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A B S T R A C T   

In this research, we examine the modified model of + n(1 )-dimensional Zakharov-Kuznetsov (ZK) equation, 
which will be used to analyze the nature of weakly nonlinear traveling waves in the existence of a constant 
magnetic area in a plasma comprising in cold ions and hot isothermal electrons. The modified Zakharov- 
Kuznetsov (mZK) equation will have solutions describing the traveling solitary waves, using the extended 
( )G

G2 -expansion method and extended direct algebraic method gives way to the mZK equation regulating the 
transmission of ion dynamics for nonlinear traveling waves in a plasma. The sufficient conditions for the stability 
and existence of the traveling wave solutions are reported. Semi-dark, rational, and singular solitary wave so-
lutions are computed. Graphical interpretations of certain practical solutions for specific values of parameters 
have also been available. The research findings reported throughout this evaluation are fresh and from which 
this model is employed to analyze waves in numerous plasmas, could be valuable and important. Subsequently, 
there are concluding remarks mentioned.   

Introduction 

Nonlinear physical structures have been linked with nonlinear 
equations concerning several disciplines, like thermodynamics, me-
chanics, fluid dynamics, wave propagation, plasma physics, fluid flow, 
nonlinear networks, optical fibers, and soil consolidations to develop 
vital phenomenon and implementations. The role of non-linearity in 
waves is quite significant mostly throughout nonlinear sciences, re-
search development towards exact solutions of partial differential 
nonlinear equations has always been a major endeavor for the past 
couple of years. Hence, highly prominent areas of general interest are 
still the discovery of the exact analytical solutions for differential 
nonlinear equations. Most other investigations have thus far con-
centrated on developing new modifications of current methods to 
produce new exact analytical approaches from which it can define 
perhaps some difficult and complicated physical implementations. 
Within the past couple of years, with either the advancement of sym-
bolic computational programs which assist us enough to conduct 

tedious and complex calculation on computer systems, most research 
has appeared to be based on direct methods to establishing exact ana-
lytical solutions for differential nonlinear equations. All the while, 
several powerful, efficient, and reliable methods for attempting to seek 
exact analytical solutions to traveling waves have been established. As 
for illustration, Exp-function [1], F-expansion [2], the Backlund trans-
formation method [3,4], reductive perturbation [5], the tanh-function  
[6,7], Jacobi elliptic [8,9], sine cosine function methods [10], homo-
geneous balance method [11,12] as well as the novel ( )G

G -expansion 
method [13]. Nonlinear partial differential equations perform a parti-
cularly significant key position in explaining the complex algorithms 
that occur in various fields of science. Resolving these nonlinear 
structures is thus a fruitful sector of study for researchers since the 
solutions that arise will support and help describe the physical nature of 
the underlying problems particularly concerned. 

Plasma physics is the investigation of a form of matter that includes 
charged particles. Commonly plasmas are generated by heating a gas 
till the electrons are dissociated from their parent molecule, briefly, a 
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plasma is known as an ionized gas. Plasma physics does seem to be the 
analysis of charged particles as well as fluids that interact with self- 
consistent magnetic and electrical fields. It would be a fundamental 
discipline of research that has several distinct application areas, such as 
astrophysics and space, accelerator physics, controlled fusion also beam 
storage. In magnetized plasma, the ZK equation has been structured for 
analyzing the nonlinear propagation of ion-acoustic waves. The ZK 
equation to analyzing vortices for geophysical flows is a really inter-
esting prototype equation. It makes an appearance especially 
throughout the research area of plasma physics. The ZK equation that 
based totally on the expression of nonlinear weakly ion-acoustic waves 
in plasma that comprises hot isothermal electrons and cold ions, when 
the occupied field is uniformly magnetic [14]. This may be recognized 
here as the following form [15]: 

+ + =u uu u( ) 0,t x x
2 (1) 

in which = + +x y z
2 2 2 2, is Laplacian, while is a constant. 

Various techniques have been employed in literary history to figure 
out the exact analytical solutions as well as conservation laws of the ZK 
equation [16–20]. Unless the plasma becomes magnetized then the 
leading equation is ZK equation while the electrons are iso-thermal. 
Stability of the ZK equation’s plane-periodic and solitary wave solutions 
to 2D long-wavelength perturbations [21,22], have already been ana-
lyzed. 

Here, we took into consideration + n(1 )-dimensional mZK equation 
of the form: 

+ + =u u u u( ) 0,t x x
2 2

1 1 (2) 

where = + + + …+x x x x
2 2 2 2 2

1 2 3 , is the n-dimensional Laplacian 
also the wave profile is designated by the dependent variable u which 
depends on the independent variables i.e, temporal variable t and 
structural variable x respectively, while is a real constant. To analyze 
the waves in plasma physics, the exact solutions of the + n(1 )-dimen-
sional mZK equation [15,23–29]. 

