
2nd Reading

August 13, 2022 12:8 0218-348X 2240136

OPEN ACCESS

Fractals, Vol. 30, No. 5 (2022) 2240136 (18 pages)
c© The Author(s)
DOI: 10.1142/S0218348X22401363

CAPUTO-BASED MODEL FOR INCREASING
STRAINS OF CORONAVIRUS: THEORETICAL

ANALYSIS AND EXPERIMENTAL DESIGN

DUMITRU BALEANU∗,†,‡,¶ and ALI S. ALSHOMRANI§
∗Department of Mathematics

Cankaya University, Ankara, Turkey
†Institute of Space Sciences

Magurele-Bucharest, Romania
‡Department of Medical Research
China Medical University Hospital

China Medical University, Taichung, Taiwan
§Department of Mathematics
King Abdulaziz University

Jeddah, Saudi Arabia
¶dumitru@cankaya.edu.tr

Received June 25, 2021
Accepted October 30, 2021

Published July 12, 2022

Abstract
One of the most severe and troubling diseases these days is COVID-19 pandemic. The COVID-
19 pandemic’s dangerous effects are extremely rapid, and infection normally results in death
within a few weeks. As a consequence, it is important to delve deeper into the complexities of this
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elusive virus. In this study, we propose a Caputo-based model for increasing COVID-19 strains.
The memory effect and hereditary properties of the fractional variant for the model enable us to
fully comprehend the dynamics of the model’s features. The existence of unique solution using
the fixed-point theorem and Arzelá–Ascoli principle as well as the stability analysis of the model
by means of Ulam–Hyer stability (UHS) and generalized Ulam–Hyer stability (GUHS) have been
discussed. Furthermore, the parameters of the model are estimated using 3 months data points
chosen from Nigeria using the nonlinear least-squares technique. The best-suited parameters
and the optimized Caputo fractional-order parameter α are obtained by running simulations
for both models. The proposed model is shown to comprehend the dynamical behavior of
the virus better than the integer-order version. In addition, to shed more light on the model’s
characteristics, various numerical simulations are performed using an efficient numerical scheme.

Keywords : COVID-19 Pandemic; Caputo Operator; Existence of Solutions; Stability Analysis;
Parameter Estimation; Optimized Fractional Order.

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a global
pandemic disease that has spread exponentially.
It has had a huge impact on people’s lives, with
over million reported cases and over million people
killed in over countries and territories. COVID-19
is caused by the extreme acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) and has symp-
toms similar to pneumonia, such as a dry cough,
fever, and, in more severe cases, breathing diffi-
culties. Non-pharmaceutical therapies (NPIs) were
suggested as a way to avoid contracting the disease.
The World Health Organization (WHO) has pro-
posed a number of non-pharmaceutical treatments
(NPIs) to prevent the disease, including the use of a
face mask to protect the nose and mouth, maintain-
ing a distance of at least 2 m in public areas, fre-
quent hand washing, using a tissue to cover the nose
while sneezing, border and school closures, quaran-
tine, isolation, and mass testing.1–10

The importance and power of mathematics in
modeling the features of the infectious diseases
have been shown many time, and the advantages
of mathematical techniques have been used to deal
with such phenomenon thereby reducing the num-
ber of patients dying from epidemics. Although
experimental biology aims to conduct the required
experiments to prove scientific theories, mathemat-
ical and theoretical biology is a science that inves-
tigates the underlying concepts of the creation and
behavior of biological structures through theoret-
ical analysis and mathematical models of living
organisms.11–16

