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Abstract: In this article, we discuss the positive measure reducibility for quasi-periodic linear systems
close to a constant which is defined as:

dx
dt

= (A(λ) + Q(ϕ, λ))x, ϕ̇ = ω,

where ω is a Brjuno vector and parameter λ ∈ (a, b). The result is proved by using the KAM method,
Brjuno-Rüssmann condition, and non-degeneracy condition.
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1. Introduction

Suppose the quasi-periodic linear system

dx
dt

= A(ω1t, ω2t, . . . , ωrt)x (1.1)



9374

in which t ∈ R, x ∈ Cr, A(ω1t, ω2t, . . . , ωrt) is quasi-periodic(q-p) time dependent r × r matrix and the
basic frequencies ω1, . . . , ωr are rational independent.

The system (1.1) is said to be reducible, if there exists a so called quasi-periodic Lyapunov-Perron
(L-P) transformation x = P(ω1t, . . . , ωrt)y, so that the transformed system is a linear system with
constant coefficients. We call the transformation x = P(ω1t, . . . , ωrt)y is quasi-periodic L-P
transformation, if P(t) is non singular and P, P−1 and Ṗ are quasi-periodic and are bounded in t ∈ R.

Many researchers have discussed the reducibility problems for quasi-periodic linear systems. For
r = 1, i.e., the periodic case, the well known Floquet theorem states that there always exists a periodic
change of variables x = P(ω1t)y so that the system ẋ = A(ω1t)x is reducible to a constant coefficient
system ẏ = By, ϕ̇ = ω, where B is a constant matrix. For r > 1, i.e., quasi-periodic case, there is an
example in [1] which shows that the system (1.1) is not always reducible. Earlier for q-p case,
Coppel [2] proved that a linear differential equation with bounded coefficient matrix is
pseudo-autonomous if and only if it is almost reducible and Johnson and Sell [3] showed that if (1.1)
satisfies the full spectrum assumption, then there is a quasi-periodic linear change of variables
x = P(ω1t, . . . , ωrt)y that transforms (1.1) to a constant coefficient system ẏ = By, where B is a
constant matrix. Their results failed for the pure imaginary spectrum [4].

The first reducibility result by KAM method was given by Dinaburg and Sinai [5] who proved that
the linear Schrödinger equation d2 x

dt2 + q(ω1t, ω2t, . . . , ωrt)x = λx is reducible for ’most’ large enough
λ in measure sense , where ω is fixed satisfying the Diophantine condition: |〈k, ω〉| > α−1

|k|τ , 0 , k ∈ Zr,
where α, τ are positive constants. See also Rüssmann [6] for a refined result.

In 1992 Jorba and Simó [7] considered the following linear differential system

dx
dt

=
(
A + λQ̄ + λ2Q(ω1t, . . . , ωrt)

)
x, x ∈ Rd, (1.2)

in which A, Q̄ are constant diagonal matrices, and Q is an analytic q-p matrix having r basic
frequencies, and with a small parameter λ. Using the KAM method, They proved that there exists a
positive measure Cantor subset E ⊂ (0, λ0), λ0 � 1 such that for any λ ∈ E, the system (1.2) is
reducible, provided that the following non-degeneracy conditions

|αi(λ) − α j(λ)| > δ > 0, |
d

dλ
(αi(λ) − α j(λ))| > χ > 0, ∀1 ≤ i < j ≤ d (1.3)

where αi(λ), 1 ≤ i ≤ m, are the eigenvalues of Ā = A + λQ̄. In 1999, Xu [8] improved the result for the
weaker non-degeneracy conditions.

Eliasson [9] considered the following linear Shrödinger equation

d2x
dt2 + (λ + Q(ωt)x = 0.

For almost all λ ∈ (a, b), the full measure reducibility result is proved in a Lebesgue measure sense
provided that Q is small. On the other hand, Krikorian [10] generalized the work for linear systems
with coefficients in so(3). Then, Eliasson [11] discussed the full measure reducibility result for the
following parameter dependent systems

dx
dt

= (A(λ) + Q(ω1t, . . . , ωrt, λ))x, (1.4)
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in which t ∈ R, x ∈ Cd, a constant matrix A of dimension d×d, the parameter λ ∈ (a, b), and an analytic
mapping Q : T r × (a, b)→ gl(m,C), a Diophantine vector (ω1, . . . , ωr) and for sufficiently small |Q|.

