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Abstract: Recent nanotechnology advancements have created a remarkable platform for the 
development of a better performance of ultrahigh coolant acknowledged as nanofluid for numerous 
industrial and engineering technologies. The current study aims to examine the boundary-layer 
cross-flow of Williamson fluid through a rotational stagnation point towards either a shrinking or 
stretching permeable wall incorporated by a hybrid nanofluid. The shape factors along with the 
radiation effect are also taken into account. The contained boundary layers are the type of 
stream-wise by shrinking/stretching process along with the sheet. Employing the suitable 
transformations, the partial differential equations (PDEs) are transmuted to similarity (ordinary) 
differential equations (ODEs). The transmuted system of ODEs is worked out by using a built-in 
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package bvp4c in MATLAB for distinct values of pertaining parameters. Dual (first and second 
branch) outcomes are found for the shrinking surface. The results suggest that the inclusion of hybrid 
particles uplifts the drag force as well as the heat transfer in both solutions. In addition, the 
Weissenberg number accelerates the separation. Moreover, the effect of suction permits the friction 
factor and heat transfer to improve significantly at the porous shrinking/stretching sheet of hybrid 
nanofluid. 

Keywords: Williamson fluid; cross-flow; hybrid nanofluid; thermal radiation; shrinking/stretching 
surface 
Mathematics Subject Classification: 76D05, 76A02, 65L10 
 

1. Introduction 

A significant value has been bestowed to the problems containing non-Newtonian fluids 
because it has a wide range of applications in industries and engineering fields. It is frequently 
experienced in real-life problems, which captivated remarkable attraction from scholars owing to 
their various significances in the fields like polymer melts, drilling mud, blood polymers, fruit juices, 
certain greases and oils, suspensions, etc. It is intricate to propose one model that contains all 
rheological properties of non-Newtonian fluids. Different models like Maxwell fluid [1], Burger’s 
fluid [2] were suggested by scholars to overcome these difficulties. Williamson fluid model is one of 
the best models among these non-Newtonian fluids because it involves both maxima as well as 
minimum viscosities that provide better results for pseudo-plastic fluids. This model was proposed 
in 1929 by Williamson [3], which explains the viscous flow equations for pseudo-plastic fluids and 
also results verified experimentally. Nadeem et al. [4,5] analyzed 2D flow conveying Williamson 
fluid over linear as well as exponential stretching sheets and utilized HAM to obtain a series 
solution. Khan and Khan [6] hired the HAM procedure to find the result of Williamson fluid. Hayat 
et al. [7] inspected the impact of the magnetic field on the unsteady flow of Williamson fluid through 
a permeable plate and observed that the Williamson parameter decelerates the velocity gradient. The 
impact of chemical reaction and features of heat transport of Williamson fluid over a stretching 
surface with nanofluid was scrutinized by Krishnamurthy et al. [8]. Kumar et al. [9] studied 3D flow 
conveying Prandtl fluid through a heated Riga surface subject to a chemical reaction. Zaib et al. [10] 
explored the flow of time dependent function comprising nanofluid of Williamson fluid over a heated 
porous shrinking surface and found dual solutions for decelerated flow. Khan et al. [11] found 
multiple solutions of nanofluid flow comprising Williamson fluid over a moving thin needle with 
erratic radiation. Qureshi [12] inspected the entropy generation on a steady flow of Williamson fluid 
conveying the water-based TiO2 nanoparticle via a slippery surface with radiation and magnetic 
effects. Recently, Raza et al. [13] inspected the impact of thermal radiation on the fluid flow and 
phenomena of heat transfer induced by Williamson fluid via a curved surface. They establish that the 
velocity distribution declines due to the Williamson parameter, whereas the temperature of fluid uplifts. 

In recent times, hybrid nanofluids have been extensively utilized by several scholars and 
researchers because hybrid nanofluids have superior thermal conductivity. Hybrid nanofluid is 
generated by either scattering dissimilar nanomaterials in composite or blend form. Hybrid nanofluid 
is utilized in several engineering and industrial fields like naval structures, nuclear safety, pharmaceutical, 
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cooling in modern electronic devices, heat transport, and drug reduction. Jana et al. [14] compared 
the enhancement of thermal conductivity of hybrid and single nano-additives. Similar research has 
been conducted by Jha and Ramaprabhu [15] through employing hybrid nanofluid as well as 
MWCNT and observed that thermal conductivity drastically increased compared to single nanofluid. 
The properties of HN data experimentally as a mechanism of coolant was scrutinized by Madhesh 
and Kalaiselvam [16], whereas Devi and Devi [17,18] conducted an analysis mathematically with 
water-based Cu-Al2O3 hybrid nanofluid and heat transport via a stretched sheet. In addition, the 
hybrid nanofluid has been extensively reviewed by several scholars [19–23]. Recently, 
Sheikholeslami et al. [24] inspected the impacts of radiation and Lorentz forces conveying hybrid 
nanofluid in a non-Darcy medium and utilized the CVFEM technique to obtain the solution. The 
steady flow containing hybrid carbon nanotubes over a stretched permeable cylinder with magnetic 
consequence is examined by Gholinia et al. [25]. Khan et al. [26] studied the mixed convection flow 
containing ethylene-based HN over a vertical shrinking or stretching cylinder and stability analysis 
was performed. Waini et al. [27] used the magnetic influence on a steady flow with features of heat 
transport comprising HN through a shrinking/stretching wedge and found dual solutions. Wakif et al. [28] 
explored the surface roughness and radiation effects of conveying water-based copper-oxide and 
alumina nanoparticles over an infinite horizontal enclosure. The stagnation point flows over a 
stretching/shrinking surface in a hybrid nanofluid with various physical situations were considered 
by Zainal et al. [29] and Waini et al. [30], where the existence of dual solutions was reported. Bhatti 
and Sara [31] discussed the motion of the peristaltic flow of a Carreau fluid comprising a hybrid 
nanofluid through magnetic effects. They observed that targeting drug delivery is an accurate and 
effective way for drug delivery. The features of hybrid nanofluid with heat transfer unruffled by 
ZnO-Al2O3 particles with timed-dependent magnetic field were inspected by Zhang et al. [32]. They 
presented double solutions for the time-dependent parameter. Zhang et al. [33] examined the 
dynamics of magneto nanofluid through an erratic permeable stretchable sheet with wall 
transpiration and Arrhenius chemical reaction. They found that the thermophoretic parameter 
elevates nanoparticle concentration as well as temperature. Recently, Bhatti et al. [34] investigated 
the magnetic flow of a non-Newtonian nanofluid through circular rotating plates saturated in a 
porous media with motile organisms and utilized the DTM-Pade technique to find the numerical results. 

