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Abstract: In this paper, we consider a problem of continuity fractional-order for pseudo-parabolic
equations with the fractional derivative of Caputo. Here, we investigate the stability of the problem
with respect to derivative parameters and initial data. We also show that uω′ → uω in an appropriate
sense as ω′ → ω, where ω is the fractional order. Moreover, to test the continuity fractional-order,
we present several numerical examples to illustrate this property.
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1. Introduction
Fractional PDEs are of considerable significance in different fields, such as memory

effect physics and engineering, viscoelasticity, porous media, etc. [1–15] and C. Cattani
in [16–18]. Viscosity is of particular significance in the study of the mechanical properties
of structures and biological materials. Recently, many researchers applied fractional calcu-
lations to probe the viscosity of such materials with high accuracy. Fraction PDEs are the
main tool solving that phenomena model.

In this work, we focus on the time-fractional pseudo-parabolic equation as follows
∂ω

t
(
u(x, t) + κRu(x, t)

)
+Ru(x, t) = G((x, t, u(x, t)), (x, t) ∈ Ω× (0, T],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T],
u(x, 0) = g0(x), x ∈ Ω,
ut(x, 0) = 0, x ∈ Ω,

(1)

where Ω is a bounded domain in Rn with sufficiently smooth boundary ∂Ω, 1 < ω < 2
and the Caputo fractional derivative operator of order ω is given by the notation as ∂ω

t .
Assume that the function u is definitely continuous in time, then the definition in [19] make
less to the traditional form

∂ω
t u(x, t) =

1
Γ(2−ω)

∫ t

0
(t− s)1−ω ∂2u(x, s)

ds
ds, (2)

where ∂2u
ds is the second order integer derivative of function u(s) with respect to the inde-

pendent variable s and Γ is the Gamma function. The operatorR is defined in Section 2.2.
Some functions G, g0(x) are defined later. The Equation (1) defines the mechanism of mass
transfer in fractal arrangement structures.

In case ω = 1 with the derivative of integer order, the problem (1) becomes the well
known pseudo-parabolic as follows

ut + κRut +Ru = G(u). (3)
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The Equation (3) is called the pseudo-parabolic, which has many real-world applica-
tions, a case in this point is that the seepage of homogeneous fluids from a broken rock,
unidirectional distribution of long waves of nonlinear dispersion [20,21] and Population
aggregation [22] (where u is the population density). Moreover, there are a lot of works
on well-posedness of the pseudo-parabolic equation with classical derivative, for instance,
we can see in [23–35] and the references therein. In particular, in fractional calculus, inves-
tigating the existence, uniqueness, stability of fractional differential equations, has been
the important goal in the scientific community. To the best of our knowledge, there are a
few papers which consider the fractional-order of the pseudo-parabolic partial differential
equation. Recently, the authors in [36] generalized Ulam-Hyers-Rassias’s stability results
for FPPDE solution. M. Beshtokov [37–39] considered a boundary value problem for
FPPDE. However, the regularity of mild solutions for FPPDE has not been investigated.

It follows that continuity of the solutions with respect to these parameters is important
for modeling purposes. This paper comes from the motivation of [40] for considering
the continuity of the solutions on fractional order. In practical problem, the parameter is
defined or computed by experiments. Therefore, we only know its value incorrectly. Even
if the parameters are known exactly but are irrational, then we also get only its approximate
value. Assume that ω′ → ω, a natural question is as follows

Does uω′ → uω in an appropriate sense as ω′ → ω ? (4)

The main purpose of our paper is answer above question. The difficulty in the problem
occurs when we have to evaluate the upper and lower quantities by the terms independent
of fractional order α. The question (4) for linear fractional wave equation has been recent
studied in [41]. Due to the nonlocal and nonlinearity of our problem, we have to choose an
effective method to give suitable estimation.

This paper is organized as follows. Section 2 shows the premilinaries of the Mittag-
Leffler function and mild solution. The key findings are discussed in Section 3 which
demonstrates the continuous dependency of the problem solution (1) on input data and
the fractional parameter. In the last section, we show some numerical examples to illustrate
the property which is called that the continuity fractional-order.

2. Preliminaries
2.1. The Mittag-Leffler Function

The Mittag-Leffler function is denoted and defined as following

Eω,φ(ξ) =
∞

∑
n=1

ξn

Γ(nω + φ)
, ξ ∈ C,

for ω > 0 and φ ∈ R. We recall the following lemmas (we can see in [7,42,43]), that would
be helpful for the primary analysis of Sections 3 and 4.

Lemma 1. If 1 < ω < 2, with for all ξ > 0 and C is a positive number which only depends on ω,
such that

|Eω,1(−ξ)| ≤ C, |Eω,ω(−ξ)| ≤ C.

Lemma 2. For λ > 0 the following identities holds true

∂ξ Eω,1(−λξω) = −λξω−1Eω,ω(−λξa),

∂ξ(ξ
ω−1Eω,ω(−λξω)) = ξω−2Eω,ω−1(−λξω),

(5)

where ξ is a positive real number.

Proof. We can use Lemma 2.2 in [41] to prove the above Lemma.
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Lemma 3. Assume 1 < ω < 2 and if T is a number that large enough then we get

Eω,1(−λjTω) 6= 0. (6)

For all j is a natural number, there are always two constants: C1ω and C2ω such that

C1
ω

1 + λjTa ≤
∣∣∣Eω,1(−λjTa)

∣∣∣ ≤ C2
ω

1 + λjTω
. (7)

Proof. This Lemma can be found in [44].

From Lemma 2.3 in [40], we have the following Lemmas.

