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Abstract: A susceptible diabetes comorbidity model was used in the mathematical treatment to
explain the predominance of mellitus. In the susceptible diabetes comorbidity model, diabetic patients
were divided into three groups: susceptible diabetes, uncomplicated diabetics, and complicated
diabetics. In this research, we investigate the susceptible diabetes comorbidity model and its intricacy
via the Atangana-Baleanu fractional derivative operator in the Caputo sense (ABC). The analysis
backs up the idea that the aforesaid fractional order technique plays an important role in predicting
whether or not a person will develop diabetes after a substantial immunological assault. Using the
fixed point postulates, several theoretic outcomes of existence and Ulam’s stability are proposed
for the susceptible diabetes comorbidity model. Meanwhile, a mathematical approach is provided
for determining the numerical solution of the developed framework employing the Adams type
predictor–corrector algorithm for the ABC-fractional integral operator. Numerous mathematical
representations correlating to multiple fractional orders are shown. It brings up the prospect of
employing this structure to generate framework regulators for glucose metabolism in type 2 diabetes
mellitus patients.
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1. Introduction

Epidemiology is the investigation of how illnesses disseminate in a live entity in relation to its
surroundings [1]. The epidemiology of an illness can be studied using numerical simulations. Several
studies have attempted to predict and simulate the transmission of contagious ailments in the past,
including measles [2], rubella [3], HIV [4], dengue fever [5], tuberculosis [6], and more recently,
ebola [7] and the Zika virus [8].

Mathematical simulation is being employed to investigate not only the transmission of contagious
ailments, but also increasingly non-communicable diseases, as research advances. Medications and
other environmental ailments can often be modeled [9]. This is possible owing to the characteristics of
how it spreads, namely via intimate communication as the media spreads.

Hyperglycemia is a non-communicable ailment with a variety of “dispersion” characteristics, the
first being the influence of interpersonal contacts on dietary modification. Hyperglycemia is a long-
term illness characterized by elevated plasma glucose concentrations. An individual is declared to have
hyperglycemia if their fasting blood glucose level is greater than 126 mg/dL or if their blood sugar level
is greater than 200 mg/dL two hours after eating. The pancreatic enzymes that generate the hormone
glucagon are unable to function properly. Without insulin, the body’s systems are unable to accept and
convert glycogen into vitality, resulting in extreme tiredness.

Scientific tools have been shown to be an effective instrument in gaining a better knowledge of
hyperglycemia patterns. Different formulations depending on insulin levels and concentrations have
been employed to describe the glycemic relationship. Considering specific settings and assumptions,
all of these systems are viable. However, while these approaches may indeed be beneficial in research,
they all have restrictions with respect to estimating blood sugar levels in a real therapeutic scenario
owing to the underlying demand for continuously modified inputs about parameter estimates such as
glucose concentrations and insulin accessibility [10].

Diabetics without problems prefer to live an unpleasant lifestyle in their everyday pursuits. The
connection involving diabetics with an unsustainable diet and normal volunteers, reported by Hill
et al. [11], can result in behavioural “dissemination.” Prevalence is the effect of lifestyle “spread.”
Diabetic predominance develops as high pervasiveness rises. The ratio of susceptible individuals in a
particular individual group termed susceptible should also be determined in calculating the proportion
of probable interaction (S). So, the DC model, according to Boutayeb et al. [12] can be written as dD

dτ = I − (λ + µ)D + ηC,
dC
dτ = λD − (η + δ + ν + µ)C.

(1.1)

The DC (1.1) model is converted into the susceptible diabetes complexity model attributable to the
susceptible person category (SDC). If is the proportion of association generating prevalence denoted
by β, then βSD is the number of instances caused by behavioral determinants. So each person who has
subsequently been diagnosed with hyperglycemia is presumed to be free of problems, resulting in an
βSD rise in the number of people in theD category. Simultaneously, the number of people in the S class
falls by about βSD. Spontaneous fatalities are definitely a possibility in the S. The spontaneous rate of
death in the S part is the same as the natural mortality rate in the D and C compartments individually.
As a result of normal mortality, the amount of persons in the S category dropped by µS.
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Population growth is represented by γ and the prevalence of genetic abnormalities is indicated by
ρ. The proportion of healthy individuals born is γS+γ(1−ρ)(D+C), while the number of people born
with hereditary diseases is γρ(D + C). The number of people in the S category grows as more people
are born healthy, while the number of individuals in the D segment grows as more people are born with
hereditary diseases.

As a result, the SDC model was used to calculate the mellitus prevalence that considers behaviour
and genetic predisposition as determinants of prevalence while not excluding people with impairments
from the demographic. The SDC framework is summarized as follows:

dS
dτ = γS + γ(1 − ρ)(D + C) − βSD − µS,
dD
dτ = γS(D + C) − (λ + µ)D + γC,
dC
dτ = λD − (µ + δ + η)D + γC.

(1.2)

supplemented with the initial settings S(0) > 0,D > 0 andC(0) > 0. The values γ, β, η, δ, λ, µ, ρ > 0 and
ρ ∈ [0, 1], respectively represents the birth rate, interaction rate, recovery rate of complications, death
rate due complications, occurrence rate of complications, natural mortality rate, and the proportion of
genetic disorder’s birth. The SDC (1.2) model is a first-order nonlinear differential equation system.