Fractional derivatives have become one of the
most popular methods in mathematical biology,
also known as theoretical biology, which uses math-
ematical tools to analyze biological systems. In
addition, using applied mathematical methods and
techniques to model biological systems with frac-
tional derivatives has yielded significant benefits
in both theoretical and applied fields. Instead of
classical mathematical models, fractional mathe-
matical models allow for a more comprehensive
analysis, which is needed for the quantitative
expression of disease models and better simula-
tion of their behavior, as well as the process of
predicting characteristics that may not be clearly
visible with experimental data. The complexity of
living systems is the primary reason why theoret-
ical biology needs numerous fields of mathemat-
ics, new methods, and tools. The use of fractional
derivative operators, especially non-local fractional
derivatives, allows for a more thorough investiga-
tion of these complex systems. The majority of
research areas are concerned with supercomplex
processes involving extremely complex and nonlin-
ear differential equations, and in order to better
understand them, results are obtained using various
forms of fractional derivatives, such as singular or
non-singular kernels, and the fractional derivative
that gives the best result is calculated through com-
parison analysis. Real-life data are required to make
this determination as reliable as possible, so the
derivative that behaves the most like real-life data
are chosen as the derivative that produces the best
result.11–16
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Considering the global scenario on the series
of waves of COVID-19, there is a need for more
researches to timely and effectively curtail the
spread of the disease. Thus, in this work, we
extend a SEIHDR-based model17 to investigate the
dynamics of COVID-19 using an effective frac-
tional operator, namely, Caputo fractional opera-
tor while maintaining the dimensional consistency
within the Caputo model. This work is organized
as follows: Model development as well as the moti-
vation for using Caputo derivative are presented
in Sec. 2. Some theoretical analyses such as exis-
tence, uniqueness and stability are presented in
Sec. 3. In Sec. 4, nonlinear least-squares method
is used for estimating the parameters’ values for
the extended Caputo model. Numerical simulations
are performed in Sec. 5 to depict different dynami-
cal features of the model. Finally, some concluding
remarks are provided in Sec. 6.18–25

2. MODEL DEVELOPMENT

In order to obtain fitting results with biologically
appropriate parameter values, a model of susc-
eptible–exposed–infectious-hospitalized–recovered–
dead was introduced via the classic SEIR-kind.26–29

The fitting for the model had been done based
on the deaths data to enunciate the COVID-19
scenario in some African countries with the most
affected cases in order to provide guidance on the
necessary NPIs that could help to curb outbreaks
with far less socio-economic consequences. In tradi-
tional SEIR models, the population is categorized
into four classes based on infection status, with S,
E, I, and R representing susceptible, exposed, infec-
tious, and recovered, respectively.

The authors in Ref. 17 considered two additional
compartments for infected classes using the con-
cepts of SARS-CoV-2 as in (12) and (13). These two
additional classes are the hospitalized infected and
dead compartments, denoted by H and D, respec-
tively. Individuals who are susceptible will become
infected after coming into contact with infected peo-
ple. After the latency time, exposed individuals will
progress to the infectious compartment. Individuals
who are infected will be admitted to the hospital-
ized section, which can be mild or serious. Infectious
individuals can be recovered after receiving success-
ful treatment, or they can die from the infection
and end up in the D compartment. Below is the
proposed model by17

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = −βS(t)I(t)
N(t)

,

E′(t) =
βS(t)I(t)
N(t)

− σE(t),

I ′(t) = σE(t) − γI(t),

H ′(t) = ρψI(t) − ξH(t),

D′(t) = ρξH(t),

R′(t) = (1 − ρ)γI(t) + (1 − ρ)ξH(t),

(1)

with the initial conditions given by
S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,

H(0) ≥ 0, D(0) ≥ 0, R(0) ≥ 0.
(2)

After being motivated by continuous advancements
of fractional calculus in various fields of applied
sciences particularly the use of Caputo differential
operator for mathematical modeling of epidemics,
we present the Caputo variant of Eq. (1) in the form
given below whereas the justification and motiva-
tion for using this fractional operator is also detailed
in the forthcoming section.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
0,tS(t) =

1
Γ(1 − α)

∫ t

0
(t− ζ)−αS′(ζ)dζ

= −β
αS(t)I(t)
N(t)

,

CDα
0,tE(t) =

1
Γ(1 − α)

∫ t

0
(t− ζ)−αE′(ζ)dζ

=
βαS(t)I(t)
N(t)

− σαE(t),

CDα
0,tI(t) =

1
Γ(1 − α)

∫ t

0
(t− ζ)−αI ′(ζ)dζ

= σαE(t) − γαI(t),

CDα
0,tH(t) =

1
Γ(1 − α)

∫ t

0
(t− ζ)−αH ′(ζ)dζ

= ρψI(t) − ξαH(t),

CDα
0,tD(t) =

1
Γ(1 − α)

∫ t

0
(t− ζ)−αD′(ζ)dζ

= ρξαH(t),

CDα
0,tR(t) =

1
Γ(1 − α)

∫ t

0
(t− ζ)−αR′(ζ)dζ

= (1 − ρ)γαI(t) + (1 − ρ)ξαH(t),
(3)

with the initial conditions as defined in (2).
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2.1. Motivation for Using
Caputo-Based Model

