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A B S T R A C T

The goal of this paper is to study the dynamics of the dengue internal transmission model using a novel
piecewise derivative approach in the sense of singular and non-singular kernels. The singular kernel operator
is in the sense of Caputo, whereas the non-singular kernel operator is the Atangana–Baleanu Caputo operator.
The existence and uniqueness of a solution with piecewise derivative is presented for the considered problem by
using fixed point theorems. The suggested problem’s approximate solution is demonstrated using the piecewise
numerical iterative Newton polynomial approach. A numerical scheme for piecewise derivatives is established
in terms of singular and non-singular kernels. The numerical simulation for the piecewise derivable problem
under consideration is depicted using data for various fractional orders. This work makes the idea of piecewise
derivatives and the dynamics of the crossover problem much clearer.
Introduction

In the second part of the twentieth century, medical research suc-
cesses in terms of immunisation, antibiotics, and improved living cir-
cumstances led to the expectation that infectious illnesses would be
eradicated. As a result, in industrialised countries, efforts have been
focused on diseases such as cancer. Infectious illnesses, however, con-
tinue to cause pain and death in underdeveloped nations around the
turn of the century. Malaria, yellow fever, AIDS, Ebola, and other
diseases will live on in the collective memory of mankind.

Among these diseases, Dengue fever, which is most prevalent in
Southeast Asia, is spreading the globe, affecting nations with tropical
and warm climates. It is spread to humans by the Aedes mosquito,
and there are two types of dengue fever: basic dengue and Dengue
Haemorrhagic Fever (DHF), which can progress to an extreme con-
dition called Dengue Shock Syndrome (DSS). The fact that dengue is
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caused by four different serotypes classified as DEN1, DEN2, DEN3,
and DEN4 is a serious issue. A person who has been attacked by one
of the four serotypes will never be infected by that serotype again
(homologous immunity), but he will lose resistance to the other three
serotypes in around 12 weeks (heterologous immunity), making him
more susceptible to dengue haemorrhagic fever.

Dengue (Breakbone) fever is a mosquito-borne viral infection that
has been rapidly spreading over the world. Dengue virus is the name
given to the virus that causes dengue fever (DENV). A severe case
of dengue causes significant sickness and death, although many cases
of DENV generate relatively minor symptoms. Dengue fever has been
linked to a variety of symptoms. If a person has a high fever (40 ◦C∕
104 ◦F) and two of the symptoms/indications (severe headache, dis-
comfort behind the eyes, muscle and joint aches, nausea, vomiting,
swollen glands, and rash) during the febrile phase, dengue may be
vailable online 7 July 2022
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considered. For the time being, we must combat the illness by limiting
vector transmission [1,2]. It is important to remember that this break
bone fever is caused by a virus, with transmission occurring through
the bite of female mosquitoes. In particular Aedes albopictus and
Aedes aegypti, [3,4]. The broadcast has taken place when an infected
human comes into contact with mosquitoes and becomes infected,
the mosquito bites the sick person, infecting them and keeping them
infected until death. In contrast to mosquitoes, infected people heal
from their infections within a short period of time, and these healed
people are unable to transfer the virus again to mosquitoes, allowing
them to keep their immunity against transmission [4–7].

Furthermore, environmental degradation, climate changes, filthy
habitat, poverty, and uncontrolled urbanisation are all favourable con-
ditions for the spread of infectious diseases in general, and dengue
fever in particular. The global frequency of dengue fever has risen
considerably in recent decades. The illness has already spread to over
100 African and Latin American countries. The virus is wreaking havoc
on Southeast Asia and the Western Pacific.

During dengue fever outbreaks, the infection rate among suscep-
tibles is usually between 40 and 50 percent, but it can reach 80–90
percent under favourable geographic and environmental circumstances.
Each year, around 500, 000 cases of dengue hemorrhagic fever necessi-
tate hospitalisation. Dengue fever is a viral illness spread by mosquitoes
of the genus Aedes. It is caused by the contact of susceptible people
with any of the four serotypes. Aedes aegypti and Aedes albopictus
are the two species of vectors that transmit dengue fever. The first
is extremely anthropophilic, thriving in densely populated places and
biting largely during the day, whilst the second is less anthropophilic
and prefers to live in rural settings. As a result, dengue is important in
two ways: (i) Even in the absence of deadly forms, the illness causes
enormous economic and social costs due to its global dissemination
and various serotypes (absenteeism, immobilisation debilitation, med-
ication). (ii) The danger of the disease evolving into a hemorrhagic
form and dengue shock syndrome, both of which have large economic
implications and can cause death.

Mathematical modelling has shown to be a useful approach for
gaining a better understanding of certain diseases and developing treat-
ment plans. The model’s formulation and the feasibility of a simulation
with parameter estimates enable sensitivity testing and conjuncture
comparisons [8]. In the case of dengue fever, the mathematical models
we identified in the literature for dengue illness offer compartmental
dynamics with Susceptible, Exposed, Infectious, and Removed compart-
ments (immunised). SEIRS models [9,10] with only one virus or two
viruses working concurrently [11] were examined in particular.

The bulk of integer order calculus-based dynamical frameworks
have recently been converted to non-integer order domain. The notion
of fractional calculus has become an alternate mathematical way to
explain models with non-local behaviour because of the additional
interest variable and flexibility that may be used to firmly suit the
test information far better than anything in integer order modelling.
The historical memory and global knowledge of physical issues are
stored in these models, which are represented by fractional differential
equations. Fractional order models describe the dynamics of models
with greater clarity than integer models. There are several applications
of nonlocal operators in the literature. Nonlocal operators have been
used in the study of problems that occurs in mathematical physics [12,
13], biomathematics [14,15], engineering [16,17] and other areas of
applied sciences [18–20]. Indeed, the fractional technique generalises
the dengue model’s classical models. The goal of this change is to
improve our knowledge and prediction of epidemic trends as well as
intervention strategies. The fractional order models are considered to
be helpful in identifying specific patterns in patients’ illness develop-
ment and may give better data fit. Clinicians can utilise the data from
the universal fractional order system to create novel therapies for each
individual by fitting their data to the most appropriate fixed index.
2

As a result, the fractional differential equation can provide natural 0
solutions for this system. Choosing a meaningful fractional index based
on available real data yields a more trustworthy model. In [21–24],
the authors introduced a newly established fractional order dengue
mathematical model that is more reliable than previous models They
look into the dynamical behaviour and describe the solution to the
fractional dengue epidemic model Zain et al. [25] studied the following
non-integer order dengue internal transmission model

0𝐷
𝜎
𝑡 (SH(𝑡)) =  − ⋎SH(𝑡)RH(𝑡) − ℏSH(𝑡),

𝐷𝜎
𝑡 (IH(𝑡)) = ⋎SH(𝑡)RH(𝑡) − ⋏IH(𝑡),

𝐷𝜎
𝑡 (RH(𝑡)) = 𝛽𝑛IH(𝑡) − (𝜈1 + 𝜈2)RH(𝑡) − ⋎SH(𝑡)RH(𝑡),

H(0) = SH0 ≥ 0, IH(0) = IH0 ≥ 0, RH(0) = RH0 ≥ 0,

M(0) = M0 ≥ 0, (0) = 0 ≥ 0,

< 𝜎 ≤ 1, 𝑡 ∈ [0, 𝑇 ].