Lemma 4. Let 1 < σ < ν < 2 and ω ∈ (σ, ν). There exist positive constants C1, C2, C3 which
only depend on σ, ν such that for any ξ > 0 we get

C1(σ, ν)

1 + ξ
≤ |Eω,1(−ξ)| ≤ C2(σ, ν)

1 + ξ
, |Eω,ω(−ξ)| ≤ C3(σ, ν)

1 + ξ
. (8)

Lemma 5. Let 0 < ξ ≤ T and 0 < σ < ω < ω′ < ν. For every ε > 0 that independent of ω,
there always exists Cε such that

|ξω − ξω′ | ≤ max(Tν+2ε, 1)Cε(ω
′ −ω)εTω−ε. (9)

Proof. We can find it in Lemma 3.2 [41].

We have the following lemmas by applying Lemmas 3.3 and 3.4 from Section 3 [41].

Lemma 6. Assume that ε > 0. and 1 < σ < ω < ω′ < ν < 2. Then there is a positive constant
D1(σ, ν, ε, ρ, T), such that

|Eω,1(−λnξω)− Eω′ ,1(−λnξω′)|

≤ D1(σ, ν, ε, ρ, T)λρ−1
n t−ν(1−ρ)−ε

[
(ω′ −ω)ε + (ω′ −ω)

]
, (10)

where 0 ≤ ρ ≤ 1 and 0 < ξ ≤ T.

Proof. Using Lemma 3.3 from Section 3 in [41] to prove above Lemma.

Lemma 7. Assume that 1 < σ < ω < ω′ < ν < 2. For any ε > 0 and 0 ≤ ρ ≤ 1 then there is a
positive number D2(σ, ν, ε, ρ, T) which is independent of ω and ω′ such that the following∣∣∣ξω−1Eω,ω(−λnξω)− ξω′−1Eω′ ,ω′(−λntω′)

∣∣∣
≤ D2(σ, ν, ε, ρ, T)λρ−1

n tσρ−ε−1
[
(ω′ −ω)ε + (ω′ −ω)

]
. (11)

Proof. Applying Lemma 3.4 in [41] to prove this Lemma.

2.2. Related Notation and Representation of the Solution
We introduce some of the necessary Sobolev spaces and correct some notation. Note

L2(Ω), H1
0(Ω), H2(Ω) denote the normal spaces of Sobolev. The symmetrical, uniform

elliptical operatorR : L2(Ω)→ L2(Ω) is defined by

Rw(s) = r(s)w(s, t)−
n

∑
m=1

∂

∂s m

(
Rmk(s)

∂

∂sk
w(s)

)
, s ∈ Ω,
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where D(R) = H1
0(Ω)∩H2(Ω). With assumption r(s) ∈ C(Ω, [0, ∞),Rmk ∈ C1(Ω),Rmk =

Rkm, 1 ≤ m, k ≤ n, and there exist a positive constant R̃ > 0, for x ∈ Ω, η = (η1, η2, · · · , ηn) ⊂
Rn, such that

R̃
n

∑
i=1

η2
i ≤ ∑

1≤m,k≤n
ηiRmk(x)µk.

We can search the above point in [45]. Now let us recall that the spectral problem

Rψn(x) = λnψn(x) in Ω and ψn(x) = 0 on ∂Ω (12)

admits a family of eigenvalues (see, e.g., [46])

0 < λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λn ≤ ...↗ ∞.

Moreover, we define byRsw the following operator

Rsw :=
∞

∑
n=1
〈w, ψn〉λs

nψn, w ∈ D(Rs) =

{
w ∈ L2(Ω) :

∞

∑
n=1
|〈w, ψn〉|2λ2s

n < ∞

}
, (13)

where 〈·, ·〉 is usual inner product of L2(Ω) and the notation ‖ · ‖S stands for the norm
in the Banach space S. The domain D(Rs) is known as the Banach spaces provided with
the norm

‖u‖2
D(Rs) :=

∞

∑
n=1

λ2s
n
∣∣〈u, ψn〉

∣∣2. (14)

If s = 1, we have D(R1) = H2(Ω).
For the specified number q ≥ 0, the Hilbert space

Hs(Ω) =

{
u ∈ L2(Ω) :

∞

∑
j=1
|〈u, ψn〉|2λ2s

n < ∞

}
, (15)

and this space is furnished with the norm

‖u‖2
Hs(Ω) =

∞

∑
n=1

λ2s
n |〈u, ψn〉|2.

If s = 0, we have H0(Ω) = L2(Ω). Let C ((0, T];Hs(Ω)) is the space of all continuous func-
tions from (0, T] into Hs(Ω). With 0 < υ < 1, we define C υ((0, T];Hs(Ω)) as the following.

sup
0<t≤T

tυ‖u(t)‖Hs(Ω) < ∞, for all u ∈ C ((0, T];Hs(Ω)),

which has the norm, we can find it in [40],

‖u‖C υ((0,T];Hs(Ω)) := sup
0<t≤T

tυ‖u(t)‖Hs(Ω).