The solitary electromagnetic frameworks noticed to occur in a cer-
tain debased EP plasma are considerably modified by the consequences 
of both pressure dependence of positron as well as the degenerate 
electron. The observations refer to an EP plasma medium that exists in 
astrophysical compact entities [30,31]. The analysis of traveling waves 
has been given in [32], for the ZK equation. Employing improved 
modified extended tanh-function method soliton solutions are obtained  
[33]. Periodic solutions, one-dimensional soliton, apparently inelastic, 
and N-soliton solutions have been achieved. The direct Hirota bilinear 
method and the auxiliary equation method were used for the quantum 
ZK equation in [34–37]. Significantly over the past couple of years, in 
either the context of computational mathematics, other methods of 
searching exact outcomes of differential nonlinear equations motivated 
by the ( )G

G -expansion method. By instance, the ( )G
1 -expansion [38], 

double (( ), ( )G
G G

1 ) [39,40], the extended ( )G
G -expansion, modified 

( )G
G -expansion methods [41–46] and the extended ( )G

G2 -expansion 
method [47–50]. The whole article intends to extract more new exact 
solitary wave solutions of the mZK equation. To obtain these solitary 
wave solutions we will employ the extended ( )G

G2 -expansion method  
[47–49] and the extended direct algebraic method [51–53] to solve 

+ n(1 )-dimensional mZK equation. Some completely new, exact soli-
tary wave solutions are derived from + n(1 )-dimensional mZK equa-
tion. 

Recently, soliton theory has increasingly been recognized as one of 
the widely studied fields of science. Several analogous work is quoted 
regarding analytic solutions, such as [54–62]. Multiple physical struc-
tures may be smoothly and efficiently modeled through equations that 
admit soliton solutions. Evidently, in several other scenarios soliton 
itself and solitary waves were observed yet often dominate long-term 
behavior. Soliton-solution equations have quite an extremely deep 
mathematical structure [59,63–74]. The background and mathematical 

structures of solitons of the Shrödinger nonlinear equation and KdV 
equation (Korteweg and de Vries) nowadays are analyzed in greater 
depth [55,62,72,75,73,76]. Solitons perform a crucial function in nu-
merous fields and because of their production and regulation of optical 
fibers are greatly essential of optics. Soliton dynamics in the manner of 
optical fibers is one of the impressive work areas mostly in tele-
communications, electrical engineering, and applied sciences. Due to its 
impressive advancement in the field of optical fibers, the tele-
communications system has witnessed significant growth, especially in 
recent decades [77–80]. Exploring the traveling wave solutions for 
linear and nonlinear equations has played a vital part not only in 
mathematics but also for engineering and other nonlinear research in 
the last few decades [59,68,69,75,76,81–84]. 

This paper is set out as follows. In Section “The portrayal of two 
integration techniques”, there is dedicated to showing the portrayal of 
methodology for the extended ( )G

G2 -expansion method and the extended 
direct algebraic method. In Section “Application to mZK equation”, 
there is a transformation of the mZK equation into the famous cubic 
Duffing equation. In Section “The extended ( )G

G2 -expansion method”, 

there is the implementation of the extended ( )G
G2 -expansion method to 

the transformed mZK equation with sufficient conditions for stability of 
traveling wave solutions along with the graphical representations. In 
Section “The extended direct algebraic method”, the implementation of 
the extended direct algebraic method to the transformed mZK equation 
along with the graphical representations of the results. In Section 
“Concluding remarks”, the paper ultimately finishes with concluding 
remarks. 

The portrayal of two integration techniques 

The extended ( )G
G2 -expansion method 

Consider a nonlinear partial differential equation with u as the de-
pendent variable and …t x x x( , , , , )1 2 as independent variables of the 
form: 

… =Q u u u u( , , , , ) 0,t x x1 2 (3) 

using the transformation … = = + + +u t x x x U x x x( , , , , ) ( ),1 2 1 2 3
…+x t where is the speed of wave traveled. It will convert Eq. (3) 
into nonlinear ordinary differential equation of the following form 

… =Q U U U( , , , ) 0, (4) 

where prime denotes the derivative with respect to . Suppose Eq. (4) 
has the solution of form: 

= + ++
=

U a a G
G

a G
G

( ) ,M
i

M

i
i

1
1

2 2

1

(5) 

where 

= +G
G

µ G
G

,2 2

2

(6) 

where µ and are the real constants. 
General solutions for Eq. (6) with respect to parameters µ along 

with are given as follows.   