He and You [12] proved the positive measure reducibility result for the following quasi-periodic
skew-product systems: dx

dt = (A(λ) + Q(ϕ, λ))x, ϕ̇ = ω, close to constant. The result is proved by using
KAM method, under weaker non-resonant conditions and non-degeneracy conditions.

All the above mentioned results only discuss the reducibility of linear systems with the Diophantine
condition

|〈k, ω〉| ≥
α−1

|k|τ
, 0 , k ∈ Zd, (1.5)

where α > 1 and τ > d − 1.
In our problem, we are going to focussed on the Brjuno-Rüssmann condition (see [13,14]) which is

slightly weaker than the Diophantine condition (1.5), if the frequencies ω = (ω1, . . . , ωd) satisfy

|〈k, ω〉| ≥
α−1

∆(|k|)
, 0 , k ∈ Zd, (1.6)

where α > 1 and some Rüssmann approximation function ∆. These are continuous, increasing and
unbounded functions ∆ : [0,+∞)→ [1,+∞) such that ∆(0) = 1 and∫ +∞

1

ln∆(t)
t2 dt < ∞.

Remark: If we have ∆(t) = tτ, then the Brjuno-Rüssmann conditions (1.6) becomes the Diophantine
conditions (1.5).

Furthermore, in this article we will generalize the result of He and You [12] for quasi-periodic linear
systems using Brjuno-Rüssmann non-resonant condition which is slightly weaker than the Diophantine
condition.

This article is organized as: at the end of Section 1, the statement of the main result is given and in
Section 2 proof of the main result is given.

To state our main result, we now give some definitions and results.

Definition 1.1. ( [15, 16])
A vector ω ∈ Rd is Brjuno if the following condition is satisfied

∞∑
n=1

2−nln(
1

Ωn
) < ∞, Ωn = min

ν∈Zd ,0<|ν|≤2n
|〈ω, ν〉|.

The set of Brjuno vectors is of full Lebesgue measure. In particular, it contains all Diophantine
vectors. Conversely, there are vectors that are Brjuno and are not Diophantine.

This article aims to discuss the positive measure reducibility for q-p linear systems like (1.4)
proposed by He and You [12]. The existed positive measure reducibility is discussed by using the
Diophantine conditions, but we will discuss the positive measure reducibility using the
Brjuno-Rüssmann condition.

Equivalently, for the system (1.4), we suppose the following skew-product system

dx
dt

= (A(λ) + Q(ϕ, λ))x, ϕ̇ = ω, (1.7)
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where x ∈ Cr, the parameter λ ∈ Λ = (a, b), A is a r × r constant matrix, and Q(ϕ, λ) is an analytic
mapping from Tr × (a, b) to gl(m,C), (ω1, ω2, · · · , ωn) is a Brjuno vector and |Q| is sufficiently small.

In our discussion, we will use the following equivalent formulation of reducibility:
Consider

dZ
dt

= b(t)Z (1.8)

be an analytic q-p linear system. For the skew-product system, it can be rewritten as:

dZ
dt

= B(ϕ)Z, ϕ̇ = ω, (1.9)

where b, B are in the Lie algebra g = g(m,C) and their solutions have values in the Lie group G =

GL(m,C). For a complex neighbourhood Wh(Tr) if B is an analytic on Wh(Tr), then we represent
B ∈ Cω

h (Tr, g). It is said that the analytic g-valued functions B1, B2 ∈ Cω
h (Tr, g) are conjugated, if ∃

a L-P transformation G-valued function P ∈ Cω
h (Tr,G), s.t. for the solutions Z1,Z2 corresponding to

B1, B2, we have the following relation

Z2 = P(ϕ)Z1

and the conjugate relation can be denoted by:

B1 ≡ B2(modP).

It is easy to prove that B1 ≡ B2(modP) can equivalently be written in the form of following equality

B2 = DωP · P−1 + PB1P−1, (1.10)

where Dω = ∂
∂ϕ
· ϕ̇ denotes the derivative in the direction of frequency vector ω. B1 is known to be

reducible if it conjugates to a constant B2.
In our article, we shall prove that, for any λ ∈ Λ = (a, b), where λ is the parameter and Λ is a

positive measure set,then ∃ a L-P transformation P(ϕ), such that the system A + Q(ϕ) is transformed
into a constant system A∗.