For ζ > 0 and L∞
ζ (0, T,Hs(Ω)) is a Banach space with norm

‖u‖L∞
ζ (0,T,Hs(Ω)) := esssup e−ζt‖u‖Hs(Ω). (16)

Now, suppose that the (1) problem has a unique solution, so we find the shape of it.
Let u(x, t) = ∑∞

n=1〈u(·, t), ψn(·)〉ψn(x) be the Fourier series in L2(Ω). From (1), we can
deduce that

〈∂ω
t u(·, t), ψn〉+ κ〈∂ω

t Ru(·, t), ψn〉+ 〈Ru(·, t), ψn〉 = 〈G(·, t, u(·, t)), ψn〉. (17)
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Using (12), we have

(1 + κλn)∂
ω
t 〈u(·, t), ψn〉+ λn〈u(·, t), ψn〉 = 〈G(·, t), ψn〉. (18)

Therefore, we obtain

∂ω
t 〈u(·, t), ψn〉+

λn

1 + κλn
〈u(·, t), ψn〉 =

1
1 + κλn

〈G(·, t, u(·.t)), ψn〉. (19)

By using the theory of fractional ordinary differential equations (see e.g., [43,47]), we
have the following unique function un

un(t) = Eω,1

(
−λntω

1 + κλn

)
g0,n

+
1

1 + κλn

∫ t

0
(t− s)ω−1Eω,ω

(
−(t− s)ωλn

1 + κλn

)
G(un(s))ds, (20)

where we denote g0,n = 〈g0, ψn〉 and un(t) = 〈(·, t, u(·, t)), ψn〉.
Deduce, the solution (1) can be shown as by Fourier series u(x, t) = ∑∞

n=1〈u(·, t), ψn(·)〉ψn(x)
and then given by

u(x, t) =
∞

∑
n=1

Eω,1

(
−λntα

1 + κλn

)
g0,nψn

+
∞

∑
n=1

1
1 + κλn

[ ∫ t

0
(t− s)ωEω,ω

(
−(t− s)ω−1λn

1 + κλn

)
G(un(s))ds

]
ψn. (21)

We will rely on the results of Section 2.1 and the calculation of some variations in the
Mittag-Leffler function to investigate the stability of the solution to Problem (1.1) with
respect to the parameter. From (21) we get the solution of Problem (1) is given by

uω(x, t) = Xω(t)g0 +

t∫
0

Yω(t− s)G(uω(s))ds, (22)

where

Xω(t)Θ =
∞

∑
n=1

Eω,1

(
−λntω

1 + κλn

)
〈Θ, ψn〉ψn,

Yω(t− s)Θ =
∞

∑
n=1

1
1 + κλn

[
(t− s)ω−1Eω,ω

(
−(t− s)ωλn

1 + κλn

)
〈Θ, ψn〉

]
ψn.

Therefore, we also have

uω′(x, t) = Xω′(t)g0 +

t∫
0

Yω′(t− s)G(uω′(s))ds. (23)

Lemma 8. Let 1 < ω < 2, 0 < θ < 1, θ < α < θ + 1 and Θ ∈ Hα(Ω). The following
inequalities hold:

‖Xω(t)Θ‖Hα(Ω) ≤ C2(σ, ν, κ, θ)t−ωθ‖Θ‖Hα(Ω), (24)

‖Yω(t− s)Θ‖Hα(Ω) ≤ C3(σ, ν, κ, θ)(t− s)(ω−1−ωθ)‖Θ‖Hα(Ω). (25)
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Proof. Using Lemma 4, with assumption 0 < θ < 1, we get

‖Xα(t)Θ‖2
Hα(Ω)

=
∞

∑
n=1

λ2α
n E2

ω,1

(
−λntω

1 + κλn

)
|〈Θ, ψn〉|2 ≤

∞

∑
n=1

λ2α
n

(
C2(σ, ν)

1 + λntω

1+κλn

)2

|〈Θ, ψn〉|2

≤
∞

∑
n=1

λ2α
n

C2
2 (σ, ν)(

1 + λntω

1+κλn

)θ
|〈Θ, ψn〉|2 ≤

∞

∑
n=1

λ2α
n C2

2 (σ, ν)
( λntω

1 + κλn

)−2θ
|〈Θ, ψn〉|2

≤ C2
2 (σ, ν)t−2ωθ(1 + κλ−1

1 )2θ
∞

∑
n=1

λ2α
n |〈Θ, ψn〉|2 ≤ C2

2 (σ, ν)t−2ωp(λ−1
1 + κ)2θ‖Θ‖2

Hα(Ω).

Therefore, with C2(σ, ν, κ, θ) := C2(σ, ν)(λ−1
1 + κ)θ , we have the following estimate that

‖Xω(t)Θ‖Hα(Ω) ≤ C2(σ, ν, κ, θ)t−ωθ |Θ‖Hα(Ω). (26)

Similarly, using Lemma 4, we have the following estimate

‖Yω(t− s)Θ‖2
Hα(Ω) =

∞

∑
n=1

λ2α
n

(1 + κλn)2 (t− s)2(ω−1)E2
ω,ω

(
−λn(t− s)ω

1 + κλn

)
|〈Θ, ψn〉|2

≤
∞

∑
n=1

λ2α
n

(1 + κλn)2 (t− s)2(ω−1)

(
C3(σ, ν)

1 + λn(t−s)ω

1+κλn

)2

|〈w, ψn〉|2

≤ (t− s)2(ω−1−ωθ)C2
3 (σ, ν)

∞

∑
n=1

λ
2q
n

( 1
λn

+ κ
)2(θ−1)

λ−2
n |〈Θ, ψn〉|2

≤ (t− s)2(ω−1−ωp)C2
3 (σ, ν)

(
λ−1

1 + κ
)2(θ−1)

λ−2
1 ‖Θ‖

2
Hα(Ω). (27)

Therefore, we deduce

‖Yα(t− s)Θ‖Hα(Ω) ≤ C3(σ, ν, κ, θ)(t− s)(ω−1−ωp)‖Θ‖Hα(Ω), (28)

where C3(σ, ν, κ, θ) := C3(σ, ν)
(

λ−1
1 + κ

)θ−1
λ−1

1 .
Thus, we complete the proof of Lemma 8.