(1):  If >µ 0

=
+G

G
µ r µ r µ

r µ r µ
cos( ) sin( )
cos( ) sin( )

.2
1 2

2 1 (7)    

(2):  If <µ 0

=
+ +
+

G
G

µ r µ r µ r
r µ r µ r

| | sinh(2 | | ) cosh(2 | | )
sinh(2 | | ) cosh(2 | | )

.2
1 1 2

1 1 2 (8) 
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(3):  If =µ 0, 0

=
+

G
G

r
r r( )

.2
1

1 2 (9)  

After plugging Eq. (5) in Eq. (4) and equating the coefficients of 
different powers of ( )G

G2 leads to a set of algebraic equations (with some 
more detailed information check [47–50]). With the aid of computa-
tional program, the system of algebraic equations can be solved and 
solutions of Eq. (4) with the help of (7)-(9) can be derived. 

The extended direct algebraic method 

Let us considered Eq. (4) has the solution of the pattern: 

= +
=

U a a W( ) [ ( )],
i

M

i0
1 (10) 

where 

= + +W ln µ W W( ) ( )( ( ) ( )), 0, 1.2 (11)  

Here µ, along with are the real constants and M that is a constant 
which can be evaluated by balancing the highest order derivative along 
with nonlinear terms of Eq. (4). 

General solutions of Eq. (11) as regards with parameters µ, and 
are follows (with some more detailed information check [51,52]): 
where = µ42 .   

(1):  If < 0 and 0, 

= +W ( )
2 2

tan
2

,1
(12)  

=W ( )
2 2

cot
2

,2
(13)  

= + ±W mn( )
2 2

(tan ( ( ) ) sec ( ( ) )),3 (14)  

= + ±W mn( )
2 2

(cot ( ) csc ( )),4 (15)  

= +W ( )
2 4

tan
4

cot
4

.5
(16)    

(2):  If > 0 and 0, 

=W ( )
2 2

tanh
2

,6
(17)  

=W ( )
2 2

coth
2

,7
(18)  

= + ±W i mn( )
2 2

( tanh ( ) sech ( )),8 (19)  

= + ±W mn( )
2 2

( coth ( ) csch ( )),9 (20)  

= +W ( )
2 4

tanh
4

coth
4

.10
(21)    

(3):  If >µ 0 and = 0, 

=W µ µ( ) tan ( ),11
(22)  

=W µ µ( ) cot ( ),12
(23)  

= ±W µ µ mn µ( ) (tan (2 ) sec (2 )),13
(24)  

= ±W µ µ mn µ( ) ( cot (2 ) csc (2 )),14
(25)  

=W µ µ µ
( ) 1

2
tan

2
cot

2
.15

(26)    

(4):  If <µ 0 and = 0, 

=W µ µ( ) tanh ( ),16
(27)  

=W µ µ( ) coth ( ),17
(28)  

= ±W µ µ i mn µ( ) ( tanh (2 ) sech (2 )),18
(29)  

= ±W µ µ mn µ( ) ( coth (2 ) csch (2 )),19
(30)  

= +W µ µ µ
( ) 1

2
tanh

2
coth

2
.20

(31)    

(5):  If = 0 and =µ , 

=W µ( ) tan ( ),21 (32)  

=W µ( ) cot ( ),22 (33)  

= ±W µ mn µ( ) tan (2 ) sec (2 ),23 (34)  

= ±W µ mn µ( ) cot (2 ) csc (2 ),24 (35)  
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=W µ µ( ) 1
2

tan
2

cot
2

.25 (36)    

(6):  If = 0 and = µ, 

=W µ( ) tanh ( ),26 (37)  

=W µ( ) coth ( ),27 (38)  

= ±W µ i mn µ( ) tanh (2 ) sech (2 ),28 (39)  

= ±W µ mn µ( ) cot (2 ) csch (2 ),29 (40)  

= +W µ µ( ) 1
2

tanh
2

cot
2

.30 (41)    

(7):  If = µ42 , 

= +W µ( ) 2 ( ln 2)
ln

.31 2 (42)    

(8):  If = =p µ pq q, , ( 0) and = 0, 

=W q( ) .p
32 (43)    

(9):  If = = 0, 

=W µ( ) ln .33 (44)    

(10):  If = =µ 0, 

=W ( ) 1
ln

.34 (45)    

(11):  If =µ 0 and 0, 

=
+

W m
m

( )
(cosh ( ) sinh ( ) )

,35
(46)  

=
+

+ +
W

n
( )

(sinh ( ) cosh ( ))
(sinh ( ) cosh ( ) )

.36
(47)    

(12):  If = =p pq q, , ( 0 and =µ 0), 

=W m
m qn

( ) .
p

p37
(48)  

= = +m n m nsinh ( )
2

, cosh ( )
2

,

=
+

= +m n
m n

m n
m n

tanh ( ) , coth ( ) ,

=
+

=
m n m n

sech ( ) 2 , csch ( ) 2 ,

= = +m n
i

m nsin ( )
2

, cos ( )
2

,
i i i i

=
+

= +i m n
m n

i m n
m n

tan ( ) , cot ( ) ,
i i

i i

i i

i i

=
+

=
m n

i
m n

sec ( ) 2 , csc ( ) 2 ,

where m and n are called parameters of deformation. 