The Caputo version for the model of COVID-19
(1) is being analyzed for the first time with use
of real data of a large set, that is, 3 months
which comprise 92 data points. After replacing first-
order derivatives in the classical model represented
in Eq. (1) with an arbitrary positive real order
under the Caputo operator, we have achieved the
fractional form of the originally proposed model
of the epidemic. This replacement has a very
strong justification which is explained via following
points:

• Looking at the literature, one can easily verify
that the well-known Riemann–Liouville integral
formula is obtained from the Cauchy formula
for the repeated integration wherein Riemann–
Liouville merely replaced n ∈ N with α ∈
C, Re(α) > 0 and nowadays this fractional inte-
gral formula is the cornerstone for the devel-
opment of various numerical methods used for
solving fractional ordinary and partial differential
equations.

• In recent research studies,30–33 the Caputo ver-
sion of classical models of COVID-19 is success-
fully used along with the details for the existence
of unique solution and stability analysis. Numer-
ical simulations conducted therein proved impor-
tance of the Caputo version of the COVID-19
model over its classical counterpart.

• It is evident from various recently published lit-
erature works that the classical epidemiological
models particularly concerning COVID-19 were
not so successful in capturing complex chaotic
transmission dynamics of the disease. On the
other hand, the Caputo versions could not only
capture such behavior but the same was veri-
fied and validated with the use of real data on
the epidemic mostly found in reliable sources
including WHO and experimentally published
works.

• Moreover, the basic reproductive number explain-
ing the number of average secondary infected
cases produced when an infectious individual
enters in a completely susceptible class gives us
clear picture for the behavior of the disease under
various values of biological parameters when con-
sidered with Caputo differential operator. See, for
example Refs. 34 and 35 and most of the refer-
ences cited therein.

3. THEORETICAL ANALYSIS

3.1. Results for Existence
of Solutions

The new variant of the model in fractional sense
under the non-local Caputo derivative is expressed
as (3). In this portion, we use fixed-point the-
orems36,37 to prove the existence and unique-
ness of the suggested model’s solution. Let us
rewrite the proposed (3) model in the following
format:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
0,tS(t) = ζ1(t, S,E, I,H,D,R),

CDα
0,tE(t) = ζ2(t, S,E, I,H,D,R),

CDα
0,tI(t) = ζ3(t, S,E, I,H,D,R),

CDα
0,tH(t) = ζ4(t, S,E, I,H,D,R),

CDα
0,tD(t) = ζ5(t, S,E, I,H,D,R),

CDα
0,tR(t) = ζ5(t, S,E, I,H,D,R),

(4)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1(t, S,E, I,H,D,R) = −β
αS(t)I(t)
N(t)

,

ζ2(t, S,E, I,H,D,R) =
βαS(t)I(t)
N(t)

− σαE(t),

ζ3(t, S,E, I,H,D,R) = σαE(t) − γαI(t),

ζ4(t, S,E, I,H,D,R) = αψI(t) − ξαH(t),

ζ5(t, S,E, I,H,D,R) = αξαH(t),

ζ6(t, S,E, I,H,D,R)

= (1 − α)γαI(t) + (1 − α)ξαH(t).
(5)

Now (3) becomes{
CDα

0 ι(t) = W (t, ι(t)); t ∈ J = [0, b],

0 < α ≤ 1, ι(0) = ι0 ≥ 0,
(6)

only if⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ι(t) = (S,E, I,H,D,R)T ,

ι(0) = (S0, E0, I0,H0,D0, R0)T ,

W (t, ι(t)) = (ζi(t, S,E, I,H,D,R))T ,

i = 1, . . . , 6.

(7)
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(·)T implies the transpose operation. Now (6)
becomes

ι(t) = ι0 + J α
0+W (t, ι(t))

= ι0 +
1

Γ(α)

∫ t

0
(t− �)α−1W (�, ι(�))d�. (8)

Let E = C([0, b]; R) be Banach space for all the
functions which are continuous from R → [0, b] with
the norm ‖ι‖ = supt∈J |ι(t)|.

Theorem 1. Let the function W ∈ C([J,R]) and
maps bounded subset of J×R5 into compact subsets
of R. Further, there is a constant LW > 0 whereby
(A1) |W (t, ι1(t)) −W (t, ι2(t))| ≤ LW |ι1(t) − ι2(t)|;
∀ t ∈ J and all ι1, ι2 ∈ C([J ,R]). Thus (8) which is
equivalence to (3) has a unique solution whenever
ΩLW < 1, and

Ω =
bα

Γ(α+ 1)
.