(1)

e utilised the supposition that all of the parameters are positive con-
tants in this model. The most environmentally friendly hypothesis was
hat sensitive cells are generated at a constant rate  and die at a rate
SH(𝑡). The product of their plenitudes ⋎SH(𝑡)RH(𝑡) infects vulnerable
ells at a rate equal to the product of their plenitude ⋎SH(𝑡)RH(𝑡). The
teady rate ⋎ declares the process’ viability, including the rate and
ossibility of successful septicity. Free infection particles are expelled
rom the system at a rate (𝑛𝑢1 + 𝑛𝑢2)RH(𝑡), where 𝜈1 is the natural demise
ate of virus and 𝜈2 is the death rate of virus by 𝑇 -cells, and septic cells
ield free virus at a rate proportional to their plenitude 𝛽𝑛IH(𝑡), with 𝑛
eing the multiplication rate. As ⋎SH(𝑡)RH(𝑡), the free virus also goes to
he vulnerable cells compartment. At a rate of ⋏IH(𝑡), infected cells bite
he dust.

Different operators, such as fractal derivative, non-integer order
erivative with kernel of singularity and non-singularity, fractal-
ractional operator, and other derivative operators, have been pre-
ented for the study of crossover issues [26–30]. Although the incor-
oration of randomness in the form of a stochastic equation results
n more realistic results, the crossover dynamics remain unsolved.
any infectious disease models, heat movement, fluid flow, and many

omplicated advection issues all have this trait [31,32]. The expo-
ential and Mittag-Lefler mappings in fractional calculus are unable
o determine the timing of crossovers. As a result, one of the novel
pproaches of piecewise differentiation and integration has been devel-
ped in [33] to address such difficulties. They discussed the classical
nd global piecewise derivatives, as well as several applicable exam-
les. Piecewise operators have bee used to study mathematical models
n epidemiology [34–36].

In this study, we reinterpret the model (1) for qualitative anal-
sis as well as numerical iterative analysis in the sense of Caputo
nd Atangana–Baleanu piecewise derivative. The rest of the work is
rranged as follows: In Section ‘‘Model derivation in piecewise deriva-
ive’’, we present the model (1) in piecewise derivative in sense of
ingular and non-singular kernel. The preliminaries are covered in
ection ‘‘Preliminaries’’, while the existence results is presented in
ection ‘‘Qualitative analysis’’. Section ‘‘Numerical Scheme for piece-
ise model ((2)) with fractional order’’ present the model analysis
ith the numerical approaches while simulations and discussion of

he model presented in Section ‘‘Simulations and Discussion’’. Section
‘Conclusion’’ concludes the with a few concluding observations.

odel derivation in piecewise derivative

The (1) can be written in piecewise derivative in sense of singular
nd non-singular kernel as follows:
𝐴𝐵𝐶𝐷𝜎

𝑡 (SH(𝑡)) =  − ⋎SH(𝑡)RH(𝑡) − ℏSH(𝑡),
𝐴𝐵𝐶𝐷𝜎

𝑡 (IH(𝑡)) = ⋎SH(𝑡)RH(𝑡) − ⋏IH(𝑡),
𝐴𝐵𝐶𝐷𝜎

𝑡 (RH(𝑡)) = 𝛽𝑛IH(𝑡) − (𝜈1 + 𝜈2)RH(𝑡) − ⋎SH(𝑡)RH(𝑡)

H(0) = SH0 ≥ 0, IH(0) = IH0 ≥ 0, RH(0) = RH0 ≥ 0,

M(0) = M0 ≥ 0, (0) = 0 ≥ 0,

(2)
< 𝜎 ≤ 1, 𝑡 ∈ [0, 𝑇 ].
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In more detail, we can write Eq. (2) as

𝐶𝐴𝐵𝐶
0 𝐷𝜎

𝑡 (SH(𝑡)) =

{𝐶
0 𝐷

𝜎
𝑡 (SH(𝑡)) =

𝐶1(SH, IH,RH, 𝑡), 0 < 𝑡 ≤ 𝑡1,
𝐴𝐵𝐶
0 𝐷𝜎

𝑡 (SH(𝑡)) =
𝐴𝐵𝐶1(SH, IH,RH, 𝑡), 𝑡1 < 𝑡 ≤ 𝑇 ,

𝐶𝐴𝐵𝐶
0 𝐷𝜎

𝑡 (IH(𝑡)) =

{𝐶
0 𝐷

𝜎
𝑡 (IH(𝑡)) =

𝐶2(SH, IH,RH, 𝑡), 0 < 𝑡 ≤ 𝑡1,
𝐴𝐵𝐶
0 𝐷𝜎

𝑡 (IH(𝑡)) =
𝐴𝐵𝐶2(SH, IH,RH, 𝑡), 𝑡1 < 𝑡 ≤ 𝑇 ,

𝐶𝐴𝐵𝐶
0 𝐷𝜎

𝑡 (RH(𝑡)) =

{𝐶
0 𝐷

𝜎
𝑡 (RH(𝑡)) = 𝐶3(SH, IH,RH, 𝑡), 0 < 𝑡 ≤ 𝑡1,

𝐴𝐵𝐶
0 𝐷𝜎

𝑡 (RH(𝑡)) = 𝐴𝐵𝐶3(SH, IH,RH, 𝑡), 𝑡1 < 𝑡 ≤ 𝑇 ,
(3)

where 𝐶
0 𝐷

𝜎
𝑡 and 𝐶

0 𝐷
𝜎
𝑡 are Caputo and 𝐴𝐵𝐶 derivative respectively. and

𝐶1(SH, IH,RH, 𝑡) = 𝐴𝐵𝐶1(SH, IH,RH, 𝑡) =  − ⋎SH(𝑡)RH(𝑡) − ℏSH(𝑡),
𝐶2(SH, IH,RH, 𝑡) = 𝐴𝐵𝐶2(SH, IH,RH, 𝑡) = ⋎SH(𝑡)RH(𝑡) − ⋏IH(𝑡),
𝐶3(SH, IH,RH, 𝑡) = 𝐴𝐵𝐶3(SH, IH,RH, 𝑡)
= 𝛽𝑛IH(𝑡) − (𝜈1 + 𝜈2)RH(𝑡) − ⋎SH(𝑡)RH(𝑡).

