
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.023286

Article

Computational Algorithms for the Analysis of Cancer Virotherapy Model

Ali Raza1,2,*, Dumitru Baleanu3,4, Muhammad Rafiq5, Syed Zaheer Abbas6, Abubakar Siddique6,
Umer Javed8, Mehvish Naz7, Arooj Fatima6, Tayyba Munawar6, Hira Batool6 and Zaighum Nazir6

1Department of Mathematics, Govt. Maulana Zafar Ali Khan Graduate College Wazirabad, 52000, Punjab Higher
Education Department (PHED), Lahore, 54000, Pakistan

2Department of Mathematics, University of Sialkot, Sialkot, 51310, Pakistan
3Department of Mathematics, Cankaya University, Balgat, Ankara, 06530, Turkey

4Department of Medical Research, China Medical University, Taichung, 40402, Taiwan
5Department of Mathematics, Faculty of Sciences, University of Central Punjab, Lahore, 54500, Pakistan

6Department of Mathematics, National College of Business Administration and Economics, Lahore, 54660, Pakistan
7Department of Mathematics, COMSATS University Islamabad, Wah Campus, Quaid Avenue, Wah Cantonment,

47040, Pakistan
8Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, Quaid Avenue,

Wah Cantonment, 47040, Pakistan
*Corresponding Author: Ali Raza. Email: alimustasamcheema@gmail.com

Received: 02 September 2021; Accepted: 09 October 2021

Abstract: Cancer is a common term for many diseases that can affect any
part of the body. In 2020, ten million people will die due to cancer. A
worldwide leading cause of death is cancer by the World Health Organization
(WHO) report. Interaction of cancer cells, viral therapy, and immune response
are identified in this model. Mathematical and computational modeling is
an effective tool to predict the dynamics of cancer virotherapy. The cell
population is categorized into three parts like uninfected cells (x), infected
cells (y), virus-free cells (v), and immune cells (z). The modeling of cancer-
like diseases is based on the law of mass action (the rate of change of
reacting substances is directly proportional to the product of interacting
substances). Positivity, boundedness, equilibria, threshold analysis, are part
of deterministic modeling. Later on, a numerical analysis is designed by using
the standard and non-standard finite difference methods. The non-standard
finite difference method is developed to study the long-term behavior of the
cancer model. For its efficiency, a comparison of the methods is investigated.
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1 Literature Survey

Cancer is a disease of abnormal cell growth, and these cells attach to other cells of the body and
harm them. It can start in any part of the body. Typically human cells grow and divide to replace
old or damaged cells. Still, this process breaks down in a cancer patient, resulting in the formation
of irregular or deteriorated cells and new abnormal cells. It includes tumors that may or may not
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be cancerous. In immunotherapy, we enhance our immune system (defensive system against diseases)
by using different substances (body cells or proteins). These substances may destroy cancerous cells
or stop the growth of uncontrolled dividing cells. In this technique, medicines are more effective
in malignancies than in other cancers. It can be a lifesaver for some victims. This technique is not
suitable for everyone. In general, fifteen to twenty out of a hundred people respond. Virotherapy is
a biotechnology-based treatment that transforms viruses into therapeutic agents by reprogramming
them to cure diseases. As a result, oncolytic virotherapy is now considered to be generally safe. Possible
safety concerns that have yet to be identified or demonstrated cannot be ruled out. It is one of the
most prominent therapies in growing research for mesothelioma because of its capacity to select and
kill malignant cells natively.Selmi et al. [1] in 2020, proposed an analysis to numerically feature radio
heat therapy’s efficacy in curing liver tumors. Zheng [2], in 2020, suggested a model for cancer cells
and their spread in the body. In 2020, Yousef et al. [3] proposed an NTIE model to analyze chest
cancer by regulating nourishment, body protection, and medication. Koziol et al. [4] in 2020 have
proposed an ordinary differential equation model for dynamics of cancer growth. Lestari et al. [5] in
2019, developed an ETM model to study the improvement in cancer cells undergoing chemotherapy.
Weerasinghe et al. [6] in 2019, presented a dynamical model for the explanation of plasticity behavior of
cancer cells. In 2019, Hillen et al. suggested a stochastic model for the spreading of disease in the body.
They also calculate the reproduction number and use mice for their experiments [7]. In 2019, Unni
et al. [8] presented the TNDLMI model to study the change in behavior of tumors due to intake of
medicine by the patient. Malini et al. [9] in 2019 proposed a dynamic model to check the effectiveness
of the drug on cancer cells. Ray et al. [10] in 2019, developed guided machine learning techniques
for classifying benign and malignant breast cancers. Oyelami [11], in 2018, proposed a mathematical
model for cancer cells and the immunization response of the body. In 2018, Alameddine [12] presented
a simplified and latest study tool to model cancer systems. In 2016, Baar et al. [13] presented modeling
of the malignant tumor by randomizing effect. Pang et al. [14] in 2016, showed a dynamic model
for target cancer cells by using different techniques of treatment. Xu et al. [15] in 2016, proposed a
delay model for cancer cells and their treatment with therapy. In 2016, Lorenzo [16] presented Prostate
tumor development forming and simulation at the tissue level. Watanabe et al. [17] in 2016, suggested
a mathematical model study the cancer lump progress with ray’s effect. In 2014, Rihan et al. [18]
developed a TCET model to study cancer-protected response DDM model through chemotherapy
and ideal switch. Chaplain et al. [19] in 2013, investigated a mathematical model for the explanation
of the attack of cancer cells on normal cells. Allegretto [20], in 2006, proposed a mathematical model
of cancer unchanging in time. Some well-known models related to cervical cancer and many more are
presented in [21–26]. The mathematical techniques are studied to analyze the transmission of infectious
diseases [27–36]. Mathematical modeling is one of the essential branches of science to explore real-
world problems. In recent history, coronavirus, influenza, dengue, and many more infectious diseases
modeled and predicted possible outcomes to overcome them. In the same, we study the dynamics of
the cell population in the human body, which means how a cell can be destroyed or save from the
infection or which therapy is suitable to control the condition of cells. So, we decided to model the
cancer disease analytically and by using computational algorithms. The rest of the paper is organized
as follows. In Sections 2 to 4, we investigate thme dynamic analysis of the model. Section 5 explains the
well-known numerical methods used in this model. The last two sections present the results, discussion,
and conclusion.
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2 Formulation of Cancer Model