Proof. Considering P : E → E defined by

(Pι)(t) = ι0 +
1

Γ(α)

∫ t

0
(t− �)α−1W (�, ι(�))d�.

(9)

Now, P is the unique solution of (3) and is well-
defined and it depicts the fixed point of P . Obvi-
ously, consider supt∈J ‖W (t, 0)‖ = M1 and κ ≥
‖ι0‖ + ΩM1. Now, it suffices justify PHκ ⊂ Hκ,
and Hκ = {ι ∈ E : ‖ι‖ ≤ κ}, is convex and closed.
Thus, each ι ∈ Hκ, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|(Pι)(t)| ≤ |ι0| + 1
Γ(α)

∫ t

0
(t− �)α−1

× |W (�, ι(�))|d�

≤ ι0 +
1

Γ(α)

∫ t

0
(t− �)α−1[|W (�, ι(�))

−W (�, 0)| + |W (�, 0)|]d�

≤ ι0 +
(LWκ+M1)

Γ(α)

∫ t

0
(t− �)α−1d�

≤ ι0 +
(LWκ+M1)

Γ(α+ 1)
bα

≤ ι0 + Ω(LWκ+M1)

≤ κ.

(10)

We justify the results. Further, for ι1, ι2 ∈ E, one
attains

|(Pι1)(t) − (Pι2)(t)|

≤ 1
Γ(α)

∫ t

0
(t− �)α−1|W (�, ι1(�))

−W (�, ι2(�))|d�

≤ LW

Γ(α)

∫ t

0
(t− �)α−1|ι1(�) − ι2(�)|d�

≤ ΩLW |ι1(t) − ι2(t)|, (11)

this justify that ‖(Pι1) − (Pι2)‖ ≤ ΩLW‖ι1 − ι2‖.
Thus, due to Banach contraction, the unique solu-
tion for (3) is reached.

Now, we go for the existence of (3) solutions. By
Krasnoselskii’s fixed-point justification.

Lemma 2. Let M 	= ∅ be a closed, bounded and
convex subset of a Banach Space E. Let two opera-
tors that respect the given relation be P1, P2.

• P1ι1 + P2ι2 ∈M, provided that ι1, ι2 ∈M ;
• P1 is compact and continuous;
• P2 is a contraction mapping.

Then, there is u ∈M as far as u = P1u+ P2u.

Theorem 3. Surmising W : J ×R5 → R is contin-
uous and holds for the condition (A1). Further, let
(A2) |W (t, ι)| ≤ ψ(t), for all (t, ι) ∈ J×R5 and ψ ∈
C([0, b],R+).

Thus (3) has at least one solution whenever

LK‖ι1(t0) − ι2(t0)‖ < 1.

Proof. Setting supt∈J |ψ(t)| = ‖ψ‖ and η ≥ ‖ι0‖+
Ω‖ψ‖, we consider Bη = {ι ∈ E : ‖ι‖ ≤ η}. Assume
P1, P2 operators on Bη expressed as

(P1ι)(t) =
1

Γ(α)

∫ t

0
(t− �)α−1W (�, ι(�))d� t ∈ J,

and

(P2ι)(t) = ι(t0), t ∈ J.

Now, each ι1, ι2 ∈ Bη, gives

‖(P1ι1)(t) + (P2ι2)(t)‖

≤ ‖ι0‖ +
1

Γ(α)

∫ t

0
(t− �)α−1‖W (�, ι1(�))‖d�

≤ ‖ι0‖ + Ω‖ψ‖
≤ η <∞. (12)

Thus, P1ι1 + P2ι2 ∈ Bη.
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Further, the contraction of P2 will be proved.
For t ∈ J and ι1, ι2 ∈ Bη , one reaches

‖(P2ι1)(t) − (P2ι2)(t)‖ ≤ ‖ι1(t0) − ι2(t0)‖. (13)

Having W as continuous function, P1 will also be
continuous. Moreover, for any t ∈ J and ι1 ∈ Bη ,
‖P1ι‖ ≤ Ω‖ψ‖ < +∞, implies that P1 is uniformly
bounded. Finally, one can justify that P1 is com-
pact. Define sup(t,ι)∈J×Bη

|W (t, ι(t))| = W ∗, yields

|(P1ι)(t2) − (P1ι)(t2)|

=
1

Γ(α)

∣∣∣∣
∫ t1

0
[(t2 − �)α−1 − (t1 − �)α−1]

×W (�, ι(�))d� +
∫ t2

t1

(t2 − �)α−1

×W (�, ι(�))d�
∣∣∣∣

≤ W ∗

Γ(α)
[2(t2 − t1)α + (tα2 − tα1 )]

→ 0, as t2 → t1. (14)

This shows that by Arzelá–Ascoli principle, (3) has
at least one solution.