Fractional calculus has been shown to be a superb tool for depicting the hereditary features of
various structures in recent decades, see [13–17]. Additionally, fractional differential frameworks
have been implemented in numerous domains of real-world phenomena, including bifurcation, chaos,
thermodynamics, finance, and epidemics, having various sorts of fractional techniques involving
Coimbra, Davison, and Essex, Riez, Caputo, Hadamard, Riemann-Liouville, Katugumpola,
Caputo–Fabrizio, and fractal–fractional, see [18–27]. This combination has recently gained a lot of
importance, primarily since fractional differential equations have turned out to be incredible
instruments for presenting a few extremely complicated marvels in a variety of diverse and limitless
scientific domains; reviewers are directed to [28–35]. The ABC-FD operator is among the most
widely used operators. The implementation of such a fractional operator is influenced by the
observation that it eliminates the redundancy encountered in the Caputo fractional derivative. The
Atangana-Baleanu derivative [36] is a fractional derivative having a nonsingular and nonlocal kernel
that is used to simulate physical and biological phenomena and became the pioneer to employ a
fractional-order derivative in the component of a non-singular having the Mittag-Leffler function in
the kernel. In several real-world situations, the ABC-fractional derivative yields more accurate
results [37]. Additionally, employing the Atangana-Baleanu derivative to describe the transmission
dynamics involving delay is a novelty in the research. The infection will be controlled by the order of
the fractional operator. Recently, Ghanbari et al. [38] expounded the estimates for immune and tumor
cells in immunogenetic tumour model pertaining to the ABC-FD operator. Ahmad et al. [39]
proposed the analysis of the fractional mathematical model of the rotavirus epidemic with the effects
of breastfeeding and vaccination under the ABC-FD operator. Rahman et al. [40] established the
solution of a nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete
treatment employing ABC-FD.

Owing to the aforementioned phenomena, no articles have examined the mathematical model of
SDC having multiple fractional derivatives. The ABC-fractional derivative has been incorporated into
the SDC model, which is the manuscript’s innovation. As a result, we are concerned about addressing
gaps by analyzing the SDC model [12] under the ABC-fractional derivative with order. Consequently,
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the classical model (1.2) is expanded to fractional-order systems by inserting the ABC fractional
operator ABC

τ Dφ
a1 for the classical time derivative d/dτ.

The ABC-FD of the improved SDC transmission model suggests the following model:
ABC
τ Dφ

a1S(τ) = γS + γ(1 − ρ)(D + C) − βSD − µS,
ABC
τ Dφ

a1D(τ) = γS(D + C) − (λ + µ)D + γC,
ABC
τ Dφ

a1C(τ) = λD − (µ + δ + η)D + γC.

(1.3)

subject to the ICs (S,D,C) = (S0,D0,C0). The explanations of all the characteristics are presented
above. Recently, Saleem et al. [41] established the Caputo Fabrizio fractional order model for control
of glucose in insulin therapies for diabetes, Singh et al. [42] obtained the solution of fractional diabetes
model with exponential law and Dubey et al. [43] presented the mathematical model of diabetes and
its complication involving fractional operator without singular kernal.

The primary goal of this publication is to examine the factors that impact the transmission of this
genetic disease and slow it down or, in the worst-case scenario, make it epidemic, as measured by the
number of replicates. For the present work, the prominent fixed point theorems are used to prove the
existence and uniqueness of the results. To illustrate the stability evaluation, the framework of diverse
Ulam’s stability is offered. Furthermore, we apply Alkahtani et al. [44] unique mathematical approach
to obtain the estimated solutions of the S,D,C for various fractional orders.

2. Preliminaries

This portion highlights the most important and pertinent topics utilized in this article.

Definition 2.1. ( [36]) For φ ∈ [0, 1] and let f1 ∈ H1(x1, y1), x1 < y1, then the ABC-FD of a mapping
f1 of order φ is stated as follows:

ABC
τ Dφ

a1
f1(τ) =

A(φ)
1 − φ

τ∫
a1

Eφ

(
−

φ

1 − φ
(τ − u)φ

) d
dτ

f1(u)du, 0 < a1 < τ, (2.1)

whereA(φ) = 1−φ+
φ

Γ(φ) represents the normalization function, satisfying the propertyA(0) = A(1) = 1
and Eφ signifies the Mittag-Leffler as a special function in the kernel is presented as

Eφ(z1) =

∞∑
`=0

z`1
Γ(φ` + 1)

, z1, φ ∈ C,<(φ) > 0. (2.2)

Definition 2.2. ( [36]) Let f1 ∈ H1(x1, y1), x1 < y1, then the ABC fractional integral of a mapping f1

of order φ is stated as follows:

ABC
τ Iφa1

f1(τ) =
1 − φ
A(φ)

f1(τ) +
φ

A(φ)Γ(φ)

τ∫
a1

(τ − u)φ−1 f1(u)du, 0 < τ < a1. (2.3)

Evidently, if φ = 0 and φ = 1, then ones attain the initial mapping and classical Riemann-integral,
respectively.

In order to prove our findings, we demonstrate some important results from fixed point Fp theory.
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Lemma 2.3. ( [45])(Contraction mapping) Suppose there be a Banach space $, then the map T :
$ 7→ $ is contraction, if∥∥∥Tx1 − Ty1

∥∥∥ ≤ L‖x1 − y1‖, ∀x1, y1 ∈ $,L ∈ (0, 1). (2.4)

Lemma 2.4. ( [45])(Banach’s fixed point theorem) Suppose there be a non-empty closed subset Ũ of
a Banach space E. Then any contraction mapping Q from Ũ into itself has a unique Fp.

