2α

Γ(2α + 1)

))
.

The results show that perfect fractional order precision and uncertainty for fuzzy numerical
solutions of the function f(x, ξ) are highly correlated to stuffing time and the fractional order used,
whereas additional precision solutions can be obtained by using more redundancy and iterative
development.
• Table 2 represents the obtained findings with x = 0.4 and ξ = 0.7. Table 2 also comprises the

outcomes of a Georgieva and Pavlova [67]. As a consequence, the findings acquired by fuzzy Elzaki
decomposition method are the same if α = 1, as those reported by a Georgieva and Pavlova [67].
• Figure 4 demonstrates the three-dimensional illustration of the lower and upper estimates for

different uncertainties ℘ ∈ [0, 1].
• Figure 5 shows the fuzzy responses for different fractional orders. Figure 6 illustrates the fuzzy

responses for different uncertainty parameters.

AIMS Mathematics Volume 7, Issue 8, 14946–14974.



14967

• The aforementioned representations illustrate that all graphs are substantially identical in their
perspectives and have good agreement with one another, especially when integer-order derivatives are
taken into account.

Finally, this generic approach for dealing with nonlinear PDEs is more accurate and powerful than
the method applied by [67]. Our findings for the fuzzy Elzaki decomposition method, helpful for fuzzy
initial value problems, demonstrate the consistency and strength of the offered solutions.

Table 2. Lower and upper solutions of Case II of Example 5.1 for various fractional orders
in comparison with the solution derived by [67].

℘ f(α = 0.7) f̄(α = 0.7) f(α = 1) f̄(α = 1) f [67] f̄ [67]

0.1 2.8799 × 10−1 1.0042 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2

0.2 2.7757 × 10−1 1.1084 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2

0.3 2.6715 × 10−1 1.2126 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2

0.4 2.5673 × 10−1 1.3168 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2

0.5 2.4631 × 10−1 1.4210 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2

0.6 2.3589 × 10−1 1.5252 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2

0.7 2.2546 × 10−1 1.6294 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−1

0.8 2.1504 × 10−1 1.7336 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−1

0.9 2.0462 × 10−1 1.8378 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2

1.0 1.9420 × 10−1 1.9420 × 10−1 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2 9.0000 × 10−2

(a) (b)

Figure 4. Three-dimensional fuzzy responses of Example 5.1 for Case II at (a) ℘ = 0.7, (b)
℘ = 0.9 with fractional order α = 1.
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Figure 5. Two-dimensional fuzzy responses of Example 5.1 for Case II at (a) ℘ =

0.7 and ξ = 0.7, (b) ℘ = 0.4 and ξ = 0.1 with varing fractional orders.
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Figure 6. Two-dimensional fuzzy responses of Example 5.1 for Case II at (a) α =

0.7 and ξ = 0.7, (b) α = 0.4 and ξ = 0.1 with varing uncertainity parameters ℘ ∈ [0, 1].

6. Conclusions

In this investigation, the fuzzy Caputo fractional problem formalism, homogenized fuzzy initial
condition, partial differential equation, exemplification of fuzzy Caputo fractional derivative and
numerical solutions under gH are the main significations of the following subordinate part.
• The generic formulation of fuzzy CFDs pertaining to the generic order of 0 < α < r is derived

by combining all conceivable groupings of items such that t1 equals 1 and t2 (the others) equals 2 and
utilized for the first time.
• The generic formulas for CFDs regarding the order α ∈ (r − 1, r) are generated under the gH-
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difference.
• Under H-differentiabilty, a semi-analytical approach for finding the solution of nonlinear fuzzy

fractional PDE has been applied. Besides that, this methodology offers a series of solutions as an
analytical expression is its significant aspect.
• A test problem is solved to demonstrate the proposed approach. The simulation results can solve

nonlinear partial fuzzy differential equations in a flexible and efficient manner, whilst, frame of
numerical programming is natural and the computations are very swift in terms of fractional orders
and uncertainty parameters ℘ ∈ [0, 1].
• The results of the projected methodology are more general and fractional in nature than the results

provided by [67].
• For futuristic research, a similar method can be applied to Fitzhugh-Nagumo-Huxley by

formulating the Henstock integrals (fuzzy integrals in the Lebesgue notion) at infinite
intervals [68, 69]. Furthermore, one can explore the implementation of this strategy for relatively
intricate challenges, such as the spectral problem [70] and maximum likelihood estimation [71].
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