3.2. Stability Results

To prove the stability, we let Υ : X → X be an
operator such that it satisfies

Υ(ι) = ι, ι ∈ X. (15)

Definition 4. Equation (15) is UHS,38,39 if for � >
0 and let ι ∈ Υ be any solution of the inequality
given by

‖ι− Υι‖ ≤ �, ∀ t ∈ [0, T ], (16)

there exists one and only one solution ῑ for Eq. (15)
with the occurrence of a constant Cq > 0 and satisfy

‖ῑ− ι‖ ≤ Cq�, ∀ t ∈ [0, T ]. (17)

Definition 5. If ∃ θ ∈ C(R,R) with θ(0) = 0, for
one and only one solution ῑ and any solution of
Eq. (15) such that

‖ῑ− ι‖ ≤ θ(�), (18)

then Eq. (15) is GUHS.

Remark 6. If ∃ �(t) ∈ C([0, T ], R), then ῑ ∈ X
satisfy (16) if

(i) |�(t)| ≤ �, ∀ t ∈ [0, T ],
(ii) Υῑ(t) = ῑ+ �(t), ∀ t ∈ [0, T ].

We need the following relation for further proofs.
Here we consider a perturbed equation of the per-
turbed problem (4) as{

CDα
0 ι(t) = W (t, ι(t)) + �(t),

ι(0) = ι0.
(19)

Lemma 7. The result mentioned below holds for
Eq. (20)

|ι(t) − �ι(t)| ≤ a�, where a =
Tα

Γ(α+ 1)
. (20)

Theorem 8. By Lemma 7, the solution of the pre-
sented problem in this paper (4) is UHS and also
GUHS, if T αLω

Γ(α+1) < 1.

Proof. Let ι ∈ X be any result and ῑ ∈ X be the
unique result of Eq. (4), then

|ι(t) − ῑ(t)| = |ι(t) − �ῑ(t)|,
≤ |ι(t) − �ι(t)| + |�ι(t) + �ῑ(t)|,

≤ a� +
TαLφ

Γ(α+ 1)
|ι(t) − ῑ(t)|,

≤ a�

1 − T pLθ
Γ(α+1)

. (21)

which clarifies that the studied problem (4) is UHS,
also it is GUHS, by considering

Y (�) =
a�

1 − T αLθ
Γ(α+1)

. (22)

 Y (0) = 0.

Definition 9. Equation (15) is UHS for g ∈
C([0, T ], R), if for ε > 0 and let ι ∈ X be any result
of the following inequality:

‖ι−Hι‖ ≤ g(t)�, (23)

∃ one and only one solution ῑ for (15) with the addi-
tional condition of Kq > 0 

‖ῑ− ι‖ ≤ Kqg(t)�, ∀ t ∈ [0, T ]. (24)

Definition 10. For g ∈ C[[0, T ], R], if ∃Kq,g and
for � > 0, we assume that ι be a unique result
of (24) and ῑ be any other solution other than the
unique solution of (15) 

‖ῑ− ι‖ ≤ Kq,gg(t), ∀ t ∈ [0, T ], (25)

after these holds, Eq. (15) is GUHS.
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Remark 11. If ∃ �(t) ∈ C([0, T ], R), then ῑ ∈ X
satisfies (16), if

(i) |�(t)| ≤ (t), ∀ t ∈ [0, T ],
(ii) Υῑ(t) = ῑ+ �(t), ∀ t ∈ [0, T ].

Lemma 12. Equation (20) holds the result stated
below

|ι(t) − �ι(t)| ≤ ag(t)�, where a =
Tα

Γ(α+ 1)
.

(26)

Proof. The proof is easy.

Theorem 13. By Lemma 4.9, the result of the stud-
ied problem (4) is UHS & GUHS also, if T αLφ

Γα+1 < 1.