The exploration of cross-flow was instigated for a time after the pioneering investigations 
through the papers by Prandtl [35] and Blasius [36] comprising the laminar flow from a flat surface 
by tinny viscosity. Prandtl [37] is the first apparently to report the outcome for homogeneous 
pressure gradient flow over a yawed finite cylinder. Cooke and Hall [38] and Eichelbrenner [39] 
respectively reviewed numerous theoretical as well as numerical techniques development for 
working out generalized 3D boundary-layer flows. Weidman [40] scrutinized boundary-layer through 
cross flows compelled via transverse motions of the plate. Recently, Roşca et al. [41] extended the 
work of Weidman by considering rotated stagnation point flow conveying hybrid nanofluid through a 
porous shrinking or stretching surface. 

Consideration of thermal radiation adds a new dimension to boundary layer flow and heat 
transfer. The effect of radiative heat transfer on dissimilar flows is critical in high-temperature 
processes and space technology. Thermal radiation can have a substantial impact on heat transfer and 
distribution of temperature in the boundary layer flow of a participating fluid at high temperatures. 
Significant efforts have been made in recent years to achieve better control over the rate of cooling. 
Viskanta and Grosh [42] studied the thermal radiation effects on the flow and heat transfer past a 
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wedge in emitting and absorbing media. The impact of thermal radiation on the heat transfer across 
the stretchable sheet was investigated by Elbashbeshy [43]. El-Aziz [44] and Hayat et al. [45] 
considered the consequence of radiation (RN) on the time-dependent flow and heat transfer past a 
stretched sheet. Zaib and Shafie [46] inspected the impression of RN on the time-dependent magneto 
flow past a stretched sheet with Joule heating, thermal stratification, and Hall current. Recently, 
Khan et al. [47] reviewed the RN effect on the blood flow of Williamson fluid induced by nanofluid 
past porous curved surface and present dual solutions. 

Researchers have been studying the model of BLF and heat transfer over a shrinking/stretching 
surface (SN/ST) for several eras of time. This is because of its numerous and significant applications 
in technological and industrial queries such as wire drawing, aerodynamic extrusion of plastic sheets, 
hot rolling, metal spinning and so on. Sakiadis [48] pioneered the steady 2D viscous fluid flow past a 
moving solid continuous surface. Crane [49] became the first who investigate the steady 2D flow 
through a linearly stretchable sheet and discover the similarity outcome in analytical forms. 
Moreover, the emergence of an unconscious category of flow as a result of SN when studied the 
pattern of a liquid film on a time-dependent stretchable sheet was innovated by Wang [50]. This flow 
towards a SNS is effectively a reverse flow as argued by Goldstein [51]. Miklavčič and Wang [52] 
stated that transparent of mass is needed to maintain flow past a SNS. The flow stimulated by a SNS 
exhibits physical processes that differ significantly due to the onward elongating flow addressed by 
Fang et al. [53]. Since then, numerous scholars [54–56] recently inspected the stretching/shrinking 
flows with different aspects. 

It is observed from current literature that the cross-flow induced by non-Newtonian fluid past a 
stretching/shrinking sheet is not yet investigated near a rotating stagnation point in the presence of 
shape factors. Thus, the novelty of the problem is to inspect the cross-flow of Williamson fluid 
conveying hybrid nanofluid over a shrinking/stretching sheet with radiation effect. The similarity 
multiple outcomes were found for a certain range of shrinking/stretching parameters. It is believed that 
the achieved numerical solutions employing the current suggested model for hybrid nanofluid set a 
novel scope for scholars in the analysis of heat transfer. 

2. Fluid model 

The Cauchy stress tensor 𝑆ଵfor the Williamson fluid is defined as 

𝑆ଵ = 𝜏஺ − 𝑝𝐼,           (2.1) 

𝜏஺ = ቀ
ఓబିఓ∞

ଵି௰భఊ̈
+ 𝜇∞ቁ 𝐴ଵ,         (2.2) 

where 𝜏஺, 𝜇଴, 𝜇∞ signify as extra stress tensor, limiting viscosity at zero and infinite shear stresses, 
respectively. 𝛤ଵ > 0 represents the time, 𝐴ଵ indicates the first Rivlin-Erickson tensor, and 𝛾̈is given as 

𝛾̈ = ට
ଵ

ଶ
𝜋, 𝜋 = trace(𝐴ଵ

ଶ).         (2.3) 

Here, we discuss the case for which 

𝜇∞ = 0, Γଵ𝛾̈ < 1. 

We get 
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𝜏஺ =
ఓబ

ଵି௰భఊ̈
𝐴ଵ          (2.4) 

or 

𝜏஺ = 𝜇଴(1 + 𝛤ଵ𝛾̈)𝐴ଵ.         (2.5) 

3. Mathematical modeling of the flow problem 

A two-dimensional incompressible, viscous, and laminar BL cross-flow and heat transfer of a 
Williamson hybrid nanofluid is considered over a porous shrinking/stretching surface. In existing 
scrutiny, the various shape factors, as well as thermal radiation are taken into account. The HN is 
made up of two changed nanoparticles (copper oxide CuO and titanium dioxide TiO2) mixed together 
with a conventional base fluid (water H2O). The properties of the hybrid nanofluid are taken to be in 
thermal equilibrium. The summarized picture of the flow configuration model along with the 
nanoparticles shape factor in the Cartesian coordinate system is shown in Figure 1, where the 
coordinate 𝑥 −axis is run along the surface of the sheet and the coordinate 𝑦 −axis is normal to it. 
The schematic diagram is such that the flow is protracted infinite in the coordinate 𝑧 −axis 
(span-wise) and thus, it is completely established. So we look for multiple outcomes with velocity 
profiles free of the coordinate 𝑧 −axis. As the surface of the sheet is stretched and contracted in the 
positive and negative 𝑥 −directions with a variable velocity such as 𝑢௪(𝑥) = 𝛽஺

ଶ/ଷ𝜈஻௙
ଵ/ଷ

𝑥ଵ/ଷ𝜆஺, where 

𝜆஺ is the uniform stretching/shrinking parameter. Moreover, the surface of the sheet is stretching and 
shrinking owing to the positive and negative values of the parameter 𝜆஺, respectively, while the zero 
value corresponds to the static sheet. 