For the positive measure reducibility, we will use the non-degeneracy conditions (or the transverse
conditions as in Eliasson and Krikorian terminology) . Without loss of generality, let’s suppose a
block-diagonal matrix A(λ) = diag(A1(λ), · · · , As(λ)) with

dist(σ(Ai), σ(A j)) > % > 0, for i , j,

where σ(Ai) represents the eigenvalues set for Ai. Let (see in [12] for definition)

Ji j(k, λ) = i〈k, ω〉Ilil j + (Ili ⊗ A j(λ) − AT
i (λ) ⊗ Il j),

J(k, λ) = i〈k, ω〉In2 + (In ⊗ A(λ) − AT (λ) ⊗ In),

di j(k, λ) = det[i〈k, ω〉Ilil j + (Ili ⊗ A j(λ) − AT
i (λ) ⊗ Il j)].
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For the skew-product system (1.7), by using Lemmas 1.1 and 1.2 in [12], we set for ∀ 〈k, ω〉 ∈ R

gi j(k, λ) =

{ ∏
αu∈σ(Ai),βv∈σ(A j)(i〈k, ω〉 − (αu(λ) − βv(λ)), i , j;∏
αu,αv∈σ(Ai),u,v(i〈k, ω〉 − (αu(λ) − αv(λ)), i=j.

Remark: It is easily seen that if A ∈ Cω(Λ, g) and the division of σ(A) is sufficiently separated , then
all gi j are analytic functions of λ, ∀ 1 ≤ i, j ≤ s.

For the proof of this remark (see in [17]).
Thus, we assume the following:

Non-degeneracy Conditions: There exist an integer d ≥ 0 and ς ≥ 0 such that

max
0≤l≤d
|
∂l

∂λl gi j(k, λ)| > ς, for all 1 ≤ i, j ≤ s (1.11)

uniformly hold ∀ λ ∈ Λ and 〈k, ω〉 ∈ R.
Remark: The condition (1.11) will assure that the small denominator condition always holds for the
“most” parameter λ. Here, we take only those k in which |〈k, ω〉| ≤ 2δ0, because for the large enough
|〈k, ω〉|, we always see that the matrix i〈k, ω〉Ilil j − (Ili ⊗ A j(λ) − AT

i (λ) ⊗ Il j) is automatically non-
singular and the small denominator condition is satisfied. It can easily be seen that the condition (1.11)
is weaker than the non-degeneracy condition (1.3) used by Jorba and Simó.

Moreover, the property that gi j(k, λ) depends analytically on λ can be preserved under small
perturbations, and at each iterative step, we will preserve the non-degeneracy conditions.

1.1. Statement of the main result

To state the main result, consider Q as an analytic g-valued function that can be defined on a complex
neighbourhood of Tr × Λ:

Wh(Tr × Λ) = {(ϑ, λ) ∈ Cr × Λ|dist(ϑ,Tr) < h},

where λ ∈ Λ = (a, b). Defined the norm of Q as:

||Q||h = max
0≤l≤d

sup
(ϑ,λ)∈Wh(Tr×Λ)

|
∂lQ
∂λl |

similarly

||A|| = max
0≤l≤d

sup
λ∈Λ

|
∂lA(λ)
∂λl |

where || · || denotes the matrix norm.

Theorem 1.1. Consider the skew-product system (1.7) in which ω is a fixed Brjuno vector and it
satisfies the Brjuno-Rüssmann condition (1.6) and A(λ) satisfies the non-degeneracy condition (1.11),
and there exists K > 0 such that ||A|| ≤ K. Then there exist ε > 0, h > 0, such that if ||Q(·, ·)||h = ε1 < ε,
the measure of the set of parameter λ′s for which the system (1.7) is non-reducible is no larger than
CL(10ε1)c, with some positive constants C, c, and L denotes the length of the parameter interval Λ.
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2. Proof of the Theorem 1.1

Theorem 1.1 will be proven by KAM iteration. At each iterative step, we have a L-P transformation
close to identity as

P(ϕ) = I + Z(ϕ), (2.1)

where Z(ϕ) ∈ Cω
h (Tr, g), P(ϕ) ∈ Cω

h (Tr,G) and by using the L-P transformation (2.1), the quasi-periodic
system dx

dt = (A + Q)x is changed into

dx
dt

= (DωP · P−1 + P(A + Q)P−1)x.

Since Z is very small and in the expansion form P−1 can be written as:

P−1 = I − Z + Z2 + O(||Z||3).