Proof. Let ι ∈ X be any other solution than the
unique solution and ῑ ∈ X be the unique result for
Eq. (4) then

|ι(t) − ῑ(t)| = |ι(t) − �ῑ(t)|,
≤ |ι(t) − �ι(t)| + |�ι(t) + �ῑ(t)|,

≤ a · g(t)� +
TαLφ

Γ(α+ 1)
|ι(t) − ῑ(t)|,

≤ a.g(t)�
1 − T αLθ

Γ(α+1)

. (27)

Therefore, Eq. (4) is UHS, and also GUHS.

4. NONLINEAR LEAST-SQUARES
METHOD FOR BIOLOGICAL
PARAMETERS

It is well known that various mathematical models
having different characteristics can be designed to
explain dynamics of an epidemic. To value a model
over the others, some statistics can be performed.
After an epidemiological model is finalized, next
comes its validation which means that it has to be
compared with the available real data for the infec-
tious individuals on daily, weekly, monthly or yearly
basis. This type of task is considered to be one of
the challenging tasks during the construction of the
well-established model.

The validation process of the model indeed pro-
vides the degree to which the designed model shows
an accurate representation of the real-world data.
In most of the research papers on epidemiological
modeling, validation is often neglected due to non-
availability of real data or its inaccuracies. On the
other hand, linking the epidemiological model to

real data is essential, for it assists one to not only
create more confidence in the designed model, but
also to achieve realistic estimates of the biological
parameters the model depends on.

Moreover, when an explicit or implicit solution of
the epidemiological models is accessible then fitting
data to such solutions of the model is in fact not a
big deal. However, this is not the case in most of the
models we encounter and this is due to nonlinear
terms in the model and thus no explicit solution
exists. Availability of real data varies as it could be
given to us in the form of either infectious cases,
or recovered ones or even those hospitalized but it
is mostly given in the time series format. One of
the commonly used approaches for fitting the data
is the approach called the nonlinear least-squares
approach. It is this approach we have utilized in this
section to fit the real COVID-19 daily cases from 1
November 2020 to 31 January 2021, in Nigeria. This
time period (3 months) contains, in total, 92 data
points for infectious compartment in the model both
in classical (1) and the Caputo sense (3).

In this study, it is worth to be noted that such
a large dataset has rarely been fitted via Caputo
operator in the existing literature for epidemio-
logical modeling of COVID-19 for any country so
far. By reducing the residuals, the objective func-
tion has been simulated until the most minimum
residue is achieved via MATLAB differential equa-
tions solver known as ode23, minimization routine
fminsearch and few more necessary built-in com-
mands. By running the simulations of both models,
we have achieved best-fitted parameters that are
listed in Table 1 noting that along with the biologi-
cal parameters we have also been able to receive the
optimized Caputo fractional-order parameter α to
be approximately equal to 9.6481e−01 whereas the
minimum in the classical and the Caputo sense is
obtained as 4.1543e + 02 and 4.0109e + 02, respec-
tively, noting that the Caputo results in smaller
error. All real cases of COVID-19 on daily basis
within the chosen time period have been reported
in Table 3 including those predicted values obtained
via classical and the Caputo operator. Similarly,
absolute errors computed under both situations are
also tabulated within Table 4 while observing that
smaller errors come with the Caputo operator. The
basic reproductive number in the Caputo sense is
also better than the classical one taking, respec-
tively, the values 3.0472e + 00 and 2.1895e + 00.
Thus, it shows that assuming biological parameters
in the Caputo sense and simulating the fractional
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Table 1 Best-Fitted Parameters for Classical (α = 1) and
Caputo (α �= 1) Version of the COVID Model.

Parameters Interpretation α = 1 α �= 1

β transmission rate 6.8412e-01 6.8412e-01
progression rate

of the disease from latent
σ to infection’s stage 2.5591e-02 4.3974e-02
γ recovery or hospitalization rate 2.2451e-01 3.1245e-01
ξ disease induced death rate 5.9895e-01 6.9370e-01

proportion of hospitalization
ρ and death 2.2623e-03 3.3405e-03
ψ over-dispersion parameter 2.9233e-03 1.7353e-03
α fractional-order parameter 1.0000e-00 9.6481e-01

Table 2 Summary Statistics for the Real COVID-19 Daily Cases, Classical Simulations
and Simulations under the Caputo Operator.

Data Min. First Qu. Median Mean Third Qu. Max.