Lemma 2.5. ( [45])(Krasnoselskii’s fixed point theorem) Suppose there be a non-empty, closed,
convex subset Ũ of a Banach space E. Assume that there be two maps T1,T2 such that (a)
T1x1 + T2x2 ∈ Ũ, ∀x1, x2 ∈ Ũ; (c) T1 is compact and continuous; (d) T2 is a contraction mapping.
Then there exists z1 ∈ Ũ such that T1z1 + T2z1 = z1.

3. Existence consequences of susceptible diabetes complicated mathematical model

In what follows, we investigate the existence and uniqueness of findings for the fractional SDC
system utilizing of Lemma 2.4 and 2.5 Fp consequences.

Throughout this investigation, we express the ABC-fractional diabetes system (1.3) as follows: ABC
τ Dφ

0Υ(τ) = Ψ(τ,Υ(τ)),
Υ(0) = Υ0 ≥ 0, 0 < τ < T < ∞,

(3.1)

where Υ(τ) = (G1,G2,G3) denotes the system parameters and a vector mapping Ψ is continuous such
that

Ψ =


G1

G2

G3

 =


γS + γ(1 − ρ)(D + C) − βSD − µS

γS(D + C) − (λ + µ)D + γC

λD − (µ + δ + η)D + γC

 (3.2)

supplemented with initial settings Υ0 = (S0,D0,C0). Implementing the Definition 2.2, we have the
following formulation

Υ(τ) = Υ0(τ) +
1 − φ
A(φ)

Ψ(τ,Υ(τ)) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u,Υ(u))du.

Now, introducing a Bs by utilizing Ω = [0,T ] as V = C(Ω,R3
+) induced by the norm presented as∥∥∥Υ∥∥∥ =

∥∥∥S∥∥∥ +
∥∥∥D∥∥∥ +

∥∥∥C∥∥∥,
where sup

τ∈Ω

{∣∣∣Υ(τ)
∣∣∣} = sup

τ∈Ω

{∣∣∣S(τ)
∣∣∣} + sup

τ∈Ω

{∣∣∣D(τ)
∣∣∣} + sup

τ∈Ω

{∣∣∣C(τ)
∣∣∣}.

3.1. Uniqueness analysis

The significance and validity of the fractional SDC model (1.3) will be studied in this section using
Banach’s Fp postulate and the ABC derivative operator.

AIMS Mathematics Volume 7, Issue 4, 5072–5092.



5077

Theorem 3.1. Let there be a continuous quadratic vector mapping Ψ : Ω × R3 7→ R such that:
(A1) ∃ a positive constant LΨ > 0 such that∣∣∣Ψ(τ,Υ1(τ)) − Ψ(τ,Υ2(τ))

∣∣∣ ≤ LΨ

∣∣∣Υ1(τ) − Υ2(τ)
∣∣∣, ∀Υ1,Υ2 ∈ V, ∀t ∈ Ω.

If (
(1 − φ)Γ(φ) + Tφ

)
LΨ < A(φ)Γ(φ), (3.3)

then the fractional system (1.3) has a only one solution on Ω.

Proof. We previously transformed the IVP (3.1) (that is analogous to the ABC-fractional diabetes
framework (1.3)) into a Fp formulation Υ = TΥ. Further, we suppose a map T : V 7→ V described as

(TΥ)(τ) = Υ0(τ) +
1 − φ
A(φ)

Ψ(τ,Υ(τ)) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u,Υ(u))du. (3.4)

Evidently, the IVP (3.1) has a result if and only if the map T has Fps.
Considering there is a non-negative number K1 such that sup

τ∈Ω

∣∣∣Ψ(τ, 0)
∣∣∣ = K1 < +∞. Now, proposing a

bounded, closed, and convex subset Br1 of V, where Br1 =
{
Υ ∈ V :

∥∥∥Υ∥∥∥ ≤ r1
}
, where r1 is selected in

such a way that

r1 ≥

∥∥∥Υ0

∥∥∥A(φ)Γ(φ) +

(
(1 − φ)Γ(φ) + T

φ
max

)
K1

A(φ)Γ(φ) − [(1 − φ)Γ(φ) − T φ
max]LΨ

. (3.5)

The proof is divided into two parts.
Case I: We demonstrate that TBr1 ⊂ Br1 .

for any Υ ∈ Br1 , we have

∣∣∣(TΥ)(τ)
∣∣∣ ≤

∥∥∥Υ0

∥∥∥ +
1 − φ
A(φ)

∣∣∣Ψ(τ),Υ(τ)
∣∣∣ +

φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣Ψ(u,Υ(u))

∣∣∣du

≤
∥∥∥Υ0

∥∥∥ +
1 − φ
A(φ)

[∣∣∣Ψ(τ),Υ(τ) − Ψ(τ, 0)
∣∣∣ +

∣∣∣Ψ(τ, 0)
∣∣∣]

+
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
[∣∣∣Ψ(u,Υ(u)) − Ψ(u, 0)

∣∣∣ +
∣∣∣Ψ(u, 0)

∣∣∣]du

≤
∥∥∥Υ0

∥∥∥ +
1 − φ
A(φ)

[
LΨr1 + K1

]
+
φ
[
LΨr1 + K1

]
A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1du

≤
∥∥∥Υ0

∥∥∥ +

(1 − φ
A(φ)

+
T

φ
max

A(φ)Γ(φ)

)[
LΨr1 + K1

]
≤ r1, (3.6)

which illustrates that TB1 ⊂ Br1 .