So, we have

DωP · P−1 + P(A + Q)P−1

= DωZ(I − Z + Z2 + O(||Z||3)) + (I + Z)(A + Q)(I − Z + Z2 + O(||Z||3))
= A + DωZ + [Z, A] + Q − DωZ · Z + [Z,Q] + AZ2 − ZAZ + O(||Z||3). (2.2)

In general, we have to find a small Z in which the transformed system is still of the form dx
dt =

(A+ + Q+)x, where A+ is block-diagonal as A and Q+ is much smaller than Q.
To do this, we have to calculate Z solving the following linearized equation

DωZ − [A,Z] = −Q (2.3)

where [A,Z] = AZ − ZA and to prove

Q+ = −DωZ · Z + [Z,Q] + AZ2 − ZAZ + O(||Z||3)

is more smaller.

2.1. Solution of the linearized equation

In this subsection, we will solve the linearized equation, for this we need the following:
Definition: Let u = (u1, · · · , um) ∈ Tm. Its norm is denoted by ||u|| and is defined as:

||u|| = max
1≤i≤m

|ui|.

Definition: For a m × m matrix S = (si j), its operator norm is denoted by ||S || and is equivalent to
m ×max |si j|.

Notation: Let F ∈ Cω
h (Tr × Λ, g) and its Fourier series is F =

∑
k∈Zr Fkei〈k,ϕ〉,then the kth Fourier

coefficients of F denoted by Fk, given by Fk =
∫
Tr e−i〈k,ϕ〉F(ϕ)dϕ.

Remark 2.1. For F ∈ Cω
h (Tr × Λ, g), we have

|Fk| ≤ |F|he−|k|h.
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Note. For k ∈ Zd, we denote |k| =
∑d

n=1 |kn|. Similarly, for a function f , its modulus is denoted by | f |.
Throughout the discussion, to simplify notations, the letters c,C denote different positive constants.
By substituting the Fourier series expansions of Z,Q into the Eq (2.3), and then by equating the

corresponding Fourier coefficients on both sides, we obtain

i〈k, ω〉Zk − (AZk − ZkA) = −Qk. (2.4)

suppose that the eigenvalues of the linear operator i〈k, ω〉Id + [A, ·] in the left part are

i〈k, ω〉 − (αi − α j), 1 ≤ i, j ≤ n, αi, α j ∈ σ(A).

The eigenvalues will be αi − α j for k = 0. As the considered matrix A = diag(A1, · · · , As) is a
block-diagonal with different blocks Ai, A j and each block have different eigenvalues, .i.e. αu , βv if
αu ∈ Ai, βv ∈ A j for i , j, from conclusions as seen from other researchers [12,17–20] , we see that the
matrix Ili ⊗ A j − AT

i ⊗ Il j is non-singular if i , j.
In block-diagonal form, let Qk can be written as (Qki j), where Qki j is a matrix of order li × l j

,1 ≤ i, j ≤ s and li, l j are the orders of matrices Ai, A j respectively.
Now, for k = 0, we solve the equation (2.4). Suppose

Qd
0 = (Q011, · · · ,Q0ss)

and

Q∗0 = Q0 − Qd
0.

For k = 0, the equation (2.4) can be written as

AZ0 − Z0A = Q0 (2.5)

Equation (2.5) can not be solved completely because the eigenvalues involved the multiplicity.
However, the following equation

AZ0 − Z0A = Q∗0

has a solution Z0 = (Z0i j) with Z0ii = 0 and

AiZ0i j − Z0i jA j = Q0i j, for i , j

has the unique solution Z0i j.
Moreover, we have the estimate [12]

||J−1
i j (0, λ)|| ≤ max

i, j
||[Il j ⊗ Ai(λ) − AT

j (λ) ⊗ Ili]
−1||

≤ c
nKlil j

%lil j
≤ C(%, n)Klil j , (2.6)

and

max
0≤l≤r
||
∂l

∂λl J−1
i j (0, λ)|| = max

1≤l≤r
||
∂l

∂λl (
adJi j

detJi j
)||
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≤ C(%, n, r)K(lil j)2

as dist(σ(Ai(λ)), σ(A j(λ))) > % > 0, for i , j. Moreover, we get

max
0≤l≤r
||
∂l

∂λl Z0(λ)|| ≤ C max
0≤l≤r
||
∂l

∂λl (J−1
i j (0, λ)|| · ||

∂l

∂λl Q0(λ)||

≤ C(%, n, r)Kn4
max
0≤l≤r
||
∂l

∂λl Q0(λ)||. (2.7)

Now, we solve the Eq (2.4) for k , 0. From Lemma 3.2 as seen in [12], the solution of (2.4) is
equivalent to the solution of the following vector equation

J(k, λ)Z
′

k(λ) = −Q
′

k(λ) (2.8)

By using corollaries [12], Eq (2.8) is solvable ⇐⇒ the matrix J(k, λ) is invertible. Suppose
P = I +

∑
Zk is a L-P transformation. Then by using the L-P transformation, the new system becomes

dx
dt

= (A+ + Q+)x

where

A+ = A + Qd
0

Q+ = −DωZ · Z−1 + [Z,Q] + AZ2 − ZAZ + O(||Z||3) (2.9)

Since A and Qd
0 are block-diagonal matrices, therefore A+ is also a block-diagonal. Next, we will

show that in a smaller domain Q+ is much smaller and the non-degeneracy condition is satisfied by A+.
Estimation of Q+.