 

Figure 1. Physical sketch of the flow problem along with the coordinate system. 

Additionally, supposed the non-uniform velocity of the free-stream or ambient from the sheet 
surface (inviscid flow) is represented by (Weidman et al. [57]) 

𝑢∞(𝑦) = 𝛽஺𝑦,          (3.1) 

where 𝛽஺ signifies an arbitrary positive constant. Also, supposed that 𝑣௪(𝑥) corresponds to the 
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transpiration or permeable velocity while 𝑣௪(𝑥) < 0 stands for injection or blowing and 𝑣௪(𝑥) > 0 
stands for suction, respectively. The surface constant temperature and temperature of the far-field 
(inviscid flow) are denoted by 𝑇௪ and 𝑇∞, respectively. Under the aforementioned stated proviso, 
the requisite governing equations for the considered heat and fluid flow dynamics are the following 
as follow [11,12]: 

డ௨

డ௫
+

డ௩

డ௬
= 0,           (3.2) 

𝜌ு௕௡௙ ቀ𝑢
డ௨

డ௫
+ 𝑣

డ௨

డ௬
ቁ = 𝜇ு௕௡௙ ቀ

డమ௨

డ௬మ
+ √2𝛤ଵ

డమ௨

డ௬మ

డ௨

డ௬
ቁ,       (3.3) 

𝑢
డ்

డ௫
+ 𝑣

డ்

డ௬
=

௞ಹ್೙೑

൫ఘ௖೛൯
ಹ್೙೑

డమ்

డ௬మ
−

ଵ

൫ఘ௖೛൯
ಹ್೙೑

డ

డ௬
(𝑞௥஺),       (3.4) 

For the current problem, the physical boundary conditions [57,58] are 

𝑢 = 𝜆஺𝑢௪(𝑥), 𝑣 = 𝑣௪(𝑥), 𝑇 = 𝑇௪ at 𝑦 = 0, 

డ௨

డ௬
→

డ௨∞

డ௬
, 𝑇 → 𝑇∞ as 𝑦 → ∞.        (3.5) 

Here, the components of velocity in the corresponding coordinates of 𝑦 and 𝑥 are characterized with 
𝑣 and 𝑢, respectively, 𝛤ଵ is the time constant and 𝑇 is the temperature of the fluid. Additionally, 
൫𝜌𝑐௣൯

ு௕௡௙
 signifies the heat capacity of hybrid nanofluid, 𝑘ு௕௡௙ signifies the thermal conductivity of 

the hybrid nanofluid, 𝜌ு௕௡௙ signifies the density of the hybrid nanofluid, and 𝜇ு௕௡௙ is the dynamic 
viscosity of the hybrid nanofluid. 

In the aforementioned governing equations, the expression and constraints for the hybrid 
nanofluid are demarcated as (Nisar et al. [58] and Khan et al. [59]): 

𝛼ு௕௡௙ =
௞ಹ್೙೑

൫ఘ௖೛൯
ಹ್೙೑

,
൫ఘ௖೛൯

ಹ್೙೑

൫ఘ௖೛൯
ಳ೑

= 𝜑஼௨ை ቆ
൫ఘ௖೛൯

಴ೠೀ

൫ఘ௖೛൯
ಳ೑

ቇ + 𝜑்௜ைమ
ቆ

൫ఘ௖೛൯
೅೔ೀమ

൫ఘ௖೛൯
ಳ೑

ቇ + ൫1 − 𝜑஼௨ை − 𝜑்௜ைమ
൯,

ఓಹ್೙೑

ఓಳ೑
=

ଵ

൫ଵିఝ಴ೠೀିఝ೅೔ೀమ
൯

మ.ఱ ,
ఘಹ್೙೑

ఘಳ೑
= 𝜑஼௨ை ൬

ఘ಴ೠೀ

ఘಳ೑
൰ + 𝜑்௜ைమ

൬
ఘ೅೔ೀమ

ఘಳ೑
൰ + ൫1 − 𝜑஼௨ை − 𝜑்௜ைమ

൯,

𝑘ு௕௡௙ =
௞೅೔ೀమ

ା(ெିଵ)௞೙೑ି(ெିଵ)ఝ೅೔ೀమ
൫௞೙೑ି௞೅೔ మ

൯

௞೅೔ೀమ
ା(ெିଵ)௞೙೑ାఝ೅೔ మ

൫௞೙೑ି௞೅೔ మ
൯

,

where𝑘௡௙ =
௞಴ೠೀା(ெିଵ)௞ಳ೑ି(ெିଵ)ఝ಴ೠೀ൫௞ಳ೑ି௞಴ೠೀ൯

௞಴ೠೀା(ெିଵ)௞ಳ೑ାఝ಴ೠೀ൫௞ಳ೑ି௞಴ೠೀ൯
𝑘஻௙ ,

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

(3.6) 

where 𝑐௣ the specific heat at constant pressure, 𝑘஻௙, 𝜇஻௙, 𝜌஻௙ and 𝜎஻௙ stand for the respective 
thermal conductivity of the base fluid, the dynamic viscosity of the base fluid, the density of the base 
fluidand electrical conductivity of the base fluid. The subscript 𝐵𝑓, CuO and TiOଶ correspond the 
respective quantities of the base fluid, copper oxide (CuO) nanoparticles and titanium dioxide (TiO2) 
nanoparticles. Therefore, Table 1 encloses the data of the working pure fluid and two distinct 
nanomaterials (copper oxide (CuO) and titanium dioxide (TiO2)). Moreover, the various shape factor 
coefficient and distinct shapes of nanoparticles are highlighted in Table 2. 
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Table 1. Physical data of (TiO2-CuO/water) hybrid nanoparticles (Qureshi et al. [12]). 