Lemma 9. Let 1 < ω < 2, α > 0 with 0 < ρ < 1 and Θ ∈ Hα(Ω). The following inequali-
ties hold: ∥∥∥[Xω′(t)−Xω(t)

]
Θ
∥∥∥
Hα(Ω)

≤ D1(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
t−ν(1−ρ)−ε‖Θ‖Hα(Ω),∥∥∥[Yω′(t− s)−Yω(t− s)

]
Θ
∥∥∥
Hα(Ω)

(29)

≤ D2(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
(t− s)σρ−ε−1‖Θ‖Hα(Ω),

where D1, D2 are independent of ω and also defined in the proof.

Proof. Parseval’s equality implies that the following equality

∥∥∥[Xω′(t)−Xω(t)
]
Θ
∥∥∥2

Hα(Ω)
=

∞

∑
n=1

λ2α
n

[
Eω′ ,1

(
−λntω′

1 + κλn

)
− Eω,1

(
−λntω

1 + κλn

)]2

|〈Θ, ψn〉|2.



Fractal Fract. 2021, 5, 41 7 of 21

Using the estimate of Lemma 6, we can deduce∥∥∥[Xω′(t)−Xω(t)
]
Θ
∥∥∥2

Hα(Ω)

≤
∞

∑
n=1

λ2α
n D2

1(σ, ν, ε, ρ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]2
(

λn

1 + κλn

)2(ρ−1)

t−2ν(1−ρ)−2ε|〈Θ, ψn〉|2

≤ D2
1(σ, ν, ε, ρ, T)

[
(ω′ −ω)ε + (ω′ −ω)

]2
t−2ν(1−ρ)−2ε(λ−1

1 + κ)2(1−ρ)
∞

∑
n=1

λ2α
n |〈Θ, ψn〉|2

≤ D2
1(σ, ν, ε, ρ, T)

[
(ω′ −ω)ε + (ω′ −ω)

]2
t−2ν(1−ρ)−2ε(λ−1

1 + κ)2(1−ρ)‖Θ‖2
Hα(Ω), (30)

which allows us to get∥∥∥[Xω′(t)−Xω(t)
]
Θ
∥∥∥
Hα(Ω)

≤ D1(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
t−ν(1−ρ)−ε‖Θ‖Hα(Ω).

Here, we note 0 < ρ < 1 and D1(σ, ν, ε, ρ, κ, T) := D1(σ, ν, ε, ρ, T)(λ−1
1 + κ)(1−ρ).

By a similarly argument as above, applying Lemma 7, we also get

∥∥∥[Yω′(t− s)−Yω(t− s)
]
Θ
∥∥∥2

Hα(Ω)

=
∞

∑
n=1

λ2α
n

(1 + κλn)2

×
[
(t− s)ω′−1Eω′ ,ω′

(
−λn(t− s)ω′

1 + κλn

)
− (t− s)ω−1Eω,ω

(
−λn(t− s)ω

1 + κλn

)]2

|〈Θ, ψn〉|2

≤
∞

∑
n=1
D2

2(σ, ν, ε, ρ, T)
( λn

1 + κλn

)2(ρ−1)
t2σρ−2ε−2

×
[
(ω′ −ω)ε + (ω′ −ω)

]2 λ
2q
n

(1 + κλn)2 |〈Θ, ψn〉|2

≤ D2
2(σ, ν, ε, ρ, T)

[
(ω′ −ω)ε + (ω′ −ω)

]2
λ−2

1 (t− s)2σρ−2ε−2

×
∞

∑
n=1

( 1
λn

+ κ
)−2ρ

λ2α
n |〈Θ, ψn〉|2

≤ D2
2(σ, ν, ε, ρ, T)

[
(ω′ −ω)ε + (ω′ −ω)

]2
λ−2

1 κ−2ρ(t− s)2σρ−2ε−2‖Θ‖2
Hα(Ω),

where we set D2(σ, ν, ε, ρ, κ, T) := D2(σ, ν, ε, ρ, T)λ−1
1 κ−ρ. Therefore, we arrive at∥∥∥[Yω′(t− s)−Yω(t− s)

]
Θ
∥∥∥
Hα(Ω)

≤ D2(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
(t− s)σρ−ε−1‖Θ‖Hα(Ω). (31)

We have all the Lemma 9 estimate and this completes the proof.

Next, we state the main results in the following section.
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3. Stability of a Nonlinear Fractional Pseudo-Parabolic Equation Regarding
Fractional-Order of the Time

In this section, we propose the continuous dependency of the problem solution (1) on
input data (the fractional-order ω and the initial state g0). The forcing terms are assumed
to satisfy the following assumptions:

‖G(u)− G(v)‖Hα(Ω) < K‖u− v‖Hα(Ω). (32)

In the following theorem, we present results about the unique solution of Problem (1)
and the stability of solution regarding fractional order.

Theorem 1. Let 0 < θ < 1, θ < α < θ + 1. Assume that 1 < σ < ω < ω′ < ν < 2
and let g0 ∈ Hα(Ω), and G(0) = 0. Then the Problem (1) has unique solution u(x, t) ∈
L∞

ζ (0, T,Hα(Ω)). Moreover, let uω and uω′ be the solutions to Problem (1) for fractional-orders
ω and ω′ respectively. If existing two positive numbers ρ, ε satisfy 0 < ρ < 1, and 0 < ε <
min(σρ− 1

2 , νρ− ν + 1
2 ) then

‖uω(·, t)‖C ωθ(0,T,Hα(Ω)) ≤
√

2C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

√
exp(RT) (33)

and

‖uω′(·, t)− uω(·, t)‖C ν(1−ρ)+ε(0,T,Hα(Ω)) ≤W1

[
(ω′ −ω)ε + (ω′ −ω)

]√
exp(W2T), (34)

where C2(σ, ν, κ, θ),R, W1, W2 are positive constants which are independent of ω and ω′.