Case II: To prove T is contraction, for this, for every Υ1,Υ2 ∈ Br1 and for any τ ∈ Ω, we find∣∣∣(TΥ1)(τ) − TΥ2)(τ)
∣∣∣
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≤
1 − φ
A(φ)

[∣∣∣Ψ(τ,Υ1(τ)) − Ψ(τ,Υ2(τ))
∣∣∣ +

+
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣Ψ(u,Υ1(u)) − Ψ(u,Υ2(u))

∣∣∣du

≤
1 − φ
A(φ)

[∣∣∣Υ1(τ) − Υ2(τ)
∣∣∣ +

+
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣Υ1(u) − Υ2(u)

∣∣∣du

≤

( (1 − φ)Γ(φ) + T
φ
max

A(φ)Γ(φ)

)
LΨ

∥∥∥Υ1 − Υ2

∥∥∥. (3.7)

Clearly, observe that
(

(1−φ)Γ(φ)+T φ
max

A(φ)Γ(φ)

)
< 1, using the fact of Lemma 2.3, deduce T is contraction. So, T

has a unique Fp. This means that fractional order SDC model (1.3) has only one elucidation on Ω. �

3.2. Existence consequence using Krasnoselskii’s fixed point theorem

Theorem 3.2. Suppose the hypothesis (A1) satisfies and (A2) there exists positive constants ΩΨ and
ΨΨ such that ∣∣∣Ψ(τ,Υ(τ))

∣∣∣ ≤ ΩΨ

∣∣∣Υ(τ)
∣∣∣ + ΨΨ, ∀ Υ ∈ V and ∀ τ ∈ Ω.

Then there exists at least one solution of the fractional SDC model (1.3), given that (1 − φ)LΨ < A(φ).

Proof. Suppose a mapping T : V 7→ V defined by (TΥ)(τ) = (τΥ)(τ) + (T2Υ)(τ), Υ ∈ V, τ ∈ Ω,

where

(τΥ)(τ) = Υ0 +
1 − φ
A(φ)

Ψ(τ,Υ(τ)), (3.8)

(T2Υ)(τ) =
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u,Υ(u))du. (3.9)

Assume that there be a closed convex set having radius Br2 =
{
Υ ∈ V : ‖Υ‖ ≤ r2

}
can be expressed as

r2 ≥

∥∥∥Υ0

∥∥∥ +

(
1−φ
A(φ) +

T
φ
max

A(φΓ(φ))

)
ΨΨ

1 −
(

1−φ
A(φ) +

T
φ
max

A(φΓ(φ))

)
ΩΨ

. (3.10)

the proof is consists of four cases.
Case I. We evaluate that T1Υ1 + T2Υ2 ∈ Br1 , for every Υ1,Υ2 ∈ Br2 .

In view of the operator (3.8), we have∣∣∣(T1Υ1)(τ) − (T2Υ2)(τ)
∣∣∣
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≤
∥∥∥Υ0

∥∥∥ +
1 − φ
A(φ)

∣∣∣Ψ(τ),Υ1(τ)
∣∣∣ +

φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣Ψ(u,Υ2(u))

∣∣∣du

≤
∥∥∥Υ0

∥∥∥ +
1 − φ
A(φ)

[
ΩΨr2 + ΨΨ

]
+

φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1[ΩΨr2 + ΨΨ

]
du

≤
∥∥∥Υ0

∥∥∥ +

(1 − φ
A(φ)

+
T

φ
max

A(φΓ(φ))

)
ΨΨ +

(1 − φ
A(φ)

+
T

φ
max

A(φΓ(φ))

)
r2ΩΨ

≤ r2, (3.11)

Thus, we conclude that
∥∥∥T1Υ1 + T2Υ2

∥∥∥ ≤ r2. Then T1Υ1 + T2Υ2 ∈ Br2 for all Υ1,Υ2 ∈ Br2 .

Case II. Further, we prove that T1 is a contraction mapping. For any Υ1,Υ2 ∈ Br2 , we have

∣∣∣(T1Υ1)(τ) − (T2Υ2)(τ)
∣∣∣

≤
1 − φ
A(φ)

∣∣∣Ψ(τ),Υ1(τ) − Ψ(τ),Υ2(τ)
∣∣∣

≤ LΨ

1 − φ
A(φ)

∣∣∣Υ1(τ) − Υ2(τ)
∣∣∣. (3.12)

Implies that ∥∥∥T1Υ1 − T2Υ2

∥∥∥ ≤ LΨ

1 − φ
A(φ)

∥∥∥Υ1 − Υ2

∥∥∥.
Since LΨ

1−φ
A(φ) < 1, which shows that T1 is contraction mapping.

Case III. Now, to prove T2 is continuous and compact.
For this, suppose that there be a sequence Υn1 such that Υ1 7→ Υ ∈ V. Then, for any τ ∈ Ω, we have

∣∣∣(T2Υn1)(τ) − (T2Υ)(τ)
∣∣∣ ≤ φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣Ψ(u,Υn1(u)) − Ψ(u,Υ(u))

∣∣∣du

≤
T

φ
max

A(φ)Γ(φ)

∥∥∥Ψ(.,Υn1(.)) − Ψ(.,Υ(.))
∥∥∥. (3.13)

Since Ψ is continuous and T2 is also continuous. Then we have
∥∥∥T2Υn − T2Υ

∥∥∥ 7→ 0, as n1 7→ ∞.

Further, we show that T2 is uniformly bounded on Br2 (T2 is relatively compact). For any Υ ∈ Br2 and
τ ∈ J, we have

∣∣∣(T2Υ)
∣∣∣ ≤ φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣Ψ(u,Υ(u))

∣∣∣du ≤
T

φ
max

A(φ)Γ(φ)
[
ΩΛr2 + ΨΛ

]
, (3.14)

which proves that T2 is uniformly bounded on Br2 .