Physical Characteristics Water CuO TiOଶ 
𝑐௣(𝐽/𝑘𝑔𝐾) 4179 540 686.2 
𝜌(𝑘𝑔/𝑚ଷ) 997.1 6510 4250 
𝑘(𝑊/𝑚𝐾) 0.613 18 8.9528 

𝑃𝑟 6.2 - - 

Table 2. The coefficient of shape factor (𝑀) for several dissimilar nanoparticles shapes 
(Qureshi et al. [12] and Chu et al. [60]). 

Types of Nanoparticles Shape Shape Factor 

Sphere 

 

3.0 

Cylinders 

 

4.9 

Blades 

 

8.6 

Lamina 

 

16.1576 

In energy equation (3.4), the last term represents the thermal radiation, where 𝑞௥஺ identifies the 
radiative heat flux and it is demarcated by exercising the Rosseland estimation [12], we have 

𝑞௥஺ = −
ଵ଺ఙಲ

∗

ଷ௞ಲ
∗

డ்ర

డ௬
,         (3.7) 

where 𝑘஺
∗ corresponds to the coefficient of mean absorption and 𝜎஺

∗ called the Stefan-Boltzmann 
constant. Now employing the Taylor series for the term of (𝑇)ସ at a position 𝑇∞ and ignoring the 
higher order terms in approximation, which can take place the following final form as follow: 

𝑇ସ ≈ −3𝑇∞
ସ + 4𝑇∞

ଷ𝑇.         (3.8) 
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In the existing problem to straightforward further our model analysis by considering the 
subsequent non-dimensional variables (Weidman et al. [57]): 

𝜉 = ൫𝛽஺/𝜈஻௙൯
ଵ/ଷ 𝑦

𝑥ଵ/ଷ
, 𝑢 = 𝛽஺

ଶ/ଷ𝜈஻௙
ଵ/ଷ

𝑥ଵ/ଷ𝑓ᇱ(𝜉), 𝜃(𝜉) =
𝑇 − 𝑇ஶ

𝑇௪ − 𝑇ஶ
, 

𝑣 = −
ఉಲ

భ/యఔಳ೑
మ/య

ଷ௫భ/య
[2𝑓(𝜉) − 𝜉𝑓′(𝜉)].        (3.9) 

Now the primes denote derivatives with respect to the pseudo-similarity variable 𝜉 and the 
non-uniform velocity at the porous shrinking/stretching surface of the sheet is demarcated as: 

𝑣௪(𝑥) = −
ଶ

ଷ
൬

ఉಲఔಳ೑
మ

௫
൰

భ

య

𝑆஺.        (3.10) 

Here, 𝑆஺ represents the factor of mass flux through 𝑆஺ > 0 and 𝑆஺ < 0 correspond to suction and 
blowing, respectively, whereas 𝑆஺ = 0 used for an impermeable surface of the sheet. 

Now utilizing the similarity transformations equation (3.9) into governing equations (3.2)–(3.4), 
where the continuity equation (3.2) is fully verified while the other requisite equations take place the 
following dimensionless form: 

3
ఓಹ್೙೑/ఓಳ೑

ఘಹ್೙೑/ఘಳ೑
(1 + 𝑊𝑒஺𝑓′′)𝑓′′′ + 2𝑓𝑓′′ − 𝑓′ଶ = 0,    (3.11) 

ଷ

௉௥൫ఘ௖೛൯
ಹ್೙೑

/൫ఘ௖೛൯
ಳ೑

ቀ𝑘ு௕௡௙/𝑘஻௙ +
ସ

ଷ
𝑅஺ௗቁ 𝜃′′ + 2𝑓𝜃′ = 0,   (3.12) 

with the subjected BCs: 

𝑓(0) = 𝑆஺, 𝑓′(0) = 𝜆஺, 𝜃(0) = 1,

𝑓′′(∞) → 1, 𝜃(∞) → 0.
ൠ      (3.13) 

According to Weidman et al. [57], for 𝛼 = 1, Eq (6.1) is the same as Eq (3.11) when 𝜑்௜ைమ
=

𝜑஼௨ை = 0 and 𝑊𝑒஺ = 0, while Eq (3.12) has not been implemented by [57]. Also, the involvement 
of dimensionless constraints in Eqs (3.11) and (3.12) are namely called the Weissenberg parameter, 
Prandtl number and radiation parameter. These parameters are mathematically expressed as 

𝑊𝑒஺ = √2𝛽஺𝛤ଵ,  𝑃𝑟 =
ఔಳ೑

ఈಳ೑
 and 𝑅஺ௗ =

ସఙಲ
∗

∞்
య

௞ಲ
∗ ௞ಳ೑

.    (3.14) 

The physical quantities of engineering practical interest are the shear stress and rate of heat 
transfer which are demarcated as follows:

 
𝐶௙ =

ఓಹ್೙೑

ఘಳ೑௨ೢ
మ ൤

డ௨

డ௬
+

௰భ

√ଶ
ቀ

డ௨

డ௬
ቁ

ଶ
൨

௬ୀ଴
, 𝑁𝑢௫ =

௫

௞ಳ೑(்ೢ ି ∞்)
ቆ−𝑘ு௕௡௙ ቀ

డ்

డ௬
ቁ

௬ୀ଴
+ (𝑞௥஺)௬ୀ଴ቇ.  (3.15) 

Utilizing Eq (3.9) into Eq (3.15), one obtains the following dimensionless form as 

𝐶௙ 𝑅𝑒௫
ଵ/ଶ

=
ఓಹ್೙೑

ఓಳ೑
ቂ𝑓ඁඁ(0) +

ௐ௘ಲ

ଶ
𝑓ඁඁଶ(0)ቃ , 𝑅𝑒௫

ିଵ/ଶ
𝑁 𝑢௫ = − ൬

௞ಹ್೙೑

௞ಳ೑
+

ସ

ଷ
𝑅஺ௗ൰ 𝜃 ඁ(଴).   (3.16) 