Application to mZK equation 

In this whole portion, we are going to apply the following wave 
transformation on Eq. (2) to transform the original PDE into an ODE, so 
that traveling wave solutions can be determined: 

= + + + …+x x x x t,1 2 3 (49) 

where is the speed of wave traveled, it will transform Eq. (2) into an 
ODE as given below 

+ + =U U U U 0,2 (50) 

where = = = …U U u t X u t x x x x( ) ( , ) ( , , , , , )1 2 3 and =U du
d . 

Integrating once, by taking constant of integration as zero. The 
above equation becomes 

+ + =U U U
3

0,3
(51) 

where , and are real-valued parameters. 

The extended ( )G
G2 -expansion method 

The next aim is to obtain a solution of Eq. (51). For traveling wave 
solutions of Eq. (2), one needs to solve only Eq. (51). Suppose the so-
lution of Eq. (51) can be represented here as finite power series of the 
format: 

= + +U a a G
G

a G
G

( ) ,2 1 2 1 2

1

(52) 

where a a,2 1 and a 1 are constants. After substituting Eq. (52) in Eq. (51) 
using Eq. (6) and equating coefficients of different powers of ( )G

G2 , leads 
to a system of following algebraic equations. 

+ =G
G

µ a a: 2 1
3

0,2

3
2

1 1
3

=G
G

a a: 0,2

2

1
2

2

+ + + =G
G

a µa a a a a: 2 0,2

1

1 1 1
2

1 1 2
2

+ + =G
G

a a a a a: 2 1
3

0,2

0

2 1 1 2 2
3

+ + + =G
G

a µa a a a a: 2 0,2

1

1 1 1 1
2

1 2
2

=G
G

a a: 0,2

2

1
2

2
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+ =G
G

a a: 2 1
3

0.2

3
2

1 1
3

Resolving the above algebraic equations with the aid of computa-
tional program, following different nontrivial solutions are achieved. 

Set 1: 

= ± = ± = =a µ a
µ

a
µ

3
2

, 3
2

, 0,
4

.1 1 2
(53)  

Set 2: 

= ± = = =a µ a
µ

a
µ

1
2

3 , 1
2

3 , 0,
8

.1 1 2
(54)  

When we substitute these respective sets of values in Eq. (52) it will 
give the exact solutions of + n(1 )-dimensional mZK equation. 

Set 1 

>µ 0
The solution is given in (53), utilizing Eq. (52) refers to a solution 

below: 

= ±
+

±

+

U
c µ c µ
c µ c µ

c µ c µ
c µ c µ

( )

3
2

cos( ) sin( )
cos( ) sin( )

3
2

cos( ) sin( )
cos( ) sin( )

,

1

1 2

2 1

2 1

1 2

U ( )1 with Eq. (49) generates the following solution of Eq. (2), 

= ±

±

+ + … + + + + … +
+ + … + + + … +

+ + … + + + … +
+ + … + + + + … +

u t X( , )

.

c µ x x x t c µ x x x t
c µ x x x t c µ x x x t

c µ x x x t c µ x x x t
c µ x x x t c µ x x x t

1
3
2

cos( ( )) sin( ( ))
cos( ( )) sin( ( ))

3
2

cos( ( )) sin( ( ))
cos( ( )) sin( ( ))

1 1 2 2 1 2

2 1 2 1 1 2

2 1 2 1 1 2

1 1 2 2 1 2

<µ 0
Here, for this case solution in (53) with the aid of Eq. (52) gives, 

which yields: 

=
+ +
+

+
+ +

U µ
µ

c µ c µ c
c µ c µ c

µ
µ

c µ c µ c
c µ c µ c

( ) 3
2

| | sinh(2 | | ) cosh(2 | | )
sinh(2 | | ) cosh(2 | | )

3
2 | |

sinh(2 | | ) cosh(2 | | )
sinh(2 | | ) cosh(2 | | )

,

2
1 1 2

1 1 2

1 1 2

1 1 2

U ( )2 with Eq. (49) generates the following solution of Eq. (2), 

=

+ + … + + + + … + +
+ + … + + + + … +

+ + … + + + + … +
+ + … + + + + … + +

u t X( , )

.