First of all, we estimate Zk. Actually, to control the solution of Zk, we need the following small
denominator condition, .i.e. if there exist N > 0 such that ∀i, j

|gi j(k, λ)| ≥
N−1

∆(|k|)
, 1 ≤ i, j ≤ s. (2.10)

where ∆ is an approximation function as defined above.
In order to estimate Zk, we need to estimate the operator J−1

i j (k, λ) for k , 0.

Lemma 2.1. For k , 0 and the small denominator conditions (2.10) are satisfied by all parameters λ,
then we have

||J−1
i j (k, λ)|| ≤ cKlil j N(∆(|k|))lil j , i , j, (2.11)

||J−1(k, λ)|| ≤ cKn2
αnNn2

(∆(|k|))n2
, (2.12)

max
0≤l≤r
||
∂l

∂λl J−1(k, λ)|| ≤ cKn4
α2rnN2rn2

(∆(|k|))2rn2
. (2.13)

where c denotes constant.
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Proof. Since Ji j is a non-singular matrix, so its inverse is defined as J−1
i j = adJi j/detJi j. By the small

denominator conditions (2.10), we have

|J(k, λ)| = |[i〈k, ω〉In2 + (In ⊗ A(λ) − AT (λ) ⊗ In)]| ≥ (N−1)n2
(
α−1

∆(|k|)
)n

and

|Ji j(k, λ)| = |[i〈k, ω〉Ilil j + (Ili ⊗ A j(λ) − AT
i (λ) ⊗ Il j)]| ≥ (N−1)lil j(

α−1

∆(|k|)
)li

using the definition of the norm ||Ji j|| and the small denominator condition (2.10), the estimate (2.11)can
be found easily. Also as detJ =

∏
1≤i, j≤s detJi j, similarly we can calculate the estimations (2.12) and

(2.13).
For k , 0, from Eq (2.8), we have

Z
′

k(λ) = −J−1(k, λ)Q
′

k(λ) (2.14)

as Z
′

k,Q
′

k are the transpose of Zk and Qk respectively, therefore it is easy to prove ||Zk|| = ||Z
′

k||, ||Qk|| =

||Q
′

k|| (see in [12] for the proof).
In our article, we represent F(λ) a λ-dependent matrix as:

|F(λ)| = max
0≤l≤r
||
∂lF(λ)
∂λl ||.

Since Q ∈ Cω
h (Tr × Λ, g), then by the Remark 2.1, we have

|Qk| ≤ |Q|he−|k|h.

As a result, for k , 0 and for any 0 < h̄ < h, we have

|Zk(λ)| ≤ |J−1(k, λ)||Qk(λ)|

≤ CKn4
α2rnN2rn2

(∆(|k|))2rn2
|Q|he−|k|h

or

|Zk(λ)| ≤ CKn4
α2rnN2rn2

(∆(|k|))2rn2
|Q|he−|k|(h−h̄)e−|k|h̄. (2.15)

In particular, take an approximation function ∆(t) = etδ , δ < 1, which satisfy the Brjuno-Rüssmann
condition (1.6), since the function etδ2rn2

· e−t(h−h̄) has the maximal value at t = ( 2rn2δ
h−h̄ )

−1
δ−1 , one has

|Zk(λ)| ≤ CKn4
α2rnN2rn2

|Q|he[2rn2( 2rn2δ
h−h̄ )

−δ
δ−1 −( 2rn2δ

h−h̄ )
−1
δ−1 (h−h̄)]e−|k|h̄

≤ C(n, r, δ, α)Kn4
N2rn2

[
|Q|h

(h − h̄)
δ2−δ−1
δ−1

−
|Q|h

(h − h̄)
δ
δ−1

]e−|k|h̄. (2.16)