Preliminaries

In this section we will give some preliminaries definition of Caputo
and 𝐴𝐵𝐶 fractional derivative and integrals.

Definition 1. The 𝐴𝐵𝐶 derivative of a function 𝑈 (𝑡) under the condi-
tion 𝑈 (𝑡) ∈ 1(0, 𝜏) is defined as follows:

𝐴𝐵𝐶
0𝐷

𝜎
𝑡 (𝑈 (𝑡)) =

𝐴𝐵𝐶(𝜎)
1 − 𝜎 ∫

𝑡

0

𝑑
𝑑𝜁

𝑈 (𝜁 )𝐸𝜎

[

−𝜎
1 − 𝜎

(

𝑡 − 𝜁
)𝜎]

𝑑𝜁. (4)

eplace 𝐸𝜎

[

−𝜎
1−𝜎

(

𝑡 − 𝜁
)𝜁]

by 𝐸1 = exp
[

−𝜎
1−𝜎

(

𝑡 − 𝜁
)]

, in (4), to get the
Caputo–Fabrizio differential operator. Next, it is notified that
𝐴𝐵𝐶

0𝐷
𝜎
𝑡 [𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡] = 0.

Here, (𝜚) is called normalisation operator which is formulated
as 𝐴𝐵𝐶(0) = 𝐴𝐵𝐶(1) = 1. Also 𝐸𝜎 represents the special function
known as Mittag-Leffler function, which is the generalisation of the
exponential function.

Definition 2. Let 𝑈 (𝑡) ∈ 𝐿[0, 𝑇 ], then the fractional integral in ABC
sense as:

𝐴𝐵𝐶
0𝐼

𝜎
𝑡 𝑈 (𝑡) = 1 − 𝜎

𝐴𝐵𝐶(𝜎)
𝑈 (𝑡) + 𝜎

𝐴𝐵𝐶(𝜎)𝛤 (𝜎) ∫

𝑡

0
(𝑡 − 𝜁 )𝜎−1𝑈 (𝜁 )𝑑𝜁. (5)

Definition 3. Consider 𝑈 (𝑡), for the definition of arbitrary order
derivative in Caputo sense w.r.t 𝑡 as

𝐶
0 𝐷

𝜎
𝑡 𝑈 (𝑡) = 1

𝛤 (1 − 𝜎) ∫

𝑡

0
(𝑡 − 𝜁 )𝑛−𝜎−1[𝑈 ′(𝜁 )]𝑑𝜁.

Definition 4. Consider 𝑈 (𝑡) for the definition Caputo integration w.r.t
𝑡 as

𝐶
0 𝐼

𝜎
𝑡 𝑈 (𝑡) = 1

𝛤 (𝜎) ∫

𝑡

0
(𝑡 − 𝜁 )𝜎−1𝑑𝜁, 𝜎 > 0,

aving converging integral.

efinition 5. Consider 𝑈 (𝑡) differentiable and 𝑔(𝑡) is increasing func-
tion then for the definition of classical piecewise derivative [33] as

𝑃𝐺
0 𝐷𝑡𝑈 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑈 (𝑡), 0 < 𝑡 ≤ 𝑡1,
𝑈 ′(𝑡)
𝑔′(𝑡)

𝑡1 < 𝑡 ≤ 𝑇 ,

here 𝑃𝐺
0 𝐷𝑡𝑈 (𝑡) is for classical derivative for 0 < 𝑡 ≤ 𝑡1 and global

derivative for 𝑡1 < 𝑡 ≤ 𝑇 .

Definition 6. Consider 𝑈 (𝑡) differentiable and 𝑔(𝑡) is increasing func-
3

tion then for the definition of classical piecewise integration [33] t
as

𝑃𝐺
0 𝐼𝑡𝑈 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫

𝑡

0
𝑈 (𝜏)𝑑𝜏, 0 < 𝑡 ≤ 𝑡1,

∫

𝑡

𝑡1
𝑈 (𝜏)𝑔′(𝜏)𝑑(𝜏) 𝑡1 < 𝑡 ≤ 𝑇 ,

ere 𝑃𝐺
0 𝐼𝑡𝑈 (𝑡) is for classical integration for 0 < 𝑡 ≤ 𝑡1 and global

ntegration for 𝑡1 < 𝑡 ≤ 𝑇 .

efinition 7. Consider 𝑈 (𝑡) differentiable then for the definition of
lassical and fractional piecewise derivative [33] as

𝐶𝐷𝜎
𝑡 𝑈 (𝑡) =

{

𝑈 ′(𝑡), 0 < 𝑡 ≤ 𝑡1,
𝐶
0 𝐷

𝜎
𝑡 𝑈 (𝑡) 𝑡1 < 𝑡 ≤ 𝑇 ,

ere 𝑃𝐶
0 𝐷𝜎

𝑡 𝑈 (𝑡) is classical derivative for 0 < 𝑡 ≤ 𝑡1 and fractional
erivative for 𝑡1 < 𝑡 ≤ 𝑇 .

efinition 8. Consider 𝑈 (𝑡) differentiable then for the definition of
lassical and fractional piecewise integration [33] as

𝐶𝐼𝑡𝑈 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫

𝑡

0
𝑈 (𝜏)𝑑𝜏, 0 < 𝑡 ≤ 𝑡1,

1
𝛤𝜎 ∫

𝑡

𝑡1
(𝑡 − 𝜁 )𝜎−1𝑈 (𝜁 )𝑑(𝜁 ) 𝑡1 < 𝑡 ≤ 𝑇 ,

ere 𝑃𝐶
0 𝐼𝑡𝑈 (𝑡) is for classical integration for 0 < 𝑡 ≤ 𝑡1 and Caputo

ntegration for 𝑡1 < 𝑡 ≤ 𝑇 .

efinition 9. Consider 𝑈 (𝑡) differentiable then for the definition of
aputo and ABC fractional piecewise derivative [33] as