µ
µ

c µ x x x t c µ x x x t c
c µ x x x t c µ x x x t c

µ
µ

c µ x x x t c µ x x x t c
c µ x x x t c µ x x x t c

2
3
2

| | sinh(2 | | ( )) cosh(2 | | ( ))
sinh(2 | | ( )) cosh(2 | | ( ))

3
2

| |
sinh(2 | | ( )) cosh(2 | | ( ))
sinh(2 | | ( )) cosh(2 | | ( ))

1 1 2 1 1 2 2

1 1 2 1 1 2 2

1 1 2 1 1 2 2

1 1 2 1 1 2 2

Set 2 

>µ 0
Act along the same lines as in the previous set, solution demon-

strated in (54), via Eq. (52) refers to corresponding solution: 

= ±
+

±

+

U
c µ c µ
c µ c µ

c µ c µ
c µ c µ

( )

1
2

3 cos( ) sin( )
cos( ) sin( )

1
2

3

cos( ) sin( )
cos( ) sin( )

,

3

1 2

2 1

2 1

1 2

U ( )3 with Eq. (49) generates the following solution of Eq. (2), 

= ±

±

+ + … + + + + … +
+ + … + + + … +

+ + … + + + … +
+ + … + + + + … +

u t X( , )

.

c µ x x x t c µ x x x t
c µ x x x t c µ x x x t

c µ x x x t c µ x x x t
c µ x x x t c µ x x x t

3

1
2

3 cos( ( )) sin( ( ))
cos( ( )) sin( ( ))

1
2

3 cos( ( )) sin( ( ))
cos( ( )) sin( ( ))

1 1 2 2 1 2

2 1 2 1 1 2

2 1 2 1 1 2

1 1 2 2 1 2

<µ 0
Here, solution behind this case in (54) with the assistance of Eq.  

(52) contribute, which produces: 

= ±
+ +
+

+
+ +

U µ
µ

c µ c µ c
c µ c µ c

µ
µ

c µ c µ c
c µ c µ c

( ) 1
2

3 | | sinh(2 | | ) cosh(2 | | )
sinh(2 | | ) cosh(2 | | )

1
2

3
| |

sinh(2 | | ) cosh(2 | | )
sinh(2 | | ) cosh(2 | | )

,

4
1 1 2

1 1 2

1 1 2

1 1 2

U ( )4 with Eq. (49) generates the following solution of Eq. (2), 

= ±

+ + … + + + + … + +
+ + … + + + + … +

+ + … + + + + … +
+ + … + + + + … + +

u t X( , )

.

µ
µ

c µ x x x t c µ x x x t c
c µ x x x t c µ x x x t c

µ
µ

c µ x x x t c µ x x x t c
c µ x x x t c µ x x x t c

4
1
2

3 | |

sinh(2 | | ( )) cosh(2 | | ( ))
sinh(2 | | ( )) cosh(2 | | ( ))

1
2

3
| |

sinh(2 | | ( )) cosh(2 | | ( ))
sinh(2 | | ( )) cosh(2 | | ( ))

1 1 2 1 1 2 2

1 1 2 1 1 2 2

1 1 2 1 1 2 2

1 1 2 1 1 2 2

The 2-dimensional plot, 3-dimensional plot and 2-dimensional 
contour plot of the solution u t X( , )1 ) have shown in the figure with 

= = = =µ, , 11
3

1
2 ,and = =c c 11 2 in intervals ( 20, 20) for each 

plot (Figs. 1–4). 
The 2-dimensional plot, 3-dimensional plot and 2-dimensional 

contour plot of the solution u t X( , )2 have shown in the figure with 
= = = =µ, , 1, 11

3
1
2 ,and = =c c 11 2 in intervals ( 20, 20) for 

each plot. 
The 2-dimensional plot, 3-dimensional plot and 2-dimensional 

contour plot of the solution u t X( , )3 have shown in the figure with 
= = = =µ, , 11

3
1
4 ,and = =c c 11 2 in intervals ( 20, 20) for each 

plot. 
The 2-dimensional plot, 3-dimensional plot and 2-dimensional 

contour plot of the solution u t X( , )4 have shown in the figure with 
= = = =µ, , 1, 11

3
1
4 ,and = =c c 11 2 in intervals ( 20, 20) for 

each plot. 

Sufficient conditions for the stability of traveling wave solutions 

The sufficient conditions for the solitary wave solutions generated 
are addressed in this section of the paper. The following initiative can 
be conveyed after doing some investigation. 

Proposition 
If u t X( , )i , for =i 1, 2, 3, 4 is evaluated through the use of the ex-

tended( )G
G2 -expansion method as solitary wave solutions of Eq. (2), 

then here are all given the sufficient conditions for stability. 
Case 1: For the stability of u t X( , )1 here is the sufficient condition: 
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>3
2

0, where 0.

Case 2: For the stability of u t X( , )2 here is the sufficient condition: 

<3
2

0, where 0.

Case 3: For the stability of u t X( , )3 here is the sufficient condition: 

<3 0, where 0.