Consider

Z(t, λ) =
∑
k∈Zr

Zk(λ)ei〈k,t〉
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choose h
′

: 0 < h
′

< h̄ s.t. if h̄ − h
′

= h − h
′

< 1. So, using the Lemma 4 in [7], we obtain

|Z|h′ ≤
∑
k∈Zr

|Zk|e|k|h
′

≤ CKn4
|Q0| + CKn4

N2rn2
[

|Q|h

(h − h̄)
δ2−δ−1
δ−1

−
|Q|h

(h − h̄)
δ
δ−1

]
∑

k∈Zr\{0}

e−(h̄−h
′
)|k|

≤ CKn4
N2rn2

[
|Q|h

(h − h̄)
δ2−δ−1
δ−1

−
|Q|h

(h − h̄)
δ
δ−1

](
2

h̄ − h′
)me

(h̄−h
′

)m
2

≤ C(n, r, δ, α,m)Kn4
N2rn2

[
1

(h − h′)
δ2−δ−1
δ−1 +m

−
1

(h − h′)
δ
δ−1 +m

]|Q|h. (2.17)

Let s = δ2−δ−1
δ−1 + m, and s

′

= δ
δ−1 + m, we get

|Z|h′ ≤ CKn4
N2rn2

[
1

(h − h′)s −
1

(h − h′)s′
]|Q|h. (2.18)

similarly, we can find

|DωZ|h′ ≤ CKn4
N2rn2

[
1

(h − h′)s+1 −
1

(h − h′)s′+1
]|Q|h

|DωZ · Z|h′ ≤ CKn4
N2rn2

[
1

(h − h′)2s+1 −
1

(h − h′)2s′+1
]|Q|2h

|AZ2|h′ = |ZAZ|h′ ≤ CKn4
N2rn2

[
1

(h − h′)2s −
1

(h − h′)2s′
]|Q|2h

|[Z,Q]|h′ ≤ 2|Z|h′ · |Q|h ≤ CKn4
N2rn2

[
1

(h − h′)s −
1

(h − h′)s′
]|Q|2h

Hence, from Eq (2.9), we get

|Q+|h′ ≤ CK2n4+1N2r+1n2
[

1
(h − h′)2s+1 −

1
(h − h′)2s′+1

]|Q|2h. (2.19)

Verification of the non-degeneracy conditions for A+.

Since

A+ = A + Qd
0 = diag(A1 + Q011, · · · , As + Q0ss).

Let

D+
i j(k, λ) = det[i〈k, ω〉Ilil j + (Ili ⊗ (A j(λ) + Q0 j j(λ)) − (AT

i (λ) + QT
0ii(λ)) ⊗ I j)].

The new determinant D+
i j is analytic with respect to λ as well.
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The above determinant can be rewritten as

D+
i j(k, λ) = Di j(k, λ) + Yi j(k, λ).

where Di j(k, λ) = det[i〈k, ω〉Ilil j + (Ili ⊗ A j(λ) − AT
i (λ)) ⊗ I j)] and Yi j(k, λ) is a summary of 2lil j − 1

determinants denoted by yt(k, λ)(1 ≤ t ≤ 2lil j − 1). Furthermore, there exist at least one column in each
determinant yt such that the entries in this column are either 0 or of the form c − d, where c and d are
entries of Q0 j j and Q0ii respectively.

As |Qd
0|h ≤ |Q|h < ε, we get

|
∂l

∂λl D
+
i j(k, λ)| ≤ C|A|ε, for 1 ≤ l ≤ r.

similarly,

|
∂l

∂λl (g
+
i j(k, λ) − gi j(k, λ))| ≤ C|A|ε, for 1 ≤ l ≤ r. (2.20)

So, we have

|
∂l

∂λl g
+
i j(k, λ)| ≥ ς −C|A|ε ≥ ς −CKε = ς

′

, for 1 ≤ l ≤ r. (2.21)

The proof is obvious. Note that, here we only need to choose such k′s so that |(k, λ)| is not large
enough, .i.e., |(k, λ)| ≤ CK,where |A| ≤ K, because for large enough |(k, λ)|, the matrix J(k, λ) becomes
automatically non-singular. So, when |(k, λ)| has large values , then J+(k, λ) becomes naturally non-
singular and no need to preserve non-degenerate property.

Alternatively, we know from the perturbation theory of matrices that the continuous change of
eigenvalues depends on the entries, and by Ostrowski theorem (see [21]), the distance between
eigenvalues of any two blocks can be estimated as

min
i, j

dist(σ(A+
i ), σ(A+

j )) = %+ > % − cε
1
n .

Now, we summarize the above discussions in the following conclusion.
Conclusion 1.