𝐶𝐴𝐵𝐶𝐷𝜎
𝑡 𝑈 (𝑡) =

{𝐶
0 𝐷

𝜎
𝑡 𝑈 (𝑡), 0 < 𝑡 ≤ 𝑡1,

𝐴𝐵𝐶
0 𝐷𝜎

𝑡 𝑈 (𝑡) 𝑡1 < 𝑡 ≤ 𝑇 ,

ere 𝑃𝐶𝐴𝐵𝐶
0 𝐷𝜎

𝑡 𝑈 (𝑡) is Caputo derivative for 0 < 𝑡 ≤ 𝑡1 and fractional
𝐵𝐶 derivative for 𝑡1 < 𝑡 ≤ 𝑇 .

efinition 10. Consider 𝑈 (𝑡) differentiable then for the definition of
ractional Caputo and fractional 𝐴𝐵𝐶 piecewise integration [33] as

𝐶𝐴𝐵𝐶𝐼𝑡𝑈 (𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
𝛤 (𝜎) ∫

𝑡

𝑡1
(𝑡 − 𝜁 )𝜎−1𝑈 (𝜁 )𝑑(𝜁 ), 0 < 𝑡 ≤ 𝑡1,

1 − 𝜎
𝐴𝐵𝐶𝜎

𝑈 (𝑡) + 𝜎
𝐴𝐵𝐶𝜎𝛤𝜎

× ∫

𝑡

𝑡1
(𝑡 − 𝜁 )𝜎−1𝑈 (𝜁 )𝑑(𝜁 ) 𝑡1 < 𝑡 ≤ 𝑇 ,

ere 𝑃𝐶𝐴𝐵𝐶
0 𝐼𝑡𝑈 (𝑡) is for Caputo singular kernel integration for 0 < 𝑡 ≤ 𝑡1

nd ABC integration for 𝑡1 < 𝑡 ≤ 𝑇 .

emma 1. The solution of piecewise derivable equation
𝐶𝐴𝐵𝐶𝐷𝜎

𝑡 RH(𝑡) = 𝐻(𝑡,RH(𝑡)), 0 < 𝜎 ≤ 1,

s

H(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

RH0 +
1

𝛤 (𝜎) ∫

𝑡

0
𝐻(𝜁,RH(𝜁 ))(𝑡 − 𝜁 )𝜎−1𝑑𝜁, 0 < 𝑡 ≤ 𝑡1

RH(𝑡1) +
1 − 𝜎

𝐴𝐵𝐶(𝜎)
𝐻(𝑡,RH(𝑡)) +

𝜎
𝐴𝐵𝐶𝜎𝛤 (𝜎)

× ∫

𝑡

𝑡1
(𝑡 − 𝜁 )𝜎−1𝐻(𝜁RH(𝜁 ))𝑑(𝜁 ) 𝑡1 < 𝑡 ≤ 𝑇 .

ualitative analysis

In this section we find the existence as well as the uniqueness
f the proposed model (3) in piecewise concept. Now we will find

he existence of solution along with unique solution property of the
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considered piecewise derivable function. For this we can write the
system (3) as given in Lemma 1 and by further description we write
as follows
𝑃𝐶𝐴𝐵𝐶
0 𝐷𝜚

𝑡 Z(𝑡) =  (𝑡,Z(𝑡)), 0 < 𝜚 ≤ 1,

is

Z(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Z0 +
1

𝛤 (𝜎) ∫

𝑡

0
 (𝜇,Z(𝜇, ))(𝑡 − 𝜇, )𝜇,−1𝑑𝜇, 0 < 𝑡 ≤ 𝑡1,

Z(𝑡1) +
1 − 𝜎

𝐴𝐵𝐶(𝜎)
 (𝑡,Z(𝑡)) + 𝜎

𝐴𝐵𝐶(𝜎)𝛤 (𝜎)

× ∫

𝑡

𝑡1
(𝑡 − 𝜇)𝜇−1 (𝜇,Z(𝜇, ))𝑑𝜇, 𝑡1 < 𝑡 ≤ 𝑇 ,

(6)

where

Z(𝑡) =

⎧

⎪

⎨

⎪

⎩

SH(𝑡)

IH(𝑡)

RH(𝑡)

, Z0 =

⎧

⎪

⎨

⎪

⎩

SH0

IH0

RH0

, Z(𝑡1) =

⎧

⎪

⎨

⎪

⎩

SH(𝑡1)

IH(𝑡1)

RH(𝑡1)

, (7)

 (𝑡,Z(𝑡)) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 =

{

𝐶1(SH, IH,RH, 𝑡)
𝐴𝐵𝐶1(SH, IH,RH, 𝑡)

,

2 =

{

𝐶2(SH, IH,RH, 𝑡)
𝐴𝐵𝐶2(SH, IH,RH, 𝑡)

,

3 =

{

𝐶3(SH, IH,RH, 𝑡)
𝐴𝐵𝐶3(SH, IH,RH, 𝑡).

(8)

We take 0 < 𝑡 ≤ 𝑇 < ∞ with a Banach space define as 𝐸1 = 𝐶[0, 𝑇 ] with
a norm

‖Z‖ = max
𝑡∈[0,𝑇 ]

|Z(𝑡)|.

To obtain our result, we suppose growth condition on a non-linear
operator as:

(C1) ∃ Z > 0; ∀  , Z̄ ∈ 𝐸 we have

| (𝑡,Z) −  (𝑡, Z̄)| ≤  |Z − Z̄|,

(C2) ∃ 𝐶 > 0 & 𝑀 > 0,;

| (𝑡,Z(𝑡))| ≤ 𝐶 |Z| +𝑀 .

f  be piecewise continuous on sub interval 0 < 𝑡 ≤ 𝑡1 and 𝑡1 < 𝑡 ≤ 𝑇 on
0, 𝑇 ], also obeying (𝐶2), then piecewise problem (3) has ≥ 1 solution

on each sub interval.

Proof. Let us define a closed subset in both subintervals of 0, 𝑇 as B
and 𝐸 as 𝐸 using the Schauder fixed point theorem.

𝐵 = {Z ∈ 𝐸 ∶ ‖Z‖ ≤ 𝑅1,2, 𝑅 > 0}.