Case IV. To prove T2 is equi-continuous, for this let σ1, σ2 ∈ Ω having 0 ≤ σ1 ≤ σ2 ≤ T and Υ ∈ Br2 ,

then we have ∣∣∣(T2Υ)(σ2) − (T2Υ)(σ1)
∣∣∣
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≤
φ

A(φ)Γ(φ)

∣∣∣∣∣
σ2∫

0

(σ2 − u)φ−1Ψ(u,Υ1(u))du −
σ1∫

0

(σ21 − u)φ−1Ψ(u,Υ1(u))du
∣∣∣∣∣

≤
φ
[
Ωλr1 + ΨΨ

]
A(φ)Γ(φ)

∣∣∣∣∣
σ2∫

0

(σ2 − u)φ−1du −
σ1∫

0

(σ2 − u)φ−1du
∣∣∣∣∣

≤

[
Ωλr1 + ΨΨ

]
A(φ)Γ(φ)

(
2|σ2 − σ1|

φ). (3.15)

Evidently, above expression is free of Υ ∈ Br2 , the right side of the above variant (3.15) approaches to
zero as σ2 7→ σ1. Thus, by Arzelá-Ascoli theorem , T1Br2 is relatively compact and T2 is completely
continuous. So, using the fact of Lemma 2.5, which deduce that fractional SDC model (1.3) has at
least one solution on Ω. �

4. Stability analysis

This subsection discusses various fractional SDC system (1.3) necessary requirements that correlate
to the hypotheses of the four assortments of Ulam’s stability: UH, GUH, UHR, and GUHR stability.
We shall start by stating Ulam’s stability postulate, which would be applied throughout this segment.
For ζ > 0 and let there is a positive real number such that a continuous mapping UΨ : Ω 7→ R+.

Assume that ∣∣∣∣ ABC
τ Dφ

0χ(τ) − Ψ(τ, χ(τ))
∣∣∣∣ ≤ ζ, ∀ τ ∈ Ω, (4.1)∣∣∣∣ ABC

τ Dφ
0χ(τ) − Ψ(τ, χ(τ))

∣∣∣∣ ≤ ζUΨ, ∀ τ ∈ Ω, (4.2)∣∣∣∣ ABC
τ Dφ

0χ(τ) − Ψ(τ, χ(τ))
∣∣∣∣ ≤ UΨ, ∀ τ ∈ Ω, (4.3)

where ζ = max(ζϑ)T̄ , f or ϑ = 1, 2, 3. Next, we are presenting the concepts of various sorts of stability
as follows:

Definition 4.1. ( [46]) We say that the fractional SDC model (1.3) is UH stable if ∃ a real number
CΨ > 0 such that for each ζ > 0 and for every result χ ∈ V of (4.1), ∃ a result Υ ∈ V of the fractional
SDC model (1.3) having

∣∣∣χ(τ) − Υ(τ)
∣∣∣ ≤ ζCΨ, τ ∈ Ω, (4.4)

where ζ = max(ζ T̄
ϑ ) and CΨ = max(CΨϑ

)T̄ , f or ϑ = 1, 2, 3.

Definition 4.2. ( [46]) We say that the fractional SDC model (1.3) is GUH stable if ∃ a mapping
UΨ ∈ C(R+,R+) having UΨ = 0 such that for all ζ > 0 and for every result χ ∈ V of (4.2), ∃ a result
Υ ∈ V of the fractional SDC model (1.3) having

∣∣∣χ(t) − Υ(τ)
∣∣∣ ≤ UΨ(ζ), τ ∈ Ω, (4.5)

where ζ = max(ζ T̄
ϑ ) andUΨ = max(UΨϑ

)T̄ , f or ϑ = 1, 2, 3.
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Definition 4.3. ( [46]) We say that the fractional SDC model (1.3) is UHR stable regarding to UΨ ∈

C(Ω,R+) if ∃ a real constant KUΨ
> 0 such that for each ζ > 0 and for every result χ ∈ V of (4.2), ∃ a

result Υ ∈ V of the fractional SDC model (1.3) having

∣∣∣χ(τ) − Υ(τ)
∣∣∣ ≤ KUΨ

ζUΨ(τ), τ ∈ Ω, (4.6)

where ζ = max(ζ T̄
ϑ ) and KUΨ

= max(KUΨϑ
)T̄ and UΨ = max(KUΨϑ

)T̄ f or ϑ = 1, 2, 3.

Definition 4.4. We say that the fractional SDC model (1.3) is GUHR stable regarding to
UΨ ∈ C(Ω,R+) if ∃ a real constant KUΨ

> 0 such that for each result χ ∈ V of (4.3), ∃ a result Υ ∈ V
of the fractional SDC model (1.3) having

∣∣∣χ(τ) − Υ(τ)
∣∣∣ ≤ KUΨ

UΨ(τ), τ ∈ Ω, (4.7)

where KUΨ
= max(KUΨϑ

)T̄ and UΨ = max(KUΨϑ
)T̄ f or ϑ = 1, 2, 3.

Remark 1. Clearly, we observe that inequality (4.4) implies to inequality (4.5), inequality (4.6) implies
to inequality (4.7) and inequality (4.6) implies to inequality (4.4) whenUλ(.) = 1.

Remark 2. A mapping χ ∈ V is a result of (4.1) if and only if ∃ a mapping w ∈ V (influenced by χ)
such that the subsequent assertions hold:
(a) |ω(τ)| ≤ ζ, ω = max(ωϑ)T̄ , ∀ τ ∈ Ω,

(b) ABC
τ Dφ

0χ(τ) = Ψ(τ, χ(τ)) + ω(τ), ∀ τ ∈ Ω.