Case 4: For the stability of u t X( , )4 here is the sufficient condition: 

>3 0, where 0.

The extended direct algebraic method 

Cubic Duffing equation is currently considered here i.e Eq. (51), in 
this section of the paper, having , , and as the real parameters. Our 
target is to obtain solution for Eq. (51). For travelling wave solutions of 
Eq. (2), we needs to solve only Eq. (51). After we have balanced highest 
power of the nonlinear term U3 along with the highest order derivative 
term U , from Eq. (51), we will achieve =M 1, which eventually refers 
to the pattern called solution: 

= +U a a W( ) ( ),1 2 (55) 

where W ( ) satisfies Eq. (11). 
After plugging Eq. (55) in Eq. (51), we get a structure of the re-

spective algebraic equations and coefficients of different powers of 
W ( ) are equalized. 

Fig. 1. Set 1 ( >µ 0).  
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+ + =W a a µ a( ): 1
3

log 0,0
1 1

3
2

2

+ + + =W a a a µa a( ): 2 log log 0,1
2 1

2
2 2

2 2
2

2

+ =W a a a( ): 3 log 0,2
1 2

2
2

2

+ =W a a( ): 1
3

2 log 03
2
3 2

2
2

Employing computational program to solve the above algebraic 
equations, the following set of solution is obtained: 

= ± = ± =a a3 , 2 3 , 2
log

,1 2 2 (56) 

where 

= µ4 .2

Set 1. When < 0 along with 0, then. 
After plugging the values of a1 and a2 via Eq. (56) into Eq. (55) and 

applying the wave transformation, i.e Eq. (49), which presents the re-
garding solutions of Eq. (2): 

= ± + +…+u t X x x x t( , ) 3 tan
2

( ) ,m1 1 2

hence the corresponding solutions are extracted, functioning in much 
the same line. 

= ± + +…+u t X x x x t( , ) 3 cot
2

( ) ,m2 1 2

= ± +…+

± +…+

u t X

x x t

mn x x t mn

( , )
3 [tan ( ( ) ))

sec ( ( ))], 0,

m

m

3

1

1

= ± +…+

± +…+

u t X

x x t

mn x x t mn

( , )
3 [cot ( ( ))

csc ( ( ))))], 0,

m

m

4

1

1

Fig. 2. Set 1 ( <µ 0).  
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= ± +…+

+…+

u t X

x x t

x x t

( , )
1
2

3 tan
4

( ) cot

4
( ) .

m

m

5

1

1

Set 2. When > 0 along with 0, then 

= ± + +…+u t X x x x t( , ) 3 tanh
2

( ) ,m6 1 2

= ± + +…+u t X x x x t( , ) 3 coth
2

( ) ,m7 1 2

= ± +…+ ±

+…+

u t X

x x t mn

x x t mn

( , )
3 [ tanh ( ( )) sech

( ( ))], 0,

m

m

8

1

1

= ± +…+ ±

+…+

u t X

x x t mn

x x t mn

( , )
3 [ coth ( ( )) csch

( ( ))], 0,

m

m

9

1

1

= ± + +…+ +

+ +…+

u t X

x x x t

x x x t

( , )
1
2

3 tanh
4

( ) coth

4
( ) .

m

m

10

1 2

1 2

Set 3. When >µ 0 along with = 0, then 

= ± + +…+u t X µ x x x t( , ) 3 [tan ( ( ))],m11 1 2

= ± + +…+u t X µ x x x t( , ) 3 [cot ( ( ))],m12 1 2

Fig. 3. Set 2 ( >µ 0).  
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= ± +…+ ±

+…+

u t X

µ x x t mn

µ x x t mn

( , )
3 [tan (2 ( )) sec

(2 ( ))], 0,

m

m

13

1

1

= ± +…+ ±

+…+

u t X

µ x x t mn

µ x x t mn

( , )
3 [ cot (2 ( )) csc

(2 ( ))], 0,

m

m

14

1

1

= ± +…+

+…+

u t X

µ
x x t

µ
x x t

( , )

1
2

3 tan
2

( ) cot

2
( ) .

m

m

15

1

1

Set 4. When <µ 0 along with = 0, then 

= ± + +…+u t X µ x x x t( , ) 3 [tanh ( ( ))],m16 1 2

= ± + +…+u t X µ x x x t( , ) 3 [coth ( ( ))],m17 1 2

= ± + + ±

+ +

u t X

µ x x t mn

µ x x t mn

( , )
3 [ tanh (2 ( .. )) sech

(2 ( .. ))], 0,

m

m

18

1

1

= ± + + + ±

+ + +

u t X

µ x x x t mn

µ x x x t mn

( , )
3 [ coth (2 ( .. )) csch

(2 ( .. ))], 0,

m

m

19

1 2

1 2

= ± + + + +

+ + +

u t X

µ
x x x t

µ
x x x t

( , )