Next consider an operator  ∶ B → B and applying (6) as

 (Z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Z0 +
1

𝛤 (𝜎) ∫

𝑡1

0
 (𝜇,U(𝜇))(𝑡 − 𝜇)𝜇−1𝑑𝜇, 0 < 𝑡 ≤ 𝑡1,

Z(𝑡1) +
1 − 𝜌

𝐴𝐵𝐶(𝜌)
 (𝑡,Z(𝑡)) +

𝜌
𝐴𝐵𝐶(𝜌)𝛤 (𝜌)

× ∫

𝑡

𝑡1
(𝑡 − 𝜇)𝜌−1 (𝜇,Z(𝜇))𝑑(𝜇), 𝑡1 < 𝑡 ≤ 𝑇 .

(9)

On any Z ∈ 𝐵, we get

| (Z)(𝑡)| ≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

|Z0| +
1

𝛤 (𝜎) ∫

𝑡1

0
(𝑡 − 𝜇)𝜎−1| (𝜇,Z(𝜇))|𝑑𝜇,

|Z(𝑡1)| +
1 − 𝜎

𝐴𝐵𝐶(𝜎)
| (𝑡,Z(𝑡))| + 𝜎

𝐴𝐵𝐶(𝜎)𝛤 (𝜎)

×
𝑡
(𝑡 − 𝜇)𝜎−1| (𝜇Z(𝜇))|𝑑(𝜇),
4

⎩

∫𝑡1 |
≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|Z0| +
1

𝛤 (𝜎) ∫

𝑡1

0
(𝑡 − 𝜇)𝜎−1[𝐶 |Z| +𝑀 ]𝑑𝜇,

|Z(𝑡1)| +
1 − 𝜎

𝐴𝐵𝐶(𝜎)
[𝐶 |Z| +𝑀 ] +

𝜎
𝐴𝐵𝐶(𝜎)𝛤 (𝜎)

× ∫

𝑡

𝑡1
(𝑡 − 𝜇)𝜎−1[𝐶 |Z| +𝑀 ]𝑑(𝜇),

≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|Z0| +
𝐓𝜎

𝛤 (𝜎 + 1)
[𝐶𝐻 |U| +𝑀 ] = 𝑅1, 0 < 𝑡 ≤ 𝑡1,

|Z(𝑡1)| +
1 − 𝜎

𝐴𝐵𝐶(𝜎)
[𝐶 |Z| +𝑀 ]

+
𝜎(𝑇 − 𝐓)𝜎

𝐴𝐵𝐶(𝜎)𝛤𝜎 + 1
[𝐶 |Z| +𝑀 ]𝑑(𝜇) = 𝑅2, 𝑡1 < 𝑡 ≤ 𝑇 ,

≤

{

𝑅1, 0 < 𝑡 ≤ 𝑡1,

𝑅2, 𝑡1 < 𝑡 ≤ 𝑇 .

rom the above equation, as Z ∈ 𝐁. Thus  (𝐁) ⊂ 𝐁. Hence it proves
hat  is close and complete. Further to show the complete continuity
e can write as We take 𝑡𝑖 < 𝑡𝑗 ∈ [0, 𝑡1] as first interval in Caputo sense,

onsider

 (Z)(𝑡𝑗 ) −  (Z)(𝑡𝑖)| =
|

|

|

|

1
𝛤 (𝜎) ∫

𝑡𝑗

0
(𝑡𝑗 − 𝜇)𝜎−1 (𝜇,Z(𝜇))𝑑𝜇,

− 1
𝛤 (𝜎) ∫

𝑡𝑖

0
(𝑡𝑖 − 𝜇)𝜎−1 (𝜇,Z(𝜇))𝑑𝜇

|

|

|

|

≤ 1
𝛤 (𝜎) ∫

𝑡𝑖

0
[(𝑡𝑖 − 𝜇)𝜎−1 − (𝑡𝑗 − 𝜇)𝜎−1]| (𝜇,Z(𝜇))|𝑑𝜇

+ 1
𝛤 (𝜎) ∫

𝑡𝑗

𝑡𝑖
(𝑡𝑗 − 𝜇)𝜎−1| (𝜇,Z(𝜇))|𝑑𝜇

≤ 1
𝛤 (𝜎)

[

∫

𝑡𝑖

0
[(𝑡𝑖 − 𝜇)𝜎−1 − (𝑡𝑗 − 𝜇)𝜎−1]𝑑𝜇

+ ∫

𝑡𝑗

𝑡𝑖
(𝑡𝑗 − 𝜇)𝜎−1𝑑𝜇

]

(𝐶𝐻 |Z| +𝑀 )

≤
(𝐶Z +𝑀 )
𝛤 (𝜎 + 1)

[𝑡𝜎𝑗 − 𝑡𝜎𝑖 + 2(𝑡𝑗 − 𝑡𝑖)𝜎 ]. (10)

ext (10), we obtain 𝑡𝑖 → 𝑡𝑗 , then

 (Z)(𝑡𝑗 ) −  (Z)(𝑡𝑖)| → 0, as 𝑡𝑖 → 𝑡𝑗 .

o  is equi-continuous in [0, 𝑡1] interval. Next we consider other
nterval 𝑡𝑖, 𝑡𝑗 ∈ [𝑡1, 𝑇 ] in the 𝐴𝐵𝐶 sense as

 (Z)(𝑡𝑗 ) −  (Z)(𝑡𝑖)| =
|

|

|

|

1 − 𝜎
𝐴𝐵𝐶(𝜎)

 (𝑡,Z(𝑡)) + 𝜎
𝐴𝐵𝐶(𝜎)𝛤 (𝜎)

× ∫

𝑡𝑗

𝑡1
(𝑡𝑗 − 𝜇)𝜎−1 (𝜇,Z(𝜇))𝑑𝜇,

− 1 − 𝜎
𝐴𝐵𝐶(𝜎)

 (𝑡,Z(𝑡)) +
(𝜎)

𝐴𝐵𝐶(𝜎)𝛤 (𝜎)

× ∫

𝑡𝑖

𝑡1
(𝑡𝑖 − 𝜇)𝜎−1 (𝜇,Z(𝜇))𝑑𝜇

|

|

|

|

≤ 𝜎
𝐴𝐵𝐶(𝜎)𝛤 (𝜎) ∫

𝑡𝑖

𝑡1
[(𝑡𝑖 − 𝜇)𝜎−1 − (𝑡𝑗 − 𝜇)𝜎−1]

× | (𝜇,Z(𝜇))|𝑑𝜇

+ 𝜎
𝐴𝐵𝐶(𝜎)𝛤 (𝜎) ∫

𝑡𝑗

𝑡𝑖
(𝑡𝑗 − 𝜇)𝜎−1| (𝜇,Z(𝜇))|𝑑𝜇

≤ 𝜎
𝐴𝐵𝐶(𝜎)𝛤 (𝜎)