Remark 3. A mapping χ ∈ V is a result of (4.2) if and only if ∃ a mapping v ∈ V (influenced by χ)
such that the subsequent assertions hold:
(a) |v(τ)| ≤ ζUΨ(τ), v = max(vϑ)T̄ , ∀ τ ∈ Ω,

(b) ABC
τ Dφ

0χ(τ) = Ψ(τ, χ(τ)) + v(τ), ∀ τ ∈ Ω.

4.1. Consequences of UH and GUH stability

Lemma 4.5. For 0 < φ ≤ 1, if χ ∈ V is a result of (4.1), then χ is a response of the subsequent variant:∣∣∣∣∣χ(τ) − Rχ(τ) −
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du
∣∣∣∣∣ ≤ (1 − φ
A(φ)

−
T

φ
max

A(φ)Γ(φ)

)
ζ, (4.8)

where Rχ = χ0 +
1−φ
A(φ)Ψ(τ, χ(τ)).

Proof. Assume that χ be a solution of (4.1). Using the fact of Remark 2-(b), we have ABC
τ Dφ

0χ(τ) = Ψ(τ, χ(τ)) + ω(τ), τ ∈ Ω

χ(0) = χ0 ≥ 0, 0 < τ < T < ∞,
(4.9)

Then the estimated solution of (4.9) can be expressed as

χ(τ) = χ0 +
1 − φ
A(φ)

Ψ(τ, χ(τ)) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du
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≤
1 − φ
A(φ)

ω(τ) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1ω(u)du. (4.10)

Using the fact of Remark 2-(a), we have

∣∣∣∣∣χ(τ) − Rχ(τ) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du
∣∣∣∣∣

≤
1 − φ
A(φ)

∣∣∣ω(τ)
∣∣∣ +

φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣ω(u)

∣∣∣du

≤

(1 − φ
A(φ)

+
T

φ
max

A(φ)Γ(φ)

)
ζ. (4.11)

Which concludes the variant (4.8). �

Theorem 4.6. Suppose that there be a continuous mapping Ψ : Ω×R 7→ R such that for every Υ ∈ V.
Under the assumption of (A1) and (3.3), then the fractional SDC system (1.3) is UH stable on Ω.

Proof. Assume that ζ > 0 and let χ ∈ V be any response of (4.1). Let Υ ∈ V be the only result of the
system (3.1), we have  ABC

τ Dφ
0Υ(τ) = Ψ(τ,Υ(τ)), τ ∈ Ω

Υ(0) = Υ0,
(4.12)

where

Υ(τ) = Υ0 +
1 − φ
A(φ)

Ψ(τ,Υ(τ)) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u,Υ(u))du. (4.13)

In view of Lemma 4.5 and the hypothesis of (A1), we have

∣∣∣χ(τ) − Υ(τ)
∣∣∣ ≤

∣∣∣∣∣χ(τ) − RΥ(τ) −
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du
∣∣∣∣∣

≤

∣∣∣∣∣χ(τ) − Rχ(τ) −
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u,Υ(u))du
∣∣∣∣∣

+
φ

A(u)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣Ψ(u, χ(u)) − Ψ(u,Υ(u))

∣∣∣du

≤

(1 − φ
A(φ)

+
T

φ
max

A(φ)Γ(φ)

)
ζ +

φLΨ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣χ(u) − Υ(u)

∣∣∣du
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≤

(1 − φ
A(φ)

+
T

φ
max

A(φ)Γ(φ)

)
ζ +

T
φ
maxLΨ

A(φ)Γ(φ)

∣∣∣χ(u) − Υ(u)
∣∣∣. (4.14)

It follows that
∣∣∣χ(τ) − Υ(τ)

∣∣∣ ≤ CΨζ, where

CΨ =
(1 − φ)Γ(φ) + T

φ
max

A(φ)Γ(φ) − T φ
maxLΨ

. (4.15)

Consequently, the fractional SDC model (1.3) is UH stable. �

Corollary 1. Setting FΨ(ζ) = CΨζ in Theorem 4.6 such that FΨ(0) = 0, then the fractional SDC system
(1.3) is GUH stable.

4.2. Consequences of UHR and GUHR stability

In order to prove our next result, we have the subsequent hypothesis:
(A3) exists an increasing mapping FΨ ∈ V and ∃ λFΨ

> 0, such that, for any τ ∈ Ω, then the subsequent
integral inequality can be written as:

AB
0 I

φ
τFΨ ≤ λFΨ

FΨ(τ). (4.16)

Lemma 4.7. For 0 < φ ≤ 1, if χ ∈ V is a response of (4.2), then χ is a result of the subsequent variant:

∣∣∣∣∣χ(τ) − Rχ(τ) −
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du
∣∣∣∣∣ ≤ ζλFΨ

FΨ(τ), (4.17)

where Rχ = χ0 +
1−φ
A(φ)Ψ(τ, χ(τ)).