1
2

3 tanh
2

( .. ) coth

2
( .. ) .

m

m

20

1 2

1 2

Set 5. When = 0 along with =µ , then 

= ± + + +u t X µ x x x t( , ) 3 [tan ( ( .. ))],m21 1 2

= ± + + +u t X µ x x x t( , ) 3 [ cot ( ( .. ))],m22 1 2

Fig. 4. Set 2 ( <µ 0).  
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= ± + + + ±

+ + +

u t X

µ x x x t mn

µ x x x t mn

( , )
3 [tan (2 ( .. )) sec

(2 ( .. ))], 0,

m

m

23

1 2

1 2

= ± + + + ±

+ + +

u t X

µ x x x t mn

µ x x x t mn

( , )
3 [ cot (2 ( .. )) csc

(2 ( .. ))], 0,

m

m

24

1 2

1 2

= ± + + +

+ + +

u t X
µ x x x t

µ x x x t

( , )
1
2

3 tan
2

( .. ) cot

2
( .. ) .

m

m

25

1 2

1 2

Set 6. When = 0 along with = µ, then 

= ± + + +u t X µ x x x t( , ) 3 [tanh ( ( .. ))],m26 1 2

= ± + + +u t X µ x x x t( , ) 3 [coth ( ( .. ))],m27 1 2

= ± + + + ±

+ + +

u t X

µ x x x t mn

µ x x x t mn

( , )
3 [ tanh (2 ( .. )) sech

(2 ( .. ))], 0,

m

m

28

1 2

1 2

= ± + + + ±

+ + +

u t X

µ x x x t mn

µ x x x t mn

( , )
3 [ cot (2 ( .. )) csch

(2 ( .. ))], 0,

m

m

29

1 2

1 2

= ± + + + +

+ + +

u t X
µ x x x t

µ x x x t

( , )
3 1

2
tanh

2
( .. ) cot

2
( .. ) .

m

m

30

1 2

1 2

Set 7. When =µ 0 along with 0 then 

= ±
+ + + + + + +

u t X

m
x x x t x x x t m

( , )

3 1 2
(cosh ( ( .. )) sinh ( ( .. )) )

,
m m

31

1 2 1 2

= ±
+ + + + + + +

+ + + + + + + +

u t X
x x x t x x x t

x x x t x x x t n

( , )
3 1

2(sinh ( ( .. )) cosh ( ( .. )))
(sinh ( ( .. )) cosh ( ( .. )) )

.m m

m m

32

1 2 1 2

1 2 1 2

Set 8. When = =p pq q, , ( 0 along with =µ 0) then 

Fig. 6. Set 2 (plot of u8).  

Fig. 5. Set 2 (plot of u6).  
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= ±
+ + +

+ + +u t X qm
m qn

( , ) 3 1 2 .
p x x x t

p x x x t33
( .. )

( .. )

m

m

1 2

1 2

Graphical representation of the results 

Throughout this portion of the paper, we will describe the graphic 
portrayal for our whole freshly identified distinguished classes with 
exact outcomes of the wave transportation, within we have functions 
combination e.g trigonometric functions, hyperbolic functions, and 

rational functions. It’s essential to acknowledge here that the extraction 
of these traveling waves belongs to different classes of solitary solu-
tions. Through various relevant latest figures to describe a compre-
hensive interpretation of the whole graphical representation for mod-
ified Zakharov-Kuznetsov equation employing extended direct 
algebraic method with the help of computational program. 

In this section, we will discuss the physical description of set 2 (plots 
of u6). The 2-dimensional plot, 3-dimensional plot and 2-dimensional 
contour plot of the solution u ( )6 are presented in the figure respec-
tively. The traveling wave extraction u6 belongs to family of dark 

Fig. 7. Set 2 (plot of u9).  

Fig. 9. Set 4 (plot of u20).  

Fig. 8. Set 4 (plot of u19).  
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solitary solutions. The graphical interpretation of Fig. 5, with 
= = = = = =e µ, , 3, 2, 1, 31

4 , in intervals (−20, 20) for each 
plot. 

Since the transformation we use is = + + + …+x x x x t1 2 3 ,its 
important to mention that we use , as variable for 2-dimensional plots 
and 2-dimensional contour plots also for 3-dimensional plots we use 
x t( ), as variable. Moreover, it should be noted here that not only u6, 

but also u16 and u26 are the part of the dark community of solitary 
outcomes. 