Real 0 1.5950e +02 4.8750e + 02 7.3767e + 02 1.2855e + 03 2.6090e +03
Classical 1.0496e +02 1.6708e +02 3.9884e + 02 6.3763e + 02 9.5338e + 02 2.2359e +03
Caputo 1.1590e +02 1.9632e +02 4.4144e + 02 6.6251e + 02 9.9078e + 02 2.1827e +03

model are alternatively better options. Figures 1
and 2 represent dynamical behavior of the infec-
tious compartment and their best fitting with the
time series data for the real COVID-19 cases under
both classical and the Caputo operator with their
respective residuals.

With close examination, it can be observed that
the real COVID-19 daily cases are best fitted under
the Caputo simulations with smaller possible resid-
uals. In addition, some statistical parameters are
included for further comparison such as the box plot
in Fig. 3 wherein two outliers are found in the clas-
sical case whereas only one outlier is observed in
the Caputo simulations with optimized fractional-
order parameter. Included are statistical measures
in Table 2 which show minimum, first quartile,
median, mean, third quartile and the maximum val-
ues in the real daily cases of COVID-19, classical
and the Caputo simulations in the first, second and
the third row; respectively. The table shows most of
the statistics obtained under the Caputo approach
are in good agreement with the real data.

5. NUMERICAL ASPECTS

In this section, numerical dynamics for the COVID-
19 epidemic as modeled with the Caputo frac-
tional operator have been analyzed keeping in mind
that the fractional-order parameter used for simu-
lations is the one optimized in Sec. 4 whereas rest

of the parameters are taken from the last column
of Table 1. An explicit predictor–corrector type of
numerical method especially designed for simula-
tions of fractional Caputo type of ordinary differ-
ential equations is employed herein. The method
itself and its full analysis based upon convergence
and error bounds are found in Refs. 40 and 41.
The numerical method designed for this purpose
has received much admiration in this literature due
to its simplicity and versatility that can be seen
in Refs. 42–47. The author in Ref. 48 has also dis-
cussed in detail about MATLAB implementation of
the numerical method with predictor–corrector fea-
tures. Use of such available routines on MathWorks
made the simulations much handy for this research
study for the Caputo COVID-19 model (3). It may
be noted that we use MATLAB software with ver-
sion ’9.8.0.1323502 (R2020a)’ running on OS Win-
dows with Intel(R) Core(TM) i7-1065G7 CPU @
1.30 GHz 1.50 GHz processor and 24 GB installed
RAM.

For the chosen COVID-19 model under the
Caputo operator, there are many important param-
eters that require attention to be observed for their
values for increasing or decreasing manner. In this
regard, we have chosen some parameters such as
transmission rate β, recovery (or hospitalization)
rate γ, progression rate of the disease from latent to
infection’s stage σ, and the Caputo fractional-order
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Caputo Based Model for Increasing Strains of Corona-Virus

(a) (b)

Fig. 1 (a) Real COVID-19 daily cases versus simulations under the class differential operator for infected individuals and
their (b) respective residuals.

(a) (b)

Fig. 2 (a) Real COVID-19 daily cases versus simulations under the Caputo differential operator for infected individuals and
their (b) respective residuals.
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Fig. 3 Box and Whisker plots for real data, simulations with classical and Caputo differential operator.

(a) (b)

Fig. 4 (a) Behavior of infectious individuals for increasing transmission rate β and (b) for increasing recovery rate γ.

optimized parameter α. In addition, we have also
shown numerical dynamics of all of the six state
variables under the fitted parameters and the opti-
mized value of α with the Caputo operator.

It is seen in Fig. 4 that for increasing value of
β, although slightly, causes the infection to grow
by large amount whereas for the increasing rate

of recovery γ, we observe that the infectious pop-
ulation starts to decline. Such kind of behavior
depicts the theoretical observations as well. Thus,
the Caputo operator has been successful to capture
the real time natural phenomenon of the epidemic.
Moreover, (a) plot of Fig. 5 shows that a slight
increase in the disease’s progression rate from latent
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Caputo Based Model for Increasing Strains of Corona-Virus

(a) (b)

Fig. 5 (a) Behavior of infectious individuals for increasing progression rate σ and (b) for decreasing fractional-order param-
eter α.

to infection’s stage brings the infectious individuals
to upper position which is also the real phenomena
as observed experimentally for the ongoing epidemic
whereas looking the behavior of infectious class in
(b) plot of this figure, it is easy to be convinced
that a value α ∈ (0, 1) would be the most suitable
value to capture the dynamics of the epidemic and

such a value has been successfully determined in
this study as equal to ≈ 9.6481e − 01. Thus, the
Caputo fractional-order parameter α plays a vital
role in transmission dynamics of the epidemic.