Proof. Now, we divided the proof into several parts.
Part 1. Using the Banach fixed-point theorem, we are affirmative that the existence and
uniqueness of the solution of Equation (21) for v ∈ L∞

ζ (0, T,Hα(Ω)). Let us give following
operate by

Bv := Xω(t)g0 +

t∫
0

Yω(t− s)G(v(s))ds. (35)

Now, we will prove that the equation Bv@ = v@ has the unique solution v@ ∈
L∞

ζ (0, T,Hα(Ω)). Indeed we have

Bvω,1 −Bvω,2 =

t∫
0

Xω(t− s)
[
G(vω,1(s))− G(vω,2(s))

]
ds. (36)

Hence, with ζ > 0 using Lemma (8) and (32), we obtain

∥∥∥e−ζt
(
Bvω,1 −Bvω,2

)∥∥∥
Hα(Ω)

=

∥∥∥∥∥
t∫

0

Xω(t− s)e−ζt
[
G(vω,1(s))− G(vω,2(s))

]
ds

∥∥∥∥∥
Hα(Ω)

≤
t∫

0

C3(σ, ν, κ, θ)(t− s)(ω−1−ωθ)e−ζtK‖vω,1 − vω,2‖Hα(Ω)ds

≤
t∫

0

C3(σ, ν, κ, θ)K‖vω,1 − vω,2‖L∞
ζ (0,T,Hα(Ω))

t∫
0

e−ζ(t−s)(t− s)(ω−1−ωθ)ds.
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By taking 0 < τ < α(1− θ) and using inequality e−t < Cτt−τ , we can show that∥∥∥e−ζt
(
Bvω,1 −Bvω,2

)∥∥∥
Hα(Ω)

≤ C3(σ, ν, κ, θ)K‖vω,1 − vω,2‖L∞
ζ (0,T,Hα(Ω))

Cτ

ζτ

t∫
0

(t− s)ω−1−ωθ−τds

≤ C3(σ, ν, κ, θ)K‖vω,1 − vω,2‖L∞
ζ (0,T,Hα(Ω))

Cτ

ζτ

tω−ωθ−τ

ω−ωθ − τ
. (37)

Therefore, we deduce that∥∥∥Bvω,1 −Bvω,2

∥∥∥
L∞

ζ (0,T,Hα(Ω))
≤ C3(σ, ν, κ, θ)K

Cτ

ζτ

Tω−ωθ−τ

ω−ωθ − τ
‖vω,1 − vω,2‖L∞

ζ (0,T,Hα(Ω)).

With assumption ζ >

[
C3(σ, ν, κ, θ)KCτ

Tω−ωθ−τ

ω−ωθ−τ

] 1
τ

then we can see that

C3(σ, ν, κ, θ)K
Cτ

ζτ

Tω−ωp−τ

ω−ωθ − τ
< 1.

And soB is a contractive mapping in the spaceL∞
ζ (0, T,Hα(Ω)) therefor the Problem (1)

has uniques solution u ∈ L∞
ζ (0, T,Hα(Ω)).

Part 2. Estimates ‖u(·, t)‖Hα(Ω). From (22) and inequality (a + b)2 ≤ 2(a2 + b2) , we get

‖uω(·, t)‖2
Hα(Ω) ≤ 2

∥∥∥Xω(t)g0

∥∥∥2

Hα(Ω)
+ 2

∥∥∥∥∥
t∫

0

Yω(t− s)G(uω(s))ds

∥∥∥∥∥
2

.

Using Lemma 8 and assumption (32), we obtain

‖uω(·, t)‖2
Hα(Ω)

≤
[
C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

]2
+

[ t∫
0

C3(σ, ν, κ, θ)(t− s)(ω−1−ωθ)‖G(uω(s))− G(0)‖Hα(Ω)ds

]2

≤ 2
[
C2(σ, ν, κ, θ)t−ωθ‖g0‖Hα(Ω)

]2
+ 2

[
C3(σ, ν, κ, θ)

t∫
0

(t− s)(ω−1−ωθ)‖uω(s)‖Hα(Ω)ds

]2

.

Multiplying both side by t2ωθ , we get[
tωθ‖uω(·, t)‖Hα(Ω)

]2
≤ 2

[
C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

]2

+ 2
[
C3(σ, ν, κ, θ)tωθ

]2
[ t∫

0

(t− s)(ω−1−ωθ)s−ωθsωθ‖uω(s)‖Hα(Ω)ds

]2

.
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Using Hölder’s inequality, we obtain[
tωθ‖uω(·, t)‖Hα(Ω)

]2
≤ 2

[
C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

]2

+ 2
[
C3(σ, ν, κ, θ)tωθ

]2
t∫

0

(t− s)2(ω−1−ωθ)s−2ωθds
t∫

0

s2ωθ‖uω(s)‖2
Hα(Ω)ds.

Applying Beta’s function property
∫ t

0 sm−1(t− s)n−1ds = tm+n−1B(m, n), m > 0, n > 0.
and together with the assumption 1− 2ωθ > 0, we obtain the following estimates[

tωθ‖uω(·, t)‖Hω(Ω)

]2
≤ 2

[
C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

]2

+ 2
[
C3(σ, ν, κ, θ)tωθ

]2
t2ω−1−4ωθB(−2ωθ + 1, 2ω− 2ωθ − 1)

t∫
0

s2ωθ‖uω(s)‖2
Hα(Ω)ds.

Thanks to Gronwall’s inequality, we can deduce

[
tωθ‖uω(·, t)‖Hα(Ω)

]2 ≤ 2
[
C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

]2
exp

(
Rt
)
,

where

R := 2
[
C3(σ, ν, κ, θ)

]2
T2ω−1−2ωθB(−2ωθ + 1, 2ω− 2ωθ − 1).