Consider Λ subset of (a,b) be some parameter segment, a one parameter family of constant elements
A ∈ Cω(Λ, g), and Q ∈ Cω

h (Tr × Λ, g) be the perturbation. Suppose that there exist K, ε,N > 0 s.t.

• |A| ≤ K, |Q|h < ε,
• for all λ ∈ Λ, the non-degeneracy conditions (1.11) and the small denominator conditions (2.10)

hold.

Then, ∃ h
′

> 0 and a map Z ∈ Cω
h′

(Tr × Λ, g), and

A+ ∈ Cω(Λ, g)

Q+ ∈ Cω
h′ (T

r × Λ, g),

such that

1) A+ = A + Qd
0, A+ + Q+ ≡ A + Q

2) We have the estimation (2.19), .i.e. |Q+|h′ ≤ CK2n4+1N2r+1n2
[ 1

(h−h′ )2s+1 −
1

(h−h′ )2s′+1
]|Q|2h.

3) We have preserved the non-degeneracy conditions .i.e., max0≤l≤r |
∂l

∂λl g+
i j(k, λ)| ≥ ς

′

.
4) %+ > % − cε

1
n ,K+ < K + ε.
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2.2. Iteration

In this subsection, we will prove that the perturbation Q goes to zero very quickly provided that the
small divisor conditions hold.

First of all, consider the following two iterative sequences:

hm = (
1
2

+
1

2m )h1, (2.22)

Nm = (
(6

5 )m + 1
η

hm−1 − hm
)γ = (h1)−γ2mγ((

6
5

)m +
1
η

)γ (2.23)

where γ ≥ r is a constant, and η will be considered as in the following lemma

Lemma 2.2. There exist positive constants η < 1, b, s.t., if ε1 is sufficiently small, then ∀ m ≥ 1

εm ≤ η
be−( 6

5 )m
,

Km ≤ 2m−1K1.

Proof. Suppose that if we do this up to mth step, we have

|Qm|hm ≤ εm ≤ η
be−( 6

5 )m

and

Km ≤ Km−1 + εm−1 ≤ 2m−1K1.

By induction, we need to prove that

|Qm+1|hm+1 ≤ η
be−( 6

5 )m+1
(2.24)

and

Km+1 ≤ 2mK1. (2.25)

Indeed Eq (2.25) is satisfied as

Km+1 ≤ Km + εm ≤ Km + ηbe−( 6
5 )m
≤ Km + 1 ≤ 2Km ≤ 2 · 2m−1K1 = 2mK1.

And from Eq (2.19), we have

εm+1 ≤ CK2n4+1
m N2r+1n2

m [
1

(hm − hm+1)2s+1 −
1

(hm − hm+1)2s′+1
]ε2

m.

To prove Eq (2.24), we need

CK2n4+1
m N2r+1n2

m [
1

(hm − hm+1)2s+1 −
1

(hm − hm+1)2s′+1
]η2be−( 6

5 )2m
≤ ηbe−( 6

5 )m+1
.
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Then by using Eqs (2.22) and (2.25), we have

CK2n4+1
1 h−(2s+1)

1 2m(2n4+1)+(m+1)(2s+1)N2r+1n2

m η2be−(4/5)( 6
5 )m
≤ 1. (2.26)

Let Rm(η) = N2r+1n2

m ηb−1, if we choose

b > 2r+1n2γ + 1, (2.27)

then by Eq (2.23) we see that for smaller value of η, the value of Rm also goes smaller. Now, firstly we
set η = η0 < 1. As the sequence

2m(2n4+1)+(m+1)(2s+1)+mrRm(η0)e−(4/5)( 6
5 )m
,

is bounded from above,let’s denote its maximum by β̄. In order to satisfy Eq (2.26), it is enough to
choose η s.t.

CK2n4+1
1 h−(2s+1)

1 β̄η ≤ 1.

Thus, define

η ≤ min{CK−(2n4+1)
1 h2s+1

1 β̄−1, η0},

and so we obtained the Eq (2.26). If we choose η = (10ε1)1/b, then it is enough to take

ε1 ≤ min{
CK−b(2n4+1)

1 hb(2s+1)
1

10βb , ηbe−
6
5 }. (2.28)

Hence, the proof of lemma is finished.
From Eq (2.18), it can be seen that the sequence |Zm|hm converges to 0 with super-exponential

velocity, then by the transformation Pm = I + Zm, we have Pm → I, and so the composition of
transformations Pm ◦ Pm−1 ◦ · · · ◦ P1 will also be convergent. On the other hand, from conclusion 1,
we have