Proof. Assume that χ be a result of (4.2). Using the fact of Remark 3-(b), we have ABC
τ Dφ

0χ(τ) = Ψ(τ, χ(τ)) + ν(τ), τ ∈ Ω

χ(0) = χ0 ≥ 0,
(4.18)

Then the estimated solution of (4.18) can be expressed as

χ(τ) = χ0 +
1 − φ
A(φ)

Ψ(τ, χ(τ)) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du

≤
1 − φ
A(φ)

ν(τ) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1ν(u)du. (4.19)

Using the fact of Remark 3-(a), we have

∣∣∣∣∣χ(τ) − Rχ(τ) −
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du
∣∣∣∣∣
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≤
1 − φ
A(φ)

∣∣∣ν(τ)
∣∣∣ +

φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣ν(u)

∣∣∣du

≤ ζλFΨ
FΨ(τ), (4.20)

which concludes the variant (4.17). �

Theorem 4.8. Suppose that there be a continuous mapping Ψ : Ω×R 7→ R such that for every Υ ∈ V.
Under the assumption of (A1) and (3.1), then the fractional SDC model (1.3) is GHR stable on Ω.

Proof. Assume that ζ > 0 and let χ ∈ V be any response of (4.3). Let Υ ∈ V be the only result of the
system (1.3). By means of Lemma 4.7, (A1) and A3), we have

∣∣∣χ(τ) − Υ(τ)
∣∣∣ ≤

∣∣∣∣∣χ(τ) − RΥ(τ) −
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du
∣∣∣∣∣

≤

∣∣∣∣∣Υ(τ) − Rχ(τ) −
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1Ψ(u, χ(u))du
∣∣∣∣∣

+
φ

A(u)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣Ψ(u, χ(u)) − Ψ(u,Υ(u))

∣∣∣du

≤

(1 − φ
A(φ)

+
T

φ
max

A(φ)Γ(φ)

)
ζ +

φLΨ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1
∣∣∣χ(u) − Υ(u)

∣∣∣du

≤ λFΨ
FΨ(τ)ζ +

T
φ
maxLΨ

A(φ)Γ(φ)

∣∣∣χ(u) − Υ(u)
∣∣∣. (4.21)

This produces the variant ∣∣∣χ(τ) − Υ(τ)
∣∣∣ ≤ KFΨ

ζFΨ(τ), (4.22)

where

KFΨ
=

λFΨ

1 − T
φ
maxLΨ

A(φ)Γ(φ)

. (4.23)

Consequently, the fractional SDC system (1.3) is UH stable. �

Corollary 2. Setting ζ = 1 into Theorem 4.8, then the fractional SDC system (1.3) is GUHR stable.

5. Numerical configuration of SDC model

The SDC model was designed and simulated using the novel computational approach proposed in
the [] article, which makes use of ABC-FDs. To accomplish this, we revisit the SDC model in the
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shape of (1.3) and (3.1).
By implementing Definition 1.1 on both sides of (3.1), we have

S(τ) = S0 +
1 − φ
A(φ)

G1(τ,S,D,C) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − S)φ−1G1(τ,S,D,C)du,

D(τ) = D0 +
1 − φ
A(φ)

G2(τ,S,D,C) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1G2(τ,S,D,C)du,

C(τ) = C0 +
1 − φ
A(φ)

G2(τ,S,D,C) +
φ

A(φ)Γ(φ)

τ∫
0

(τ − u)φ−1G2(τ,S,D,C)du. (5.1)

By means of Adams type predictor-corrector method demonstrated by [44] to find the estimated
findings of the right side of the model (1.3). The initial iteration of the algorithm is based on the
supposition that the result is in a closed interval [0,T ], this interval interacted with simply providing
~ = T /N , τ` = ~` (` = 0, 1, 2, ...,N). Finally, the corrector approaches of changeable order integral
version of ABC-FD are presented as:

S`+1(τ) = S0 +
(1 − φ)~φ

A(φ)Γ(φ + 2)
G1(τ`+1,S

p
`+1,M

p
`+1,C

p
`+1) +

φ~φ

A(φ)Γ(φ + 2)

∑̀
ϑ=0

Ξϑ,`+1G1(τϑ,Sϑ,Dϑ,Cϑ),

D`+1(τ) = D0 +
(1 − φ)~φ

A(φ)Γ(φ + 2)
G2(τ`+1,S

p
`+1,M

p
`+1,C

p
`+1) +

φ~φ

A(φ)Γ(φ + 2)

∑̀
ϑ=0

Ξϑ,`+1G2(τϑ,Sϑ,Dϑ,Cϑ),

C`+1(τ) = C0 +
(1 − φ)~φ

A(φ)Γ(φ + 2)
G3(τ`+1,S

p
`+1,M

p
`+1,C

p
`+1) +

φ~φ

A(φ)Γ(φ + 2)

∑̀
ϑ=0

Ξϑ,`+1G3(τϑ,Sϑ,Dϑ,Cϑ),

(5.2)

where

Ξϑ,`+1 =

`φ+1 − (` − φ)(` + 1)φ, ϑ = 0,
(` − ϑ + 2)φ + (` − ϑ)φ − 2(` − ϑ + 1)φ+1, 1 ≤ ϑ ≤ `.

(5.3)

Also, the predictor terms Sp
`+1,D

p
`+1 are stated as

Sp
`+1(τ) = S0 +

(1 − φ)
A(φ)Γ(φ + 2)

G1(τ`,S`,M`,C`) +
φ

A(φ)Γ2(φ)

∑̀
ϑ=0

ωϑ,`+1G1(τϑ,Sϑ,Dϑ,Cϑ),

Dp
`+1(τ) = D0 +

(1 − φ)
A(φ)Γ(φ + 2)

G2(τ`,S`,M`,C`) +
φ

A(φ)Γ2(φ)

∑̀
ϑ=0

ωϑ,`+1G2(τϑ,Sϑ,Dϑ,Cϑ),

Cp
`+1(τ) = C0 +

(1 − φ)
A(φ)Γ(φ + 2)

G3(τ`,S`,M`,C`) +
φ

A(φ)Γ2(φ)

∑̀
ϑ=0

ωϑ,`+1G3(τϑ,Sϑ,Dϑ,Cϑ),

(5.4)

where

ωϑ,`+1 =
~φ

φ

(
(` − ϑ + 1)φ − (` − ϑ)φ

)
, 0 ≤ ϑ ≤ `. (5.5)
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5.1. Numerical findings and description

Diabetes mellitus is characterized not just by an unsustainable diet, but also by hereditary
abnormalities passed down from parents with a history of diabetes. Children of diabetics are at risk of
developing a hereditary condition that enables the pancreas to malfunction.