Therefore, we get the following estimate

‖uω(·, t)‖C ωθ(0,T,Hα(Ω)) ≤
√

2C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

√
exp(RT). (38)

Part 3. Similar to part 2, using inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) from (22) and (23),
we get the following estimate:

‖uω′(·, t)− uω(·, t)‖2
Hq(Ω)

≤ 3
∥∥∥[Xω′ −Xω(t)

]
(t)g0

∥∥∥2

Hα(Ω)
+ 3

∥∥∥∥∥
t∫

0

[
Yω′(t− s)−Yω(t− s)

]
G(uω′(s))ds

∥∥∥∥∥
2

Hα(Ω)

+ 3

∥∥∥∥∥
t∫

0

Yω(t− s)
[
G(uω′(s))− G(uω(s))

]
ds

∥∥∥∥∥
2

Hα(Ω)

.
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Applying Lemmas 8 and 9 and assumption (32), we obtain

‖uω′(·, t)− uω(·, t)‖2
Hq(Ω)

≤ 3

[
D1(σ, ν, ε, ρ, κ, T)

[
(ω′ −ω)ε + (ω′ −ω)

]
t−ν(1−ρ)−ε‖g0‖Hα(Ω)

]2

+ 3

[ t∫
0

D2(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
(t− s)σρ−ε−1‖G(u′ω(s))‖Hα(Ω)ds

]2

︸ ︷︷ ︸
S1

+ 3

[ t∫
0

C3(σ, ν, κ, θ)(t− s)(ω−1−ωθ)K‖uω′(s)− uω(s)‖Hα(Ω)ds

]2

︸ ︷︷ ︸
S2

. (39)

Next, we will find a bound for S1 and S2. Estimate S1, applying Hölder’s inequality
with assumption (32), we get

S1 ≤ 3
[

D2(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
K
]2

×
t∫

0

(t− s)2(σρ−ε−1)t−2ω′θds
t∫

0

t2ω′p‖uω′(s)‖2
Hq(Ω)ds.

Assume 1− 2ω′θ > 0 and 0 < ε < σρ− 1
2 then 2σρ− 2ε− 1 > 0. Applying Beta’s

function property and (33), we deduce

S1 ≤3
[

D2(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
K
]2

B(−2ω′θ + 1, 2σρ− 2ε− 1)

× t−2ω′θ+2σρ−2ε−1

(
√

2C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

√
exp

(
RT
))2

. (40)

Estimate S2, similarly as above, we also have

S2 ≤ 3
[
C3(σ, ν, κ, θ)K

]2
[ t∫

0

(t− s)(ω−1−ωθ)‖uω′(s)− uω(s)‖Hα(Ω)ds

]2

.

Since the condition 0 < ε < νρ− ν+ 1
2 and 1− 2ωθ > 0, we get immediately that 2ω−

2ωθ − 1 > 0,−2ν(1− ρ)− 2ε + 1 > 0, which allows us to obtain the following estimate

S2 ≤ 3
[
C3(σ, ν, κ, θ)K

]2

×
t∫

0

(t− s)2(ω−1−ωθ)t−2ν(1−ρ)−2εds
t∫

0

t2ν(1−ρ)+2ε‖uω′(s)− uω(s)‖2
Hα(Ω)ds

≤ 3
[
C3(σ, ν, κ, θ)K

]2
t−2ν(1−ρ)−2ε+2ω(1−θ)−1B(−2ν(1− ρ)− 2ε, 2ω(1− θ)− 1)

×
t∫

0

t2ν(1−ρ)+2ε‖uω′(s)− uω(s)‖2
Hα(Ω)ds. (41)



Fractal Fract. 2021, 5, 41 12 of 21

And so, from (39)–(41), we obtain

‖uω′(·, t)− uω(·, t)‖2
Hα(Ω)

≤ 3
[

D1(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
t−ν(1−ρ)−ε‖g0‖Hα(Ω)

]2

+ 3
[

D2(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
K
]2

B(−2ω′θ + 1, 2σρ− 2ε− 1)

× t−2ω′θ+2σρ−2ε−1
(√

2C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

√
exp

(
RT
))2

+ 3
[
C3(σ, ν, κ, θ)K

]2
t−2ν(1−ρ)−2ε+2ω(1−θ)−1B(−2ν(1− ρ)− 2ε, 2ω(1− θ)− 1)

t∫
0

t2ν(1−ρ)+2ε‖uω′(s)− uω(s)‖2
Hα(Ω)ds.

Multiplying both side to t2ν(1−ρ)+2ε, we have the following estimates

t2ν(1−ρ)+2ε‖uω′(·, t)− uω(·, t)‖2
Hα(Ω)

≤ 3
[

D1(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
‖g0‖Hα(Ω)

]2

+ 3
[

D2(σ, ν, ε, ρ, κ, T)
[
(ω′ −ω)ε + (ω′ −ω)

]
K
]2

B(−2ω′θ + 1, 2σρ− 2ε− 1)

× t−2ω′θ+2σρ+2ν(1−ρ)−1
(√

2C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

√
exp

(
RT
))2

+ 3
[
C3(σ, ν, κ, θ)K

]2
B(−2ν(1− ρ)− 2ε, 2ω(1− θ)− 1)

× t2ω(1−θ)−1
t∫

0

t2ν(1−ρ)+2ε‖uω′(s)− uω(s)‖2
Hα(Ω)ds.