ςm ≥ ςm−1 −CKmεm,

so

ςm ≥ ς −C
∑

1≤i≤m−1

Kiεi ≥
ς

2
, (2.29)

for small enough ε1. Thus, the preservation of the non-degeneracy conditions is proved. By the way,
for small enough ε1, we also have the estimate

%m ≥ % −C
∑

1≤i≤m−1

ε
1
n
i ≥

%

2
. (2.30)
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2.3. Measure of the removed set

In this subsection, we will show that the set of parameters satisfying the small denominator
conditions is of the large Lebesgue measure. In the end, we estimate the measure of the removed
parameter set. At the mth step, for ∀i, j, 1 ≤ i, j ≤ s, we denote the removed set as:

Rm
ki j = {λ : |gm

i j(k, λ)| ≤
N−1

m

∆(|k|)
}

and consider

Rm
k =

⋃
1≤i, j≤s

Rm
ki j,

Rm =
⋃

0,k∈Zr

Rm
k .

To calculate the estimate for the measure of Rm
ki j, the following lemma is needed:

Lemma 2.3. Consider g(x) is a CM function on the closure Ī, where I ∈ R1 is an interval of length L.
Let Ih = {x : |g(x)| ≤ h, h > 0}. If for some constant r > 0, |g(M)(x)| ≥ r for ∀x ∈ I, then |Ih| ≤ cLh1/M,
where |Ih| denotes the Lebesgue measure of Ih and constant c = 2(2 + 3 + · · · + M + r−1).

For the proof, see [22].
Then, let L denotes the length of the parameter interval Λ, and using above Lemma 2.3, we obtain

mes(Rm
ki j) ≤ cL(

N−1
m

∆(|k|)
)1/r

where c = 2(2 + 3 + · · · + r + 2/ς), as gm
i j(k, λ) ∈ Cm(Λ) and using the non-degeneracy conditions and

Eq (2.30). Thus,

mes(Rm) ≤ Cn2LN−
1
r

m

∑
0,k∈Zr

(
1

∆(|k|)
)1/r.

For ∆(|k|) = e|k|
δ
, δ < 1, we have

mes(Rm) ≤ Cn2LN−
1
r

m

∑
0,k∈Zr

e−|k|
δ/r

≤ C(n, r, δ, ς)LN−
1
r

m .

By Eq (2.23), Nm >
2mγ

ηγ
, we have

N−
1
r

m ≤ η
γ
r ·

1

2
mγ
r
.

Therefore, for η = (10ε1)
1
b and γ ≥ r, one has

mes(
∞⋃

m=1

Rm) ≤ CLη
γ
r

∞∑
m=1

2
−mγ

r ≤ CLη
γ
r

≤ C(n, r, δ, ς, γ, %)L(10ε1)c,where, c =
γ

br
.

Hence, the proof of the main result is completed.
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3. Conclusions

In this article, we discussed the positive measure reducibility for quasi-periodic linear systems and
proved that the system (1.7) is reduced to a constant coefficient system. The result was proved for a
Brjuno vector ω and small parameter λ by using the KAM method, Brjuno-Rüssmann condition and
non-degeneracy condition.

Acknowledgments

The authors extend their appreciation to the Yibin University, Yibin, China.

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. R. Johnson, J. Moser, The rotation number for almost periodic potentials, Commun. Math. Phys.,
84 (1982), 403–438. https://doi.org/10.1007/BF01208484

2. W. Coppel, Pseudo-autonomous linear systems, Bull. Aust. Math. Soc., 16 (1977), 61–65.
https://doi.org/10.1017/S0004972700023005

3. R. A. Johnson, G. R. Sell, Smoothness of spectral subbundles and reducibility of quasi-periodic
linear differential systems, J. Differ. Equ., 41 (1981), 262–288. https://doi.org/10.1016/0022-
0396(81)90062-0

4. N. N. Bogoljubov, J. A. Mitropolski, A. M. Samoilenko, Methods of accelerated convergence in
nonlinear mechanics, New York: Springer-Verlag, 1976.

5. E. I. Dinaburg, Y. G. Sinai, The one dimensional Schrödinger equation with a quasi-periodic
potential, Funct. Anal. Appl., 9 (1975), 279–289. https://doi.org/10.1007/BF01075873

6. H. Rüssmann, On the one-dimensional Schrödinger equation with a quasi-periodic potential, Ann.
NY. Acad. Sci., 357 (1980), 90–107. https://doi.org/10.1111/j.1749-6632.1980.tb29679.x
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