[

∫

𝑡𝑖

𝑡1
[(𝑡𝑖 − 𝜇)𝜎−1 − (𝑡𝑗 − 𝜇)𝜎−1]𝑑𝜇

+ ∫

𝑡𝑗

𝑡𝑖
(𝑡𝑗 − 𝜇)𝜎−1𝑑𝜇

]

(𝐶 |Z| +𝑀 )

≤
𝜎(𝐶Z +𝑀 )

𝐴𝐵𝐶(𝜎)𝛤 (𝜎 + 1)
[𝑡𝜎𝑗 − 𝑡𝜎𝑖 + 2(𝑡𝑗 − 𝑡𝑖)𝜎 ]. (11)

ext as (11), we obtain 𝑡𝑖 → 𝑡𝑗 , then

 (Z)(𝑡 ) −  (Z)(𝑡 )| → 0, as 𝑡 → 𝑡 .
𝑗 𝑖 𝑖 𝑗
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Fig. 1. The population dynamics of susceptible population SH(𝑡) in the Caputo-ABC
piecewise model (2) with 𝑡1 = 23.

So  show the equi-continuity in [𝑡1, 𝑇 ] interval. Therefore,  is equi-
continuous mapping. The operator  is completely continuous, uniform
continuous, and has bounds, according to the Arzel’a–Ascoli theorem.
As a result, the piecewise derivable problem (3) has a ≥ 1 solution on
each sub interval, according to Schauder’s fixed point Theorem. □

With (𝐶1), the proposed model has unique root if  be a contraction
operator.

Proof. As we have taken an operator  ∶ 𝐁 → 𝐁 piecewise continuous,
take Z and Z̄ ∈ 𝐵 on [0, 𝑡1] in Caputo sense as

‖ (Z) −  (Z̄)‖ = max
𝑡∈[0,𝑡1]

|

|

|

|

1
𝛤 (𝜎) ∫

𝑡

0
(𝑡 − 𝜇)𝜎−1 (𝜇,Z(𝜇))𝑑𝜇

− 1
𝛤 (𝜎) ∫

𝑡

0
(𝑡 − 𝜇)𝜎−1 (𝜇, Z̄(𝜇))𝑑𝜇

|

|

|

|

≤ 𝐓𝜎

𝛤 (𝜎 + 1)
𝐿‖Z − Z̄‖. (12)

From (12), we have

‖ (Z) −  (Z̄)‖ ≤ 𝐓𝜎

𝛤 (𝜎 + 1)
𝐿‖Z − Z̄‖. (13)

So  is contracted. Therefore, finally in sense of Banach contraction
theorem the considered problem has unique solution in given sub
interval. Next for the other interval 𝑡 ∈ [𝑡1, 𝑇 ] in the sense of 𝐴𝐵𝐶
derivative as

‖ (Z) −  (Z̄)‖ ≤ 1 − 𝜎
𝐴𝐵𝐶(𝜎)

𝐿‖Z− Z̄‖+
𝜎(𝐓 − 𝑇 𝜎 )

𝐴𝐵𝐶(𝜎)𝛤 (𝜎 + 1)
𝐿‖Z− Z̄‖. (14)

or

‖ (Z) −  (Z̄)‖ ≤ 𝐿

[

1 − 𝜎
𝐴𝐵𝐶(𝜎)

+
𝜎(𝐓 − 𝑇 𝜎 )

𝐴𝐵𝐶(𝜎)𝛤 (𝜎 + 1)

]

‖Z − Z̄‖. (15)

Therefore,  is contracted. Therefore, finally in sense of Banach con-
traction theorem the considered problem has unique solution in given
sub interval. So by Eqs. (13) and (15) the piecewise derivable problem
have unique solution on each sub-intervals. □

Numerical scheme for piecewise model (2) with fractional order

Next we will establish a numerical scheme for the proposed piece-
wise differentiable problem (3). We will developed a numerical scheme
for the two subinterval of [0, 𝑇 ], in Caputo and 𝐴𝐵𝐶 sense. We will take
help from the piecewise derivative integer order numerical scheme as
5

in [33]. Applying the piecewise integration to Eq. (3) for Caputo and

𝐴𝐵𝐶 format as follows

SH(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

SH(0) +
1

𝛤 (𝜎) ∫
𝑡1
0 (𝑡 − 𝜏)𝜎−1𝑐1(𝑡,SH, IH,RH)𝑑𝜏 0 < 𝑡 ≤ 𝑡1,

SH(𝑡1) +
1−𝜎
𝐴𝐵(𝜎)1(𝑡,SH, IH,RH)

+ 𝜎
𝐴𝐵(𝜎)𝛤 (𝜎) ∫

𝑡
𝑡1
(𝑡 − 𝜏)𝜎−11(𝑡,SH, IH,RH)𝑑𝜏 𝑡1 < 𝑡 ≤ 𝑇 ,

IH(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

IH(0) +
1

𝛤 (𝜎) ∫
𝑡1
0 (𝑡 − 𝜏)𝜎−1𝑐2(𝑡,SH, IH,RH)𝑑𝜏 0 < 𝑡 ≤ 𝑡1,

IH(𝑡1) +
1−𝜎
𝐴𝐵(𝜎)2(𝑡,SH, IH,RH)

+ 𝜎
𝐴𝐵(𝜎)𝛤 (𝜎) ∫

𝑡
𝑡1
(𝑡 − 𝜏)𝜎−12(𝑡,SH, IH,RH)𝑑𝜏 𝑡1 < 𝑡 ≤ 𝑇 ,

H(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

RH(0) +
1

𝛤 (𝜎) ∫
𝑡1
0 (𝑡 − 𝜏)𝜎−1𝑐3(𝑡,SH, IH,RH)𝑑𝜏 0 < 𝑡 ≤ 𝑡1,

RH(𝑡1) +
1−𝜎
𝐴𝐵(𝜎)3(𝑡,SH, IH,RH)

+ 𝜎
𝐴𝐵(𝜎)𝛤 (𝜎) ∫

𝑡
𝑡1
(𝑡 − 𝜏)𝜎−13(𝑡,SH, IH,RH)𝑑𝜏 𝑡1 < 𝑡 ≤ 𝑇 ,

(16)

here 𝐶𝑖(𝑡) =𝐶 𝑖(SH, IH,RH, 𝑡) and 𝐴𝐵𝐶𝑖(𝑡) =𝐴𝐵𝐶
𝑖  (SH, IH,RH, 𝑡) are

he left hand side of Eq. (16) for 𝑖 = 1, 2, 3, also given in Eq. (3). We

ill derive the scheme for system (16) and the same procedure will be

or the rest of the compartments.