Applying Gronwall’s inequality, we can show that

‖uω′(·, t)− uω(·, t)‖2
C ν(1−ρ)+ε(0,T,Hq(Ω))

≤W1

[
(ω′ −ω)ε + (ω′ −ω)

]2
exp

(
W2t

)
, (42)

where

W1 := max

(
3
[

D1(σ, ν, ε, ρ, κ, T)‖g0‖Hα(Ω)

]2
,

3
[

D2(σ, ν, ε, ρ, κ, T)K
]2

B(−2ω′θ + 1, 2σρ− 2ε− 1)

× T−2ω′θ+2σρ+2ν(1−ρ)−1
(√

2C2(σ, ν, κ, θ)‖g0‖Hα(Ω)

√
exp

(
RT
))2
)

,

and
W2 := 3

[
C3(σ, ν, κ, θ)K

]2
B(−2ν(1− ρ)− 2ε, 2ω(1− θ)− 1)T2ω(1−θ)−1.

From the above steps, we get the following estimate

‖uω′ (·, t)− uω(·, t)‖C ν(1−ρ)+ε(0,T,Hα(Ω)) ≤
√

W1

[
(ω′ −ω)ε + (ω′ −ω)

]√
exp

(
W2T

)
. (43)

Theorem 1 has been proved.
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4. Numerical Experiments
In this section, we employ our proposed numerical scheme for the continuity fractional

order for the pseudo-parabolic equation with the fractional Caputo derivative. For more
detail, we present some examples to illustrate the property which are shown in Theorem 1.
It means that the solution uω′ (the solution u with order ω′) converge on uω (the solution u
with order ω) when ω′ tends to ω, where ω is the fractional order. To do this, firstly, we use
finite difference to discrete the spatial and time variable on the domain (x, t) ∈ [0, 1]× [0, 1]
as follows

Dx :=
{

xp =
p− 1

Nx
, p = 1, Nx + 1

}
, Dt :=

{
tq =

q− 1
Nt

, q = 1, Nt + 1
}

,

where Nx and Nt are given positive constants.
Secondly, in calculations with Python software, we use some numerical approximation

methods as follows.
We use the approximation of the Mittag-Leffler function Eω,φ as follows

Eω,φ(z) := ml(z, ω, φ),

and we evaluate the function Γ(·) by gamma(·) function which defined in the Matplotlib
library.

The integral approximation method by sum Rieamann. This approach can be used to
find a numerical approximation for a definite integral

∫ z2

z1

f (z)dz ≈
M

∑
m=0

f
(

z1 + m
z2 − z1

M

) z2 − z1

M
,

where M is large enough positive number.
Next, by taking the operator R = −∆. Then we have an orthonormal eigenbasis in

L2(0, 1) is

ψn =
√

2 sin(nπx), (44)

and the respective eigenvalues as follows

0 < λ1 ≤ λ2 ≤ λ3 ≤ ... −→ ∞, where λn = n2π2, for n ∈ Z+.

By choosing T = 1 and κ = 1, we focus on the following time fractional diffusion equa-
tion

∂ω
t
(
u(x, t)− uxx(x, t)

)
− uxx(x, t) = G((x, t, u(x, t)), (x, t) ∈ (0, 1)× (0, 1], (45)

subject to the initial conditions as follows

u(x, t)
∣∣
t=0 = g0(x) and ut(x, t)

∣∣
t=0 = 0, x ∈ (0, 1), (46)

and the Dirichlet boundary condition as follows

u(x, t)
∣∣
x=0 = u(x, t)

∣∣
x=1 = 0, t ∈ (0, 1], (47)

Base on the solution (21), we can rewrite it in form truncation according to N which
is a parameter truncated as follows

u(x, t) =
N
∑
n=1

Eω,1

(
−n2π2tα

1 + n2π2

) ∫ 1

0
g0(τ)ψn(τ)dτψn(x)

+
N
∑
n=1

1
1 + n2π2

[ ∫ t

0
(t− s)ωEω,ω

(
−(t− s)ω−1n2π2

1 + n2π2

)
Gn(un(s))ds

]
ψn(x), (48)
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where Gn(u(s)) := G(u(·, s), ·, s) = 〈G(u(·, s), ·, s), ψn(·)〉 =
∫ 1

0
G(u(τ, s), τ, s)ψn(τ)dτ.

On the domain [0, 1]× [0, 10], we have a performance below

u(xp, tq) = 2
[

ũ1(tq) ũ2(tq) ũ3(tq) · · · ũN (tq)
]

×
[

sin(πxp) sin(2πxp) sin(3πxp) · · · sin(Nπxp)
]T

, (49)

where [A]T is the transposition matrix of the matrix [A] and

ũ1(tq) = Eω,1

(
−n2π2tα

p

1 + n2π2

) ∫ 1

0
g0(τ)ψn(τ)dτ

+
1

1 + n2π2

∫ tp

0
(tp − s)ωEω,ω

(
−(tp − s)ω−1n2π2

1 + n2π2

) ∫ 1

0
G(u(τ, s), τ, s)ψn(τ)dτds. (50)

Then the solution (49) can be written in the matrix form
[
upq

]
(Nx+1)×(Nt+1)

, where

the representative element upq of this matrix is u(xp, tq).

Finally, by fixing t, we have the relative error estimation (REEωi

ω ) and percent error
estimation (PEEωi

ω ) between the solutions uω and uω′ as follows

REEωi

ω (t) =
Nx+1

∑
p=1

∣∣∣uωi (xp, t)− uω(xp, t)
∣∣∣, for some cases i = 1, 2, 3. (51)

PEEωi

ω (t) = REEωi

ω (t)
/Nx+1

∑
p=1

∣∣∣uω(xp, t)
∣∣∣× 100. (52)

Let get started, we consider (x, t) on the domain [0, 1]× [0, 1] with the functions are
given by

g0(x) =
√

2 sin(2πx), (53)

G(u, x, t) = u2 − 4π2
√

2
t2 + 1

sin(2πx) +
cos(4πx)− 1
(t2 + 1)2 . (54)

In the following subsection, by choosing Nx = Nt = 50 and N = 10, we present
the result of the numerical implementations for the problem (45) with the conditions (53)
and (54) in some cases as follows.