Figure 1(a) illustrates the genetic factors involved in the SDC model 1.3 in the absence of
treatment, and Figure 1(b) represents the recovery rate of complications in parents as well as their
children due to hereditary effects. Figure 2(a) shows the diabetes with and without complications
involved in the SDC model 1.3 in the absence of treatment and Figure 2(b) emphasize the recovery
rate of complications in parents as well as their children due to insulin therapy. The numerical
findings for S(τ), D(τ), and C(τ), are computed for different fractional order φ = 1, 0.9, 0.8, 0.7 and
0.6 in this section. The analysis to obtain of the non-integer SDC model is determined by employing
the Adams-type predictor–corrector introduced by [44], with the change in parameters as mentioned
in Table 1. The pattern of the proportion of susceptible with difficulties according to the period for
multiple orders of fractional derivative is visualized in Figure 3(a) and with the proportion of genetic
disorder’s birth is presented in Figure 3(b). Figure 4(a) depicts the effect of the order of the
ABC-derivative on the size of diabetics over time without complications, while the proportion of
individuals born with highly genetic disorders is presented in Figure 4(b). Figure 5(a) exhibits the
influence of the rate at which people with diabetes with comorbidity are transformed into the number
of severely impaired mellitus, with consequences with respect to time. Despite the fact that
Figure 5(b) depicts the proportion of genetic disorders inherited from parents.

The SDC model visual behavior demonstrates that the arbitrary order has a substantial influence
on the system. Figures 1–5 show the distinct differences at φ = 1, 0.9, 0.8, 0.7, 0.6. The model depicts
a novel feature of φ = 0.9, 0.8, 0.7, 0.6 which was previously unnoticed while modeling with φ =

1. Hence, the Adams-type predictor–corrector method is a cutting-edge and powerful computational
method for solving non-integer order differential equations. As a result, it can be concluded that
Adams-type predictor–corrector technique is a reasonable, straightforward, and more sophisticated
computational process for analyzing linear and non-linear problems as compared to the method applied
in [46].

Table 1. Table of parameterized settings considered in problem (1.3) for simulations.

Population/parameters Explanation

N = 500 Overall Population
S0 = 289.8 Susceptible Population
D0 = 9.65 diabetics without complication
C0 = 11.05 diabetics with complication
η = 0.01623 birth rate
β = 0.16263 interaction rate
γ = 0.37141 recovery rate of complications
δ = 0.0068 death rate due complications
λ = 0.67758 occurrence rate of complications
µ = 0.00764 natural mortality rate
p = 0.077 proportion of genetic disorder’s birth
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Figure 1. (a) The effects of the susceptible diabetes comorbidity for model 1.3 in the absence
of treatment. (b) Recovery rate effects for model 1.3 after considering a healthy lifestyle.
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Figure 2. (a) The fluctuating effects of diabetes with/without complications for model 1.3 in
the absence of treatment. (b) The effects of insulin therapy on recovery rate for model 1.3.
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Figure 3. (a) Simulation of the approximate results of the Susceptible class S(τ) for various
fractional order φ = 1, 0.9, 0.8, 0.7, 0.6 when p = 1/3. (b) Simulation of the approximate
results of the Susceptible class S(τ) for various fractional order φ = 1, 0.9, 0.8, 0.7, 0.6
when p = 0.97.
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Figure 4. (a) Simulation of the approximate results of the diabetes without complications
class D(τ) for various fractional order φ = 1, 0.9, 0.8, 0.7, 0.6 when p = 1/3. (b)
Simulation of the approximate results of the diabetes without complications class D(τ) for
various fractional order φ = 1, 0.9, 0.8, 0.7, 0.6 when p = 0.97.
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Figure 5. (a) Simulation of the approximate results of the diabetes with complications class
C(τ) for various fractional order φ = 1, 0.9, 0.8, 0.7, 0.6 when p = 1/3. (b) Simulation of
the approximate results of the diabetes with complications class C(τ) for various fractional
order φ = 1, 0.9, 0.8, 0.7, 0.6 when p = 0.97.

6. Conclusions

We investigated a fractional SDC system via the ABC-derivative interpretation in this article.
Using Banach’s and Krasnoselskii’s Fp theorems, the existence findings of the responses for the
suggested framework (1.3) were explored. Ulam’s stability was used to determine the stability of the
systems, which included: UH, GUH, UHR, and GUHR stability. The estimated findings for the
various fractional orders are illustrated using the unique mathematical methodology, particularly the
Adams-type predictor–corrector methodology. The dynamic behaviour of the SDC system was
investigated. Ultimately, the highly achieved specific projected scheme for multiple fractional
derivative orders reveals that several modifications in the fractional derivative order had no effect on
the function’s behaviour, only the simulation studies that were performed. This research would seem
to be a novel approach to investigating the mathematical model of SDC with a fractional ABC
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derivative. The researcher could expand on this work by developing and applying the SDC model to
various kinds of fractional-order derivative operators.
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