Finally, the term 𝑅𝑒௫ =
௫௨ೢ

ఔಳ೑
 indicates the local Reynolds number. 
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4. Numerical technique 

This portion shows the solution procedure of considered flow and analysis of heat transfer 
suspended HN. After utilizing the self-similarity transformations (3.9), the model requisite equations 
are bounded in the form of highly nonlinear ordinary differential equations (3.11) and (3.12) along 
with the boundary conditions (3.13). These equations are solved numerically using a built-in function 
called bvp4c accessible in a MATLAB software (see Shampine et al. [61,62], Chu et al. [63]). It 
should be revealed that this bvp4c package is set up based on the finite difference scheme, which is 
additionally highlighted via the three-stage Lobatto IIIA formula. To execute the bvp4c technique, 
the higher third order and second order achievable non-dimensional form of ordinary differential 
equations (ODEs) is altered into a system of first-order ODEs by introducing new variables. By 
working out this procedure, let 

𝑓 = 𝐶ଵ, 𝑓′ = 𝐶ଶ, 𝑓′′ = 𝐶ଷ, 𝜃 = 𝐶ସ, 𝜃′ = 𝐶ହ.      (4.1) 

Now substituting these variables in the achievable highly non-linear dimensionless form of ODE’s 
along with BCs to get the transformed nonlinear ODE’s in first order as follow: 
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⎠

⎟
⎟
⎟
⎞

    (4.2) 

with the initial conditions 

൜
𝐶ଵ(0) = 𝑆஺, 𝐶ଶ(0) = 𝜆஺, 𝐶ସ(0) = 1,

𝐶ଷ(𝜉) → 1, 𝐶ସ(𝜉) → 0 as 𝜉 → ∞.
      (4.3) 

For solving the system of Eq (4.2) along with the respective conditions (4.3), the method 
required initial early guesses at the mesh point. A continuous outcome is obtained using the 
polynomial such as the collective-type formula. The outcome is provided by a fourth-order precision 
set that is equivalently scattered over the spatial intervals where the function is integrated. According 
to many fruitful practices with the subject of boundary layer theory, the limitation at far away (𝜉 → ∞) 
is substituted by the value 𝜉 = 𝜉∞ = 8 and the relative error tolerance is pre-demarcated as 10-6. In 
addition, the error control and the mesh selection are based on the residual of the smooth outcome. 
The beginning mesh has 4 points equal discretized on the interval [0, 𝜉∞ = 8] and then the selection 
of mesh is adjusted automatically via the package of bvp4c. Currently, the problem has dual 
outcomes which mean that the package of bvp4c required two different guesses for branch of stable 
and unstable outcomes. The initial early guess for the branch of upper outcome is simple while the 
guess selection for the branch of lower outcome is quite difficult. According to Merkin et al. [64] and 
Weidman et al. [65], the branch of the upper outcome is physically reliable and stable while the 
branch of the lower outcome is unstable and not physically reliable because the outcome exists only 
for a particular space of the SN/ST parameter. Similar outcomes may arise in other circumstances, 
where the corresponding results may have more practical meaning (see Ridha [66] and Ishak et al. [67]). 
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Finally, for the details and better interpretation of the given numerical scheme a flow chart (Figure 2) 
has also been added. 

To substantiate the validity, accuracy and precision of the considered numerical scheme, the 
results of the shear stress of the given study for the limiting case of the shrinking parameter 𝜆஺ < 0 
have been matched with the consequences of Waini et al. [68]. The numerical outcomes are shown in 
the posited Table 3, which displays an exceptional matching and harmony with the available 
outcomes that give us more assurance that the outcomes accessible in the existing paper are very precise. 

 

Figure 2. Flow chart of the considered numerical solution. 

Table 3. Numerical values of 𝐶௙𝑅𝑒௫
ଵ/ଶ for shrinking parameter 𝜆஺ < 0 in the absence 

of 𝜑஼௨ை, 𝑊𝑒஺, 𝑆஺,  𝜙்௜ைమ
 and 𝑅஺ௗ. 

𝜆஺ 
Waini et al. [68] Current solution 

First branch Second branch First branch Second branch 

-0.1 0.993440 -0.017703 0.99344580 -0.01770245 

-0.2 0.971925 -0.018388 0.97192345 -0.01838765 

-0.3 0.931424 -0.000045 0.93142134 -0.00004467 

-0.4 0.864452 0.044824 0.86445098 0.04482365 

-0.5 0.752585 0.134657 0.75258346 0.13465687 
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Initialization 

Discretization 
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Call bvp4c 

Guess function System of first order 
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Evaluate solution using 
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5. Results and discussion 

This segment of the work demonstrates the two different solution branches for a certain range of 
the shrinking parameter 𝜆஺. Results are bounded in the form of various pictures for the water-based 
copper oxide-titanium dioxide hybrid nanofluid from Figures 3–17 owing to the impact of various 
involved physical parameters like volume fractions of nanoparticles 𝜑஼௨ை  and 𝜑்௜ைమ

, suction 
parameter 𝑆஺ , Weissenberg number 𝑊𝑒஺  and radiation parameter 𝑅஺ௗ  on velocity profile, 
temperature distribution, shear stress 𝑓′′(𝜉) in the whole boundary layer region, the skin friction and 
rate of heat transfer. For the computation, we have fixed the default values of the constraint 
parameter throughout the manuscript are the following such as 𝜑஼௨ை = 0.025, 𝜑்௜ைమ

= 0.035, 
𝑆஺ = 2.0, 𝑊𝑒஺ = 0.5, 𝑀 = 3.0 and 𝑅஺ௗ = 5.0. The value of the Prandtl number is taken to be 6.2. 
Following the whole computations, we observed that the impact of the shape factors on the gradients 
and velocity profiles are very diminishing. Therefore, we have drawn only one figure for the 
influence of various shape factors on temperature profiles while the rest of the figures were prepared 
for the case of the sphere 𝑀 = 3.0. 