4.1. First Case: The Fractional Order Is ω = 1.1
In this case, we consider the asymptotic behaviour of the solutions for some values of

ω = 1.1 and ωi ∈ {1.15, 1.13, 1.11}.
The numerical result is shown that the performance of the proposed method is accept-

able. Indeed, the convergent estimate between the solutions for the fractional orders ω and
ωi at t ∈ {0.1, 0.5, 0.9} is shown in Tables 1–3.

Table 1. The relative error and percent error estimations for ω = 1.1.

Fractional Order
t = 0.1 t = 0.5 t = 0.9

REEωi

ω PEEωi

ω REEωi

ω PEEωi

ω REEωi

ω PEEωi

ω

ω1 = 1.15 0.17060940 21.16% 0.19486871 5.23% 0.50700111 7.41%

ω2 = 1.13 0.09891093 12.26% 0.10425578 2.80% 0.28847739 4.22%

ω3 = 1.11 0.02063175 2.55% 0.02002432 0.53% 0.05891203 0.86%
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Table 2. The relative error and percent error estimations for ω = 1.5.

Fractional Order
t = 0.1 t = 0.5 t = 0.9

REEωi

ω PEEωi

ω REEωi

ω PEEωi

ω REEωi

ω PEEωi

ω

ω1 = 1.55 0.06218532 23.58% 0.25924582 9.55% 0.20731152 2.48%

ω2 = 1.53 0.03645685 13.82% 0.14441751 5.32% 0.11992968 1.43%

ω3 = 1.51 0.00769853 2.92% 0.02891043 1.06% 0.02491671 0.29%

Table 3. The relative error and percent error estimations for ω = 1.9.

Fractional Order
t = 0.1 t = 0.5 t = 0.9

REEωi

ω PEEωi

ω REEωi

ω PEEωi

ω REEωi

ω PEEωi

ω

ω1 = 1.95 0.01925768 24.99% 0.20146470 12.17% 0.31121755 3.82%

ω2 = 1.93 0.01134916 14.72% 0.11418913 6.89% 0.16942761 2.08%

ω3 = 1.91 0.00241016 3.12% 0.02328528 1.40% 0.03311517 0.40%

In addition, we present the graphs of the solutions and corresponding errors in
Figures. To facilitate comparison, we consider three cases of the fractional order such
as ω ∈ {1.1, 1.5, 1.9}. We also show the 3D-graph of the solutions u on the domain
(x, t) ∈ [0, 1]× [0, 1]. For detail, the first case ω = 1.1 is shown in Figures 1–4. The second
case ω = 1.5 is shown in Figures 5–8. And the final case, ω = 1.9 is shown in Figures 9–12.

From the observations on these tables and figures, it concludes that the smaller the
error output between the solutions for the fractional orders ω and ωi when the smaller in
the fractional orders.
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Figure 1. The 3-dimensional graph of solution u on the domain (x, t) ∈ [0, 1]× [0, 1] for ω = 1.1.
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Figure 2. The solution u for ω = 1.1, ωi ∈ {1.15, 1.13, 1.11} at t = 0.1 and the respective error.
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Figure 3. The solution u for ω = 1.1, ωi ∈ {1.15, 1.13, 1.11} at t = 0.5 and the respective error.
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Figure 4. The solution u for ω = 1.1, ωi ∈ {1.15, 1.13, 1.11} at t = 0.9 and the respective error.

4.2. Second Case: The Fractional Order is ω = 1.5
In this subsection, we consider the asymptotic behaviour of the solutions for some

values of ω = 1.5 and ωi ∈ {1.55, 1.53, 1.51}.



Fractal Fract. 2021, 5, 41 17 of 21

x∈ [0, 1]

0.0
0.2

0.4
0.6

0.8
1.0

t∈
[0,

1]

0.0
0.2

0.4
0.6

0.8
1.0

Th
e 
so

lu
tio

n 
u 
at
 ω

=
1.
5

0

2

4

6

Figure 5. The 3-dimensional graph of solution u on the domain (x, t) ∈ [0, 1]× [0, 1] for ω = 1.5.
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Figure 6. The solution u for ω = 1.5, ωi ∈ {1.55, 1.53, 1.51} at t = 0.1 and the respective error.
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Figure 7. The solution u for ω = 1.5, ωi ∈ {1.55, 1.53, 1.51} at t = 0.5 and the respective error.
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Figure 8. The solution u for ω = 1.5, ωi ∈ {1.55, 1.53, 1.51} at t = 0.9 and the respective error.

4.3. Third Case: The Fractional Order is ω = 1.9
In final case, we consider the asymptotic behaviour of the solutions for some values of

ω = 1.9 and ωi ∈ {1.95, 1.93, 1.91}.
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Figure 9. The 3-dimensional graph of solution u on the domain (x, t) ∈ [0, 1]× [0, 1] for ω = 1.9.
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Figure 10. The solution u for ω = 1.9, ωi ∈ {1.95, 1.93, 1.91} at t = 0.1 and the respective error.
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Figure 11. The solution u for ω = 1.9, ωi ∈ {1.95, 1.93, 1.91} at t = 0.5 and the respective error.
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Figure 12. The solution u for ω = 1.9, ωi ∈ {1.95, 1.93, 1.91} at t = 0.9 and the respective error.
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