Here is physical representation of set 2 (plots of u8). The 2-dimen-
sional plot, 3-dimensional plot and 2-dimensional contour plot of the 
solution u ( )8 are displayed in the figure respectively. Here the taking 
out traveling wave u8 belongs to group of semi-bright solitary solutions. 
The description for graphical interpretation of Fig. 6, with 

= = = = = = =e µ m, 1, 3, , 3, 2, 11
4 and =n 1 in intervals 

(−20, 20) for each plot. Similarly as in above case there would be 
realize here in u8, also with u18 and u28 are related with the family of 
semi-bright solitary outcomes. 

The physical analysis of set 2 (plots of u9) is examine here in the 
section. The 2-dimensional plot, 3-dimensional plot and 2-dimensional 
contour plot of the solution u ( )9 respectively, have shown in the figure. 
Here solution u9 belongs to the group of singular solitary solutions 
along with Type 1 and 2. The description for graphical interpretation of  
Fig. 7, with = = = = = = =e µ m, 1, 3, , , 0, 11

2
1
2 and =n 1

in intervals (−20, 20) for each plot. As already in the above case, there 
we can see that u9, also with u19 and u29 are related with a group of 
singular solitary solutions along with Type 1 and 2. 

Here is physical analysis of set 4 (plots of u19). The 2-dimensional 

plot, 3-dimensional plot and 2-dimensional contour plot of the solution 
u ( )19 respectively, have shown in the figure. Here solution u19 belongs 
to the group of singular solitary solutions along with Type 1 and 2. The 
description for graphical interpretation of Fig. 8, with 

= = = = = = =e µ m, 1, 3, , , 0, 11
2

1
2 and =n 1 in intervals 

(−20, 20) for each plot. 
Here is physical analysis of set 4 (plots of u20). The 2-dimensional 

plot, 3-dimensional plot and 2-dimensional contour plot of the solution 
u ( )20 respectively, have shown in the figure. Here solution u20 belongs 
to the category of singular-dark solitary solutions. The description for 
physical interpretation of Fig. 9, with 

= = = = =e µ, 1, , 1, 13
4 , and = 0, in intervals (−20, 20) 

for each plot. Hence as already discussed above, we can see here u20, 
also with u10 and u30 are related to the class of singular-dark solitary 
solutions. 

Here is physical analysis of set 6 (plots of u27). The 2-dimensional 
plot, 3-dimensional plot and 2-dimensional contour plot of the solution 
u ( )27 respectively, have shown in the figure. Here u27 belongs to the 
group of singular solitary solutions along with Type 2. The description 
for physical interpretation of Fig. 10, with = = =e, 1, 3, and 

=µ 1, in intervals (−20, 20) for each plot. Hence as already discussed 
above, we can see here u27, also with u7 and u17 are related to the class of 
singular solitary solution of Type 2. 

Here is physical analysis of set 8 (plots of u33). The 2-dimensional 
plot, 3-dimensional plot and 2-dimensional contour plot of the solution 
u ( )33 have shown in the figure. The description for physical inter-
pretation of Fig. 11, with = = = = = =e m n p, 1, 3, 1, 1, 1,and 

=q 1,in intervals (−20, 20) for each plot. 

Fig. 10. Set 6 (plot of u27).  

Fig. 11. Set 8 (plot of u33).  
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Concluding remarks 

For exact solutions of + n(1 )-dimensional mZK equation is dis-
cussed yet in this research paper. In either the existence of the constant 
magnetic field, the problem embodiments of weakly nonlinear raveling 
waves in or around a plasma containing cold ions and hot isothermal 
electrons are provided nonlinear + n(1 )-dimensional mZK equation. 
We demonstrate traveling wave solutions yet for the nonlinear 

+ n(1 )-dimensional mZK equation first by applying the extended 
( )G

G2 -expansion method along with the extended direct algebraic 
method. Such methods are credible and efficient in extracting exact 
solutions of the nonlinear differential equation. The stability evaluation 
for even the solutions to the traveling wave is addressed with regards to 
the sufficient conditions. We also saw the different categories of solitary 
solutions in the two methods discussed in terms of dark, semi-bright, 
dark singular, singular soliton of Type 1, and 2 also there mention, 
sufficient conditions for stability and existence of the solutions of the 
traveling wave are depend upon involved parameters. All such solutions 
can be important and valuable in plasma physics like magnetized 
plasma, in which this equation has been modeled and employed for 
some specific physical patterns. We have been using the fully ready- 
made computational program package to resolve the actual problem. By 
utilizing the same software, we showed graphically the physical re-
presentation of extracted solutions. Since the extended direct algebraic 
method is one of the most general methods that covers different types of 
traveling wave solutions. Hence, the results computed in this paper are 
more general to [15]. We also carried out a comprehensive analysis 
between the traveling waves extracted, along with some of the solutions 
accessible in the literature. A quick and sharp examination declared 
that several of the soliton solutions identified are more general, new, 
and maybe valuable and important in physical applications also not yet 
published in the literature. 
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