Figure 3 illustrates the effect of the different shape factors 𝑀 and mass suction 𝑆஺ on the 
dimensionless temperature against the pseudo-similarity variable 𝜉. With an increase in 𝑆஺ and 𝑀, 
the solution in the upper solution branch decreases, while the solution increases in branch of second. 
Furthermore, solutions in the lower branch for the temperature are higher for the shape factor of 
lamina 𝑀 = 16.1576 and minimum for the shape factor of the cylinder 𝑀 = 4.9, while the reverse 
behavior is noticed in the upper branch. More precisely, the temperature profile (see Figure 3), the 
individual impact of shape factors can upsurge the TCN and improve the heat transfer rate which 
gives confidence that the profiles of temperature are developed higher. 

 

Figure 3. Effect of 𝑆஺ and 𝑀 on 𝜃(𝜉) when 𝜑ଵ = 0.025,  𝜑ଶ = 0.035, 𝑊𝑒஺ = 0.5,

𝜆஺ = −2, 𝑅஺ௗ = 1.5. 
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Figures 4 and 5 exhibit the consequences of the parameter 𝑆஺ on dimensionless velocity and 
shear stress 𝑓′′(𝜉) in the entire boundary layer region of the (TiO2-CuO/water) hybrid nanofluid for 
both the first and second solution branches, respectively. From Figure 4, it is observed that the first 
branch solution is decreasing owing to the higher value of 𝑆஺, while the second branch solution 
shows the monotonically increasing behavior. By physical observation, by the continuous rising of 
the impact of the mass suction, as a consequence, the hybrid nanoparticles stick with the surface of 
the sheet and in response, the velocity and momentum boundary layer thickness decreases. Moreover, 
the two distinct solution branches will not asymptotically converge at the condition far away or 
infinity (𝜉 → ∞) because this condition is not the case of the considered appropriate boundary 
condition (3.13). The normalized velocity profiles of the hybrid nanofluid rise for the result of the 
first branch and decrease for the second branch due to the larger values of 𝑆஺ as highlighted in 
Figure 5. The normalized momentum boundary layer is thicker in the region approximately from 0 
to 1.6 and then thinner in the solution region for 𝜉 > 1.6. Also, the first and second solution 
branches hold the convergence criterion at infinity (see Figure 5) for the normalized velocity profiles. 

 

Figure 4. Influence of 𝑆஺ on 𝑓ඁ(𝜉) when 𝜑ଵ = 0.025,  𝜑ଶ = 0.035, 𝑊𝑒஺ = 0.5, 𝜆஺ =

−2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 
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Figure 5. Influence of 𝑆஺ on 𝑓ඁඁ(𝜉) when 𝜑ଵ = 0.025,  𝜑ଶ = 0.035, 𝑊𝑒஺ = 0.5, 𝜆஺ =

−2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 

The impact of 𝑊𝑒஺ on 𝑓′(𝜉) and 𝑓′′(𝜉) distributed over the entire spatial domain for both 
solutions (first and second) branch versus the pseudo-similarity variable 𝜉 is portrayed in respective 
Figures 6 and 7. From these images, it is remarked that the normalized velocity profiles in the branch 
of the first solution are decelerating and escalating in the branch of the second solution as 𝑊𝑒஺ 
increases, while the velocity profile is shrinking abruptly in both branches. Further, the thickness of 
the momentum boundary layer and velocity profiles are shrunken due to the rise in the value of the 
parameter 𝑊𝑒஺ produces the resistance practiced via the hybrid nanofluid which declines its motion 
as seen graphically in Figure 6. Because the Weissenberg number is the ratio of relaxation time to 
specific process time, a decline in the specific time of the process will enhance the Weissenberg 
number, indicating a reduction in the velocity field. Figure 7 shows that the profile of 𝑓′′(𝜉) uplifts 
due to 𝑊𝑒஺ in the first branch solution, however, the profile reduces for the branch of second 
results. Furthermore, the chunkiness of the normalized momentum BL is quite bigger in the 
outcomes of the first branch compared with the outcomes of the second branch. 
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Figure 6. Influence of 𝑊𝑒஺  on 𝑓ඁ(𝜉) when 𝜑ଵ = 0.025, 𝜑ଶ = 0.035,  𝑆஺ = 2,  𝜆஺ =

−2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 

 

Figure 7. Influence of 𝑊𝑒஺ on 𝑓ඁඁ(𝜉) when 𝜑ଵ = 0.025,  𝜑ଶ = 0.035,  𝑆஺ = 2,  𝜆஺ =

−2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 

Figure 8 shows the consequences of the nanoparticles volumetric fractions 𝜑஼௨ை and 𝜑்௜ைమ
 

on the velocity profile. The outcome indicates that when the values of 𝜑஼௨ை and 𝜑்௜ைమ
 augment, the 

outcomes in the first branch show a decreasing behavior while an escalating behavior is noticed for 
the second branch. In general, the reduction in the profiles of velocity is observed due to the reason 
that when we grow up the consequence of the nanoparticles volumetric fractions produce the higher 
nanoparticle resistance at the wall surface of the sheet. Despite this, the velocity and momentum 
boundary layer shrinks owing to the higher impact of 𝜑஼௨ை and 𝜑்௜ைమ

. 
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Figure 8. Influence of 𝜑஼௨ை and 𝜑்௜ைమ
on 𝑓ඁ(𝜉) when 𝑊𝑒஺ = 0.5,  𝑆஺ = 2, 𝜆஺ = −2,

𝑀 = 3, 𝑅஺ௗ = 1.5. 

Figures 9 and 10 elaborate the effect of 𝜑஼௨ை and 𝜑்௜ைమ
 on shear stress 𝑓′′(𝜉) distributed 

over the entire spatial domain and temperature profiles 𝜃(𝜉) for both distinct branch consequences, 
respectively. From Figure 9, it is seen that the normalized velocity profile upsurges in the first branch 
and declines in the second branch owing to the augmentation in 𝜑஼௨ை and 𝜑்௜ைమ

. In first branch 
outcomes, the gap in each solution curve for the corresponding varying value of 𝜑஼௨ை and 𝜑்௜ைమ

 is 
comparatively higher than the non-zoom solution of the second branch. For a better understanding of 
the second branch outcomes to present the gap of the solution between curves, we have shown the 
zooming small window as highlighted in Figure 9. 