For any instant t, the cancer model’s parameters and variables listed are as follows: x(t): shows
the cancer cells that haven’t been infected, y(t): symbolizes infected cancer cells, v(t): represents free
viral cells, z(t): represents immune cells, λ: represents the virus’s growth rate, c: exemplifies the carrying
capacity Virus, d : represents the mortality rate, β: represents the rate of oncolytic viral infection in
cancer cells, δ: represents the number of infected cells, b: represents particles fired at a burst size, γ :
represents the pace at which free virus cells disintegrate, a: shows the fraction of cells that are not
infected, it also indicates immunity, μ: reflects immunity in the number of infected cells, k: shows the
rate at which a free virus with impunity is eliminated, h2: shows the pace at which an exemption, m1:
represents immunity’s rate of stimulation of infected cells, and ρ: represents the rate of immune cell
destruction. The governing equations of the model are as follows:

x′ (t) = r1 − ax(t)v (t) − d1x (t) , t ≥ 0. (1)

y′(t) = ax (t) v (t) − cy (t) z (t) − d1y (t) − by (t) , t ≥ 0. (2)

v′(t) = by (t) − h2y (t) z (t) − d1v (t) − m1v (t) , t ≥ 0. (3)

z′(t) = cy (t) z (t) + h2y (t) z (t) − d1z (t) + m1v (t) , t ≥ 0. (4)

2.1 Properties

The feasible region of the model is defined as ϒ = {(x, y, z, v) εR4
+ : N(t) ≤ r1

d1
, x(t) ≥ 0, y(t) ≥ 0,

v(t) ≥ 0, z(t) ≥ 0}, N = x + y + v + z.

Lemma 1: The initial values {x (0) , y (0) , z (0) , v (0)} ∈ ϒ , then the solution set {x (t) , y (t) , z (t) ,
v (t)} is positive of all t ≥ 0.

Proof: From Eq. (1), we have
dx
dt

= r1 − axv − d1x

dx
dt

≥ − (av + d1) x

∫
dx
x

≥ −
∫

(av + d1) dt

x = x (0) e− ∫
(av+d1) ≥ 0

So, x ≥ 0. All other state variables preserve a positive solution, as desired.

Lemma 2: The solution of the model equation in (1)–(4) are bounded in ϒ for all t ≥ 0.

Proof: Firstly, adding the Eqs. (1)–(4) as follows:

N = x + y + v + z, (x, y, z, v) εϒ .

dN
dt

≤ r1 − d1N.
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N ≤ r1

d1

+ N0e−d1t.

where N0 is the initial condition of N,

So, limt→∞SupN(t) ≤ r1
d1

. This show that 0 ≤ N ≤ r1
d1

and N = x + y + v + z, then all variable is
bounded in ϒ .