Finally, we carried out the simulations for
each state variable in Figs. 6 to 11 under the
Caputo operator for the fractional model (3). This

(a) (b)

Fig. 6 (a) Behavior of susceptible individuals for the time period [0, 91] and (b) behavior of susceptible individuals for the
time period [0, 1000] under the Caputo operator.

2240136-13

Fr
ac

ta
ls

 2
02

2.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
A

N
K

A
Y

A
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/2
8/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

August 13, 2022 12:8 0218-348X 2240136

D. Baleanu & A. S. Alshomrani

(a) (b)

Fig. 7 (a) Behavior of exposed individuals for the time period [0, 91] and (b) behavior of exposed individuals for the time
period [0, 1000] under the Caputo operator.

(a) (b)

Fig. 8 (a) Behavior of infectious individuals for the time period [0, 91] and (b) behavior of infectious individuals for the
time period [0, 1000] under the Caputo operator.

simulation consists of two plots for each class includ-
ing the first one on a small interval of time whereas
in the second plot considerably longer time period
has been chosen to observe the dynamics of that
particular class in future. Susceptible individuals
seem to decline for the initial 162

3 months and later
they start to improve by a slight amount whereas

the exposed and the infectious class follow the sym-
metrical behavior with the bell-shaped curve depict-
ing, once again, real behavior of any disease. As long
as the hospitalized individuals are concerned, they
sharply decline for about 6 months but later they
also follow the bell-shaped structure. Last but not
the least, the behavior of the dead and recovered

2240136-14
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(a) (b)

Fig. 9 (a) Behavior of hospitalized individuals for the time period [0, 91] and (b) behavior of hospitalized individuals for
the time period [0, 1000] under the Caputo operator.

(a) (b)

Fig. 10 (a) Behaviour of dead individuals for the time period [0, 91] and (b) behaviour of dead individuals for the time
period [0, 1000] under the Caputo operator.

classes is shown in Figs. 10 and 11, respectively.
There are not many people dead in this class as
the infectious population decreases after about 16.5
months and as a result people start to have recov-
ery as shown in the last figure. From all of this
observation, it can be said that the COVID-19

epidemic is controllable provided that it may some-
how be prevented from being spread from human
to human by following measures and prevention
imposed upon communities in the form of lock-
down, hand-washing, covering the face and avoiding
crowded places.
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(a) (b)

Fig. 11 (a) Behaviour of recovered individuals for the time period [0, 91] and (b) behaviour of recovered individuals for the
time period [0, 1000] under the Caputo operator.

6. CONCLUDING REMARKS

The Caputo-based model for increasing COVID-19
strains was investigated in this study. COVID-19 is
one of the most dangerous and alarming diseases.
The toxic effects of the COVID-19 pandemic are
extremely fast-acting, and infection usually results
in death within a few weeks. As a result, it is impor-
tant to dig deeper into the dynamics of this subtle
virus. In the literature, the fractional operator has
been shown to be well-motivated in dealing with
the transmission dynamics of infectious diseases.
The fractionalized order in the study is α, and the
dimensional consistency between the other parame-
ters was taken into account. As a consequence, some
key aspects of the proposed fractional version of
the model, such as model formation, existence and
uniqueness of the solution through the fixed-point
theorem, and stability analysis by means of UHS
and GUHS, have been discussed. Moreover, under
the least-squares method, fitted parameters of the
model are obtained using actual occurrence cases of
the virus and 3 months data points selected for the
country of Nigeria. It must be noted that the data
is arbitrarily taken from this country and any data
maybe taken for validation of the proposed Caputo
model.

By running simulations for both models, we were
able to obtain the best-suited parameters, which

are described in Table 4, noting that in addition to
biological parameters, we were also able to obtain
the optimized Caputo fractional-order parameter α,
which is approximately equal to 9.6481e−01, while
the minimum discrepancy observed in the classical
and Caputo sense are 4.1543e+02 and 4.0109e+02,
respectively. It can be observed that the Caputo
results in the smaller error. It is worth noting that
the fractional form of the SEIHDR model under
investigation comprehends the disease’s actions are
better than the integer-order version. In addition,
various numerical simulations were run using an
effective numerical method to shed more light on
the model’s characteristics. Future research study
of the Caputo model under consideration will be
carried out with the optimal control theory under
some control measures. This includes effective inter-
vention strategies to curtail the spread of the infec-
tious disease called the COVID-19.
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