The temperature profiles for both outcome branches in response to the significant impact of 
𝜑஼௨ை and 𝜑்௜ைమ

 are shown in Figure 10. The temperature profiles and volumetric fractions of 
nanoparticles hold the law of direct relation. Results reveal that both solution branches are showing 
an upsurge behavior owing to the higher impact of 𝜑஼௨ை and 𝜑்௜ మ

. Physically, the augmentation in 
the thermal thickness of the boundary layer and temperature profiles is because of the improvement 
in the nanoparticles volumetric fractions to boost up the thermal conductivity compared to the 
regular fluid. Moreover, the thermal conductivity is expanding throughout the hybrid nanofluid 
because of the higher nanoparticles volumetric fractions, which consequences in a larger rate of heat 
transfer as a response to the profiles of temperature augment. 

The influence of the radiation parameter 𝑅஺ௗ  on the temperature profiles of the 
(TiO2-CuO/water) hybrid nanofluid for the two distinct solution branches is revealed in Figure 11. 
From the given figure, it is concluded that with the increasing value of 𝑅஺ௗ, the temperature profiles 
in both branches behave similarly like Figure 10. Generally, the heat rate of flux at the surface hastens 
to owe to the impact of the radiation parameter which improves the thermal conductivity as a 
consequence, the temperature profiles are also developed in the boundary layer region. So the 
thermal boundary layer thickness is improved owing to the higher impact of 𝑅஺ௗ. 
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Figure 9. Influence of 𝜑஼௨ை and 𝜑்௜ைమ
 on 𝑓ඁඁ(𝜉) when 𝑊𝑒஺ = 0.5, 𝑆஺ = 2, 𝜆஺ = −2,

𝑀 = 3, 𝑅஺ௗ = 1.5. 

 

Figure 10. Influence of 𝜑஼௨ை and 𝜑்௜ைమ
 on 𝜃(𝜉) when 𝑅஺ௗ = 1.5, 𝑊𝑒஺ = 0.5, 𝜆஺ =

−2, 𝑀 = 3, 𝑆஺ = 2. 
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Figure 11. Influence of 𝑅஺ௗ  on 𝜃(𝜉)  when 𝜑ଵ = 0.025, 𝜑ଶ = 0.035, 𝑊𝑒஺ =

0.5,  𝜆஺ = −2, 𝑀 = 3, 𝑆஺ = 2. 

Figures 12 and 13 exemplify the consequences of 𝑊𝑒஺ on 𝑅𝑒௫
ଵ/ଶ

𝐶௙ and 𝑅𝑒௫
ିଵ/ଶ

𝑁 𝑢௫ of the 
(TiO2-CuO/water) hybrid nanofluid for branch of both dissimilar solutions, respectively. In these 
graphs, dual solutions are obtained for the specific range of shrinking/stretching parameter, where the 
first solution branch exists in the whole spatial domain and the second solution survives in the range of 
−∞ < 𝜆஺ ≤ −0.5. From the graphs, it is clear that when the first and second solution branches meet 
at a point called CP and it is characterized by the small black solid ball but mathematically it is 
demarcated as 𝜆஺಴

. Therefore, the outcome of the skin friction coefficient and heat transfer exist in 
the range of 𝜆஺಴

< 𝜆஺ < ∞, no outcome is possible in the range of −∞ < 𝜆஺ < 𝜆஺಴
, and the unique 

outcome is obtained at 𝜆஺಴
= 𝜆஺. Moreover, the results indicate that 𝑅𝑒௫

ଵ/ଶ
𝐶௙ is higher in the range 

of −1.5 ≤ 𝜆஺ < ∞ for the first branch solution and lower in the range of 𝜆஺಴
< 𝜆஺ < −1.5 owing to 

the higher impact of 𝑊𝑒஺, while 𝑅𝑒௫
ିଵ/ଶ

𝑁 𝑢௫ in the respective branch is decaying. In the lower 

branch or second solution, 𝑅𝑒௫
ଵ/ଶ

𝐶௙ is showing a similar behavior like the first branch in range of 

−∞ < 𝜆஺ ≤ −1.5 and then starts a decomposing behavior as 𝑊𝑒஺ increases while the 𝑅𝑒௫
ିଵ/ଶ

𝑁 𝑢௫ 
is increasing. Also, the bifurcation values 𝜆஺಴೔

 (where 𝑖 = 1,2,3) for each different value of the 
Weissenberg number. A rise in the value of the Weissenberg number causes a reduction in the value 
of |𝜆஺಴

|. This tendency specifies that the higher inclusion of 𝑊𝑒஺ accelerates the separation of the 

boundary-layer. 
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Figure 12. Influence of 𝑊𝑒஺  on 𝐶௙𝑅𝑒௫
ଵ/ଶ  when 𝜑ଵ = 0.025,  𝜑ଶ = 0.035,  𝑆஺ = 2,

𝜆஺ = −2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 

 

Figure 13. Influence of 𝑊𝑒஺  on 𝑁𝑢௫𝑅𝑒௫
ିଵ/ଶ  when 𝜑ଵ = 0.025,  𝜑ଶ = 0.035,  𝑆஺ =

2,  𝜆஺ = −2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 

The variations of 𝑆஺ on the shear stress 𝑅𝑒௫
ଵ/ଶ

𝐶௙ and 𝑅𝑒௫
ିଵ/ଶ

𝑁 𝑢௫ against 𝜆஺ are illustrated 
in Figures 14 and 15, respectively. There is understood a strong influence in the whole domain of the 
parameter 𝑆஺ on the shear stress and heat transfer, however, these upsurge with 𝑆஺ for UBS. In 
contrast, the skin friction coefficient is decreasing for SS owing to the rising values of 𝑆஺, while the 
heat transfer is augmented abruptly in the lower or second branch solution. In addition, it is noticed 
in both figures that the lower solution branch is completely terminated at 𝜆஺ = −0.5 while the first 
solution is existing in the whole domain. By increasing the impact of the parameter 𝑆஺ on the 
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engineering gradients causes that the magnitude of the critical value |𝜆஺಴
| increases. In this regard, 

the deceleration pattern is observed in separation with the higher impact of 𝑆஺. 