2.2 Equilibria

There are two steady states of Eqs. (1)–(4), as follows: cancer-free equilibrium (CFE) =
(x1, y1, v1, z1) = (

r1
d1

, 0, 0, 0), and cancer existing equilibrium (CEE) = (x∗, y∗, v∗, z∗),

where x∗ = r1

av∗ + d1

, y∗ = ar1v∗

(av∗ + d1)
, v∗ = h2βz∗ − bβ

d1 + m1

, z∗ = m1γ

cβ + h2β − d1

.

3 Reproduction Number (R0)

The next-generation matrix method is presented for the system (1–4). We calculate two types of
matrices like transmission and transition after assuming the cancer-free equilibrium as follows:

A =
⎡
⎢⎣ 0

ar1

d1

0

0 0 0
0 0 0

⎤
⎥⎦ , B =

⎡
⎣ d1 + b 0 0

−b d1 + m1 0
0 −m1 d1

⎤
⎦ .

AB−1 =

⎡
⎢⎢⎣

abr1

d1(d1 + b)(d1 + m1)

ar1

d1(d1 + m1)
0

0 0 0
0 0 0

⎤
⎥⎥⎦ .

∣∣AB−1 − λ
∣∣ =

∣∣∣∣∣∣∣∣
abr1

d1(d1 + b)(d1 + m1)
− λ

ar1

d1(d1 + m1)
0

0 −λ 0
0 0 −λ

∣∣∣∣∣∣∣∣
.

The eigenvalues of the system is as follows:

λ = abr1

d1 (d1 + b) (d1 + m1)
, 0, 0.

The spectral radius of the model is denoted by R0 = abr1

d1(d1 + b)(d1 + m1)
.

4 Local Stability

Theorem 1: The disease-free equilibrium of model (1) to (4) is locally asymptotically stable if the
reproduction number is less than one and unstable if greater than one.
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Proof: To prove the local asymptotically stable cancer-free equilibrium, we take the Jacobian
matrix of the cancer model at cancer-free equilibrium.

Jc

(
r1

d1

, 0, 0, 0
)

=

⎡
⎢⎢⎢⎢⎣

−d1 0 −a
(

r1
d1

)
0

0 −d1 − b a
(

r1
d1

)
0

0 b −d1 − m1 0
0 0 m1 −d1

⎤
⎥⎥⎥⎥⎦ .

where, λ1 = −d1 < 0, λ2 = −d1 < 0.

λ2 + a0λ + a1 = 0.

where a0 = 2d1 + b, a1 = (d1 + b)(d1 + m1) − ba
(

r1
d1

)
.

It is clear that both are a0, a1 > 0, if R0 < 1, thus we have

R0 = abr1

d1(d1 + b)(d1 + m1)
< 1.

So, all eigenvalues are negative. Thus, cancer-free equilibrium is locally stable by using the Routh
Hurwitz criteria of 2nd order.

Theorem 2: If the reproduction number is more significant than one, then the cancer existing
equilibrium of the model Eqs. (1)–(4) is locally asymptotically stable in ϒ .

Proof: The Jacobian matrix at cancer existing equilibrium is as follows:

J (x∗, y∗, v∗, z∗) =

⎡
⎢⎢⎣

−av∗ − d1 0 −ax∗ 0
av∗ −cz∗ − d1 − b ax∗ −cy∗

0 b − h2z∗ −d1 − m1 −h2y∗

0 cz∗ + h2z∗ m1 cy∗ + h2y∗ − d1

⎤
⎥⎥⎦ .

∣∣J (
x∗, y∗, v∗, z∗) − λI

∣∣ =

∣∣∣∣∣∣∣∣
−av∗ − d1 − λ 0 −ax∗ 0

av∗ −cz∗ − d1 − b − λ ax∗ −cy∗
0 b − h2z∗ −d1 − m1 − λ −h2y∗
0 cz∗ + h2z∗ m1 cy∗ + h2y∗ − d1 − λ

∣∣∣∣∣∣∣∣
= 0

λ4 + (A + d1 + F − I − B)λ3 + (AF − AB − AI − d1F − DF + BI − FI − CF − DH)λ2 − (ABI

− ABF − AFI − ACE − ADH + d1BI − d1BF − d1FI − d1I − d1CE − d1DH + BFI + m1G

+ CEI − CGH − CEm1 − DHF + ACE)λ + (ABFI + AGm1 + ACEI − ACGH − ADEm1

− ADHF + BFTd1 + Gd1m1 + d1CEI − CGHd1 − DEm1d1 − DHFd1 − ACEI + ACHG) = 0

And, m0 = 1, m1 = A+d1 +F −I −B, m2 = AF −AB−AI −d1F −DF +BI −FI −CF −DH, m3 =
ABI − ABF − AFI − ACE − ADH + d1BI − d1BF − d1F1 − d1I − d1CE − d1DH + BFI + m1G +
CEI − CGH − CEm1 − DHF + ACE, m4 = ABFI + AGm1 + ACEI − ACGH − ADEm1 − ADHF +
BFTd1 + Gd1m1 + d1CEI − CGHd1 − DEm1d1 − DHFd1 − ACEI + ACHG.