At 𝑡 = 𝑡𝑛+1

H(𝑡𝑛+1) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

SH0 +
1

𝛤 (𝜎) ∫

𝑡1

0
(𝑡 − 𝜁 )𝜎−1𝐶1(SH, IH,RH, 𝜁)𝑑𝜁,

SH(𝑡1) +
1 − 𝜎

𝐴𝐵𝐶(𝜎)
𝐴𝐵𝐶1(SH, IH,RH, 𝑡𝑛)

+ 𝜎
𝐴𝐵𝐶(𝜎)𝛤 (𝜎) ∫

𝑡𝑛+1

𝑡1
(𝑡 − 𝜁 )𝜎−1𝐴𝐵𝐶1(𝜁 )𝑑𝜁, 𝑡1 < 𝑡 ≤ 𝑇 .

.

(17)

riting Eq. (17) in the Newton interpolation approximation given
n [33] as follows

H(𝑡𝑛+1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

SH0 +

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝛥𝑡)𝜎−1

𝛤 (𝜎 + 1)

𝑖
∑

K=2

[

𝐶1(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛱

+
(𝛥𝑡)𝜎−1

𝛤 (𝜎 + 2)

𝑖
∑

K=2

[

𝐶1(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

−𝐶 1(SHK−2 , IHK−2 ,RH
K−2 ,M

K−2 ,
K−2 , 𝑡K−2)

]

∑

+
𝜎(𝛥𝑡)𝜎−1

2𝛤 (𝜎 + 3)

𝑖
∑

K=2

[

𝐶1(SHK , IHK ,RH
K , 𝑡K )

− 2𝐶1(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

+𝐶 1(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛥

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

SH(𝑡1) +

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

1 − 𝜎
𝐴𝐵𝐶(𝜎)

𝐴𝐵𝐶1(SH𝑛 , IH𝑛 ,RH
𝑛 , 𝑡𝑛)

+ 𝜎
𝐴𝐵𝐶(𝜎)

(𝛿𝑡)𝜎−1

𝛤 (𝜎 + 1)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶1(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛱

+ 𝜎
𝐴𝐵𝐶(𝜎)

(𝜐𝑡)𝜎−1

𝛤 (𝜎 + 2)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶1(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

+ 𝐴𝐵𝐶1(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

∑

+ 𝜎
𝐴𝐵𝐶(𝜎)

𝜎(𝜐𝑡)𝜎−1

𝛤 (𝜎 + 3)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶1(SHK , IHK ,RH
K , 𝑡K )

− 2𝐴𝐵𝐶1(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

+𝐴𝐵𝐶 1(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛥.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

.

⎩
⎩ ⎭
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R

∑

For the remaining three compartment we can write the Newton inter-
polation approximation as follows

IH(𝑡𝑛+1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

IH0 +

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝛥𝑡)𝜎−1

𝛤 (𝜎 + 1)

𝑖
∑

K=2

[

𝐶2(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛱

+
(𝛥𝑡)𝜎−1

𝛤 (𝜎 + 2)

𝑖
∑

K=2

[

𝐶2(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

−𝐶 2(SHK−2 , IH𝐤−2 ,RH
K−2 , 𝑡K−2)

]

∑

+
𝜎(𝛥𝑡)𝜎−1

2𝛤 (𝜎 + 3)

𝑖
∑

K=2

[

𝐶2(SHK , IHK ,RH
K ,M

K ,
K , 𝑡K )

− 2𝐶2(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

+𝐶 2(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛥

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

IH(𝑡1) +

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 − 𝜎
𝐴𝐵𝐶(𝜎)

𝐴𝐵𝐶2(SH𝑛 , IH𝑛 ,RH
𝑛 , 𝑡𝑛)

+ 𝜎
𝐴𝐵𝐶(𝜎)

(𝛿𝑡)𝜎−1

𝛤 (𝜎 + 1)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶2(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛱

+ 𝜎
𝐴𝐵𝐶(𝜎)

(𝜐𝑡)𝜎−1

𝛤 (𝜎 + 2)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶2(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

+ 𝐴𝐵𝐶2(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

∑

+ 𝜎
𝐴𝐵𝐶(𝜎)

𝜎(𝜐𝑡)𝜎−1

𝛤 (𝜎 + 3)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶2(SHK , IHK ,RH
K , 𝑡K )

− 2𝐴𝐵𝐶2(SHK−1 , IHK−1 ,RH
K−1 ,M

K−1 ,
K−1 , 𝑡K−1)

+𝐴𝐵𝐶 2(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛥.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

.

H(𝑡𝑛+1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

RH0 +

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝛥𝑡)𝜎−1

𝛤 (𝜎 + 1)

𝑖
∑

K=2

[𝐶

3(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛱

+
(𝛥𝑡)𝜎−1

𝛤 (𝜎 + 2)

𝑖
∑

K=2

[

𝐶3(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

−𝐶 3(SHK−2 , IHK−2 ,RH
K−2 ,M

K−2 ,
K−2 , 𝑡K−2)

]

∑

+
𝜎(𝛥𝑡)𝜎−1

2𝛤 (𝜎 + 3)

𝑖
∑

K=2

[

𝐶3(SHK , IHK ,RH
K , 𝑡K )

− 2𝐶3(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

+𝐶 3(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛥

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

RH(𝑡1) +

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 − 𝜎
𝐴𝐵𝐶(𝜎)

𝐴𝐵𝐶3(SH𝑛 , IH𝑛 ,RH
𝑛 , 𝑡𝑛)

+ 𝜎
𝐴𝐵𝐶(𝜎)

(𝛿𝑡)𝜎−1

𝛤 (𝜎 + 1)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶3(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛱

+ 𝜎
𝐴𝐵𝐶(𝜎)

(𝜐𝑡)𝜎−1

𝛤 (𝜎 + 2)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶3(SHK−1 , IHK−1 ,RH
K−1 , 𝑡K−1)

+ 𝐴𝐵𝐶3(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

∑

+ 𝜎
𝐴𝐵𝐶(𝜎)

𝜎(𝜐𝑡)𝜎−1

𝛤 (𝜎 + 3)

𝑛
∑

K=𝑖+3

[

𝐴𝐵𝐶3(SHK , IHK ,RH
K , 𝑡K )

− 2𝐴𝐵𝐶3(SHK−1 , IHK−1 ,RH
K−1 ,M

K−1 ,
K−1 , 𝑡K−1)

+𝐴𝐵𝐶 3(SHK−2 , IHK−2 ,RH
K−2 , 𝑡K−2)

]

𝛥.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

.