 

Figure 14. Influence of 𝑆஺  on 𝐶௙𝑅𝑒௫
ଵ/ଶ  when 𝜑ଵ = 0.025,  𝜑ଶ = 0.035, 𝑊𝑒஺ =

0.5,  𝜆஺ = −2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 

 

Figure 15. Influence of 𝑆஺  on 𝑁𝑢௫𝑅𝑒௫
ିଵ/ଶ  when 𝜑ଵ = 0.025, 𝜑ଶ = 0.035, 𝑊𝑒஺ =

0.5, 𝜆஺ = −2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 

Figures 16 and 17 elucidate the influence of 𝜑஼௨ை and 𝜑்௜ మ
 on the shear stress and heat 

transfer of the hybrid nanofluid, respectively. For growing values of 𝜑஼௨ை and 𝜑்௜ మ
, the shear 

stress noticeably increases in FS and SB outcomes while the heat transfer increases and decreases in 
the first and second solution branches, respectively. Generally, the nanoparticles volumetric fractions 
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on shear stress have an inverse relation with the velocity profiles. If we improve the impact of the 
hybrid nanoparticles the velocity profile is decreasing (see Figure 8) and as a result, the shear stress 
increases. Further, it is observed that the values of 𝜑஼௨ை and 𝜑்௜ைమ

 lead to exponential decay in the 
numerical critical values as mentioned in the graph windows. On the other hand, the magnitude of 
the bifurcation or critical value |𝜆஺಴

| augments. The gap in the outcomes of the first branch is 

emerging from the branch of the second outcomes as seen in Figures 16 and 17, respectively. 

 

Figure 16. Influences of 𝜑஼௨ை and 𝜑்௜ைమ
 on 𝐶௙𝑅𝑒௫

ଵ/ଶ when 𝑊𝑒஺ = 0.5, 𝑆஺ = 2, 𝜆஺ =

−2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 

 

Figure 17. Influences of 𝜑஼௨ை  and 𝜑்௜ మ
 on 𝑁𝑢௫𝑅𝑒௫

ିଵ/ଶ  when 𝑊𝑒஺ = 0.5, 𝑆஺ = 2,

𝜆஺ = −2, 𝑀 = 3, 𝑅஺ௗ = 1.5. 
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6. Conclusions 

Mathematical investigation on heat transfer and cross-flow of Williamson fluid over a porous 
shrinking or stretching sheet taking into account radiation and shape factors conveying hybrid 
nanofluid were validated in the current research. The impact of assorted pertaining parameters, like 
suction, volume fraction of nanoparticle, shape factor, radiation, and Williamson parameter was 
scrutinized. The results illustrate that double solutions are feasible through the HN which can be 
explained by employing certain influential parameters. 

 Multiple solutions appear only when the sheet shrinks to a certain range. 
 The accumulation of nanoparticle volume fraction uplifted the friction factor and improved 

the efficiency of the heat transfer rate of hybrid nanofluid. 
 The heat transfer shrinks due to the inclusion of the Williamson parameter, while the friction 

factor increases. 
 The temperature was enhanced due to radiation in both solutions. 
 Finally, the effect of suction permits the friction factor and heat transfer to improve 

significantly at the porous shrinking/stretching sheet of hybrid nanofluid. 
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Appendix 

Nomenclature： 
𝑆ଵ   Cauchy stress tensor 
𝐴ଵ   Rivlin-Erickson tensor 
𝑥, 𝑦   Cartesian coordinate 
𝑢௪   Variable wall velocity 
𝑢∞   Ambient velocity 
𝑇௪   Constant surface temperature 
𝑇∞   Constant ambient temperature 
𝑣௪   Variable mass flux velocity 
𝑢, 𝑣   Velocity components along 𝑥 and 𝑦 axes 
𝑐௣   Specific heat at constant pressure 
𝑞௥஺   Radiative heat flux 
𝑇   Temperature of the fluid 
𝑀   Shape factor coefficient 
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𝑓(𝜉)  Dimensionless velocity of the stream function 
𝑆஺   Mass suction parameter 
𝑊𝑒஺  Weissenberg parameter 
𝑃𝑟   Prandtl number 
𝑅஺ௗ   Radiation parameter 
𝐶௙   Skin friction coefficient 
𝑁𝑢௫  Local Nusselt number 
𝑅𝑒௫   Local Reynolds number 

Greek symbols： 
𝜏஺   Extra stress tensor 
𝜇଴, 𝜇∞  Limiting viscosity at zero and infinite shear stress 
𝛤ଵ   The time constant 
𝛽஺   Arbitrary positive constant 
𝜆஺   Stretching/Shrinking parameter 
𝛼   Thermal diffusivity 
𝜃(𝜉)  Dimensionless temperature 
𝑘஺

∗   Coefficient of mean absorption 
𝑘   Thermal conductivity 
𝜎஺

∗   Stefan-Boltzmann constant 
𝜇   Absolute viscosity 
𝜐   Kinematic viscosity 
𝜉   Pseudo-similarity variable 
𝜌   Density 
𝜑   Nanoparticles volume fractions 

Acronyms： 
TiO2  Titanium dioxide 
ODEs  Ordinary differential equations 
bvp4c  Boundary value problem of the fourth-order 
CuO  Copper oxide 
PDEs  Partial differential equations 
3D   Three-dimensional 
SN/ST  Shrinking/Stretching 
SNS  Shrinking sheet 
STS   Stretching sheet 
CVFEM  Control volume based finite element method 
ICs   Initial conditions 
HN   Hybrid nanofluid 
UB   Upper branch 
SS   Second solution 
FS   First solution 
RN   Radiation 
TCN  Thermal conductivity 
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Subscripts： 
𝐴, 0   Arbitrary constants use as a reference  
𝐵𝑓   Regular (viscous fluid) 
𝑛𝑓   Nanofluid 
𝐻𝐵𝑛𝑓  Hybrid Nanofluid 
𝑤   Wall boundary condition 
∞   Far-field condition 

Superscript： 
'   Derivative with respect to 𝜉 
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