Here, A = av, B = −d1 − b − cy, C = ax, D = −cy, E = b − h2z∗, F = d1 + m1

G = −h2y, H = cz + h2z, I = cy − d1 + h2y.
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By using Routh Hurwitz’s criteria of order 4th,

m0, m1 > 0, m1m2 − m0m3 > 0, (m1m2 − m0m3)(m3) − m1
2m4 > 0, m4 > 0 if RO > 1.

Hence, cancer existing equilibrium (CEE) of the given system (1–4) is locally asymptotically stable.

5 Algorithms

In this section, we present the well-known algorithms like Euler, Runge Kutta, and non-standard
finite difference for the system (1)–(4) as follows:

5.1 Euler Algorithm

The pseudo-code for the Euler algorithm for the system (1)–(4) is as follows:

Begin:

Declare all constants

Set the step size ‘h.’

Declare arrays for x, y, v, z. The arrays should be able to store 2000 values.

Put initial values for x, y, v, z at index 1 of the corresponding arrays.

Index = 2

For t from 0.1 till t < 200

Calculate stage equations

Index = Index + 1

t = t + 0.1

End For

Plot required data

end program.

5.2 Runge-Kutta Algorithm

The pseudo-code for the Runge Kutta algorithm for the system (1)–(4) is as follows:

Begin:

Declare all constants

Set the step size ‘h’

Declare arrays for x, y, v, z. The arrays should be able to store 1000 values.

Put initial values for x, y, v, z at index 1 of the corresponding arrays.

Index = 2

For t from 0.1 till t < 100

Calculate stage 1 equations

Calculate stage 2 equations

Calculate stage 3 equations

Calculate stage 4 equations
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Calculate final stage equations

Index = Index + 1

t = t + 0.1

End For

Plot required data

end program.

5.3 Non-Standard Finite Difference Method

The system (1–4) is described under NSFD method is as follows:

xn+1 = xn + hy
1 + ahvn + hd1

(5)

yn+1 = yn + haxnvn

1 + ahczn + hd1 + hb
(6)

V n+1 = vn + hbyn − hh2ynzn

1 + hd1 + hm1

(7)

zn+1 = zn + hcynzn + hh2ynzn + hm1vn

1 + hd1

(8)

where the time step is represented by h.

5.4 Stability Analysis

Theorem: For any n ≥ 0, the proposed NSFD method is stable if the eigenvalues of the system
(5)–(8) lie in the unit circle for R0 < 1.

Proof: Consider the right-hand sides of the system of Eqs. (5)–(8) as functions A, B, C and D is
as follows:

F = xn + hγ

1 + ahvn + hd1

, G = yn + haxnvn

1 + hczn + hd1 + hb
, H = vn + hbyn − hh2ynzn

1 + hd1 + hm1

,

J =zn + hcynzn + hh2ynzn + hm1vn + hσ4zn
Bn

1 + hd1

.

The Jacobian Matrix for the system (5)–(8) is as follows:

J (x, y, v, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F
∂x

∂F
∂y

∂F
∂v

∂F
∂z

∂G
∂x

∂G
∂y

∂G
∂v

∂G
∂z

∂H
∂x

∂H
∂y

∂H
∂v

∂H
∂z

∂J
∂x

∂J
∂y

∂J
∂v

∂J
∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The Jacobian matrix at cancer-free equilibrium (CFE) =
(

r1
d1

, 0, 0, 0
)

is as follows:

J
(

r1

d1

, 0, 0, 0
)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1 + hd1

0 −ha(
r1

d1

+ hr1) 0

0
1

1 + hd1 + hb

ha
(

r1

d1

)
1 + hd1 + hb

0

0
hb

1 + hd1 + hm1

1
1 + hd1 + hm1

0

0 0 0
1

1 + hd1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣
(

r1

d1

, 0, 0, , 0
)

− λ

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1 + hd1

0 −ha(
r1

d1

+ hr1) 0

0
1

1 + hd1 + hb

ha(
r1

d1

)