Here

𝛥 =

⎡

⎢

⎢

⎢

⎢

⎣

(1 + 𝑛 − K)𝜎
(

2(𝑛 − K)2 + (3𝜎 + 10)(𝑛 − K) + 2𝜎2 + 9𝜎 + 12
)

− (𝑛 − K)
(

2(𝑛 − K)2 + (5𝜎 + 10)(−K + 𝑛) + 6𝜎2 + 18𝜎 + 12
)

⎤

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

(1 + 𝑛 − K)𝜎
(

3 + 2𝜎 − K + 𝑛
)

− (𝑛 − K)
(

𝑛 − K + 3𝜎 + 3
)

⎤

⎥

⎥

⎥

⎥

,
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Fig. 2. The population dynamics of the infected population IH(𝑡) in the Caputo-ABC
piecewise model (2) with 𝑡1 = 23.

𝛥 =
[

(1 + 𝑛 − K)𝜎 − (𝑛 − K)𝜎
]

.

Simulations and discussion

The purpose of this section is to present the simulations of model
(2), which is considered in Caputo and ABC piece-wise derivative. For
Figs. 1–6, we have assumed the parameter values to be  = 0.56,
⋎ = 0.009, ℏ = 2.5, ⋏ = 0.5, 𝛽𝑛 = 175, 𝜈1 = 4, and 𝜈2 = 25. The initial
values are assumed to be (0) = 400, (0) = 0, (0) = 4. We divide
the whole interval into two sub intervals which are [0, 𝑡1] = [0, 23] and
[𝑡1, 𝑇 ] = [23, 100].

The arrow presented in the figures points towards 𝑡1. The population
dynamics of the susceptible class  with different fractional order 𝜎 is
demonstrated in Figs. 1 and 4. Similarly in Figs. 2 and 5 the population
behaviour of the infected individuals is depicted with various values
of 𝜎, while the affect of the fractional piecewise operator on the free
virus class of the proposed model is projected in Figs. 3 and 6. From
the simulations it is observed that the susceptible population decreases
with time and becomes zero soon after we advances to the second
sub-interval. Similarly, from the infected population we see that the
infected individuals increases and reach its peak value around 𝑡 = 30,
where after this time a decline in the population of infected individuals
is observed. Finally, the recovered or the free virus population shows
increase in the recovered individuals which decreases gradually after
𝑡 = 33, and becomes stable at 𝑡 = 100. However, it is observed that the
recovered population at lower fractional orders become stable soon as
compared to the high values of 𝜎.

For Figs. 7–12, we have assumed the parameter values to be  =
0.56, ⋎ = 0.001, ℏ = 0.1313, ⋏ = 0.5, 𝛽𝑛 = 156, 𝜈1 = 4, and 𝜈2 = 25. The
initial values are assumed to be (0) = 400, (0) = 0, (0) = 4. Here we
split the whole interval into two sub intervals which are [0, 𝑡1] = [0, 40]
and [𝑡1, 𝑇 ] = [40, 100].

The arrow presented in the figures points towards 𝑡1, where the
second interval starts and the operator shifts to ABC. The dynamics of
the susceptible class  with different fractional order 𝜎 is demonstrated
in Figs. 7 and 10. Similarly in Figs. 8 and 11 the population behaviour
of the infected individuals is demonstrated with various fractional
orders 𝜎, while the affect of the fractional piecewise operator on the
free virus class of the proposed model with the second set of parameter
values are projected in Figs. 9 and 12. From the graphs one can
see that the susceptible population decreases with time and becomes
zero gradually. Similarly, from the infected population we see that
the infected individuals increases and reach its peak value at different



Results in Physics 39 (2022) 105798S. Ahmad et al.

(

p

Fig. 3. The dynamics of recovered population RH(𝑡) in the Caputo-ABC piecewise model
2) with 𝑡1 = 23.

Fig. 4. The population dynamics of susceptible population SH(𝑡) in the Caputo-ABC
piecewise model (2) with 𝑡1 = 13.

Fig. 5. The population dynamics of the infected population IH(𝑡) in the Caputo-ABC
iecewise model (2) with 𝑡1 = 13.
7

Fig. 6. The dynamics of recovered population RH(𝑡) in the Caputo-ABC piecewise model
(2) with 𝑡1 = 13.

Fig. 7. The population dynamics of susceptible population SH(𝑡) in the Caputo-ABC
piecewise model (2) with 𝑡1 = 40.

Fig. 8. The population dynamics of the infected population IH(𝑡) in the Caputo-ABC
piecewise model (2) with 𝑡1 = 40.
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Fig. 9. The dynamics of recovered population RH(𝑡) in the Caputo-ABC piecewise model
2) with 𝑡1 = 40.

Fig. 10. The population dynamics of susceptible population SH(𝑡) in the Caputo-ABC
iecewise model (2) with 𝑡1 = 40.

alues of 𝑡 for different fractional orders, after which a decline in the
opulation of infected individuals is can be seen.

Further we see that the recovered or the free virus population shows
ncrease in the recovered individuals which decreases gradually after
= 60, and becomes stable at 𝑡 = 100 when 𝜎 = 0.99. However, it

s observed that the recovered population at lower fractional orders
ecome stable soon as compared to the high values of 𝜎. From the lower
ractional orders, one can see that the model’s state variables becomes
table soon as compared to the high values of 𝜎.

onclusion

In this article, we have analysed the dynamics of the dengue epi-
emic model with a novel piecewise derivative in the sense of the
aputo and Atangana–Baleanu Caputo operators. The existence and
niqueness of a solution with piecewise derivative has been examined
or the aforesaid disease model. The suggested problem’s approximate
olution was obtained using the piecewise approach Newton poly-
omial approach. A numerical scheme for piecewise derivatives has
een established in terms of singular and non-singular kernels. The
umerical simulation for the piecewise dengue model was presented for
8

Fig. 11. The population dynamics of the infected population IH(𝑡) in the Caputo-ABC
piecewise model (2) with 𝑡1 = 40.

Fig. 12. The dynamics of recovered population RH(𝑡) in the Caputo-ABC piecewise
model (2) with 𝑡1 = 40.

various fractional orders. We have observed that piecewise operators
present better dynamics of the models as compared to the classical ones.
This work advances the idea of the piecewise derivatives and presents
the dynamics of the crossover behaviour in a more clear way. In the
future, we will study the proposed model with optimal control theory
and piece-wise operators.
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