1 + hd1 + hb
0

0
hb

1 + hd1 + hm1

1
1 + hd1 + hm1

0

0 0 0
1

1 + hd1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

λ1 =
∣∣∣∣ 1
1 + hd1

∣∣∣∣ < 1, λ2 =
∣∣∣∣ 1
1 + hd1

∣∣∣∣ < 1,

|(D1)| =

∣∣∣∣∣∣∣∣∣∣

(
1

1 + hd1 + hb

) ha(
r1

d1

)

1 + hd1 + hb

hb
1 + hd1 + hm1

1
1 + hd1 + hm1

∣∣∣∣∣∣∣∣∣∣
= 0,

P1 = Trace of J =
(

1
1 + hd1 + hb

)
+ 1

1 + hd1 + hm1

,

P2 = Determinant of J =
(

1
1 + hd1 + hb

(
1

1 + hd1 + hm1

))
−

(
ha(

r1
d1

)

1 + hd1 + hb

)(
hb

1 + hd1 + hm1

)
.

Lemma 3: For the quadratic equation λ2 − P1λ + P2 = 0, |λi| < 1, i = 1, 2, 3, if and only if the
following conditions are satisfied:

(i). 1 + P1 + P2 > 0.

(ii). 1 − P1 + P2 > 0.

(iii). P2 < 1.
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5.5 Numerical Results

In this section, we investigate the numerical results for the said model with the help of computer
software and the scientific literature presented in Tab. 1 as follows:

Table 1: Values of parameters

Parameters Values

ri 0.5
a 5.1
h1 0.36
d1 0.5
c 3.048 (CFE)

5.048 (CEE)
b 0.22
h2 0.016
m1 0.6
m2 0.29
n1 0.036

(a) (b)

Figure 1: Combined graphical behaviors for CFE and CEE at different subpopulations of the cancer
disease (a) Subpopulations for CFE at any time t (b) Subpopulations for CEE at any time t
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(a) (b)

Figure 2: Euler method for the behavior of subpopulations of cells at different time-step sizes (a) Sub-
populations of cells at h = 0.1 (b) Sub-populations of cells at h = 1

(a) (b)

Figure 3: Runge Kutta method for the behavior of subpopulations of cells at different time-step sizes
(a) Sub-populations of cells at h = 0.1 (b) Sub-populations of cells at h = 1
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(a) (b)

Figure 4: NSFD method for the behavior of subpopulations of cells at different time-step sizes (a)
Sub-populations of cells at h = 0.01 (b) Sub-populations of cells at h = 100

5.6 Comparison Section

(a) (b)
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(c) (d)

Figure 5: Combined graphical behaviors of NSFD with Euler and Runge Kutta methods at different
time-step sizes (a) Infective cancer cells for CEE at h = 0.1 (Euler and NSFD) (b) Infective cancer
cells for CEE at h = 2 (Euler and NSFD) (c) Infective cancer cells for CEE at h = 0.1 (Runge Kutta
and NSFD) (d) Infective cancer cells for CEE at h = 2 (Runge Kutta and NSFD)

6 Results and Discussion

We present the solution to the system (1–4) via Matlab ordinary differential equations-45 at cancer-
free and cancer existing equilibria of the model in Figs. 1a, 1b. Also, the solutions of the system via
the Euler method at different time step sizes are in Figs. 2a, 2b. The system’s answer via the Runge
Kutta method at different time step sizes is in Figs. 3a, 3b. In the same, we plot the solutions of the
system (5–8) via the NSFD method in Figs. 4a, 4b. The comparison section in Figs. 5a–5d investigates
numerical methods such as Euler and Runge Kutta with NSFD approximations. Here, we observe that
Euler and Runge Kutta show negativity and unboundedness and violate the dynamical properties of
the model. However, our proposed numerical approximation is reliable, inexpensive, independent of
the time step, and an efficient computational method.

7 Conclusion

We here investigated analyses of cancer-like disease via well-known numerical methods. Numerical
results of epidemic models are an authentic tool to cross-check the dynamical analysis of the model.
For the sake of numerical analysis, Euler, Runge Kutta, and the non-standard finite difference methods
(NSFD) are presented. Throughout the study, we observe that Euler and Runge Kutta are time-
dependent techniques. Even when we increase the time step duration, these methods violate such
dynamic properties as positivity, boundedness, and dynamical consistency. However, NSFD is always
concurrent and independent of the size of the time step. Everyone could observe these things from the
comparison section. Could extend this idea to different types of disease modeling.
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