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ABSTRACT
A generalized differential operator utilizing Raina’s function is constructed in light of a certain
type of fractional calculus. We next use the generalized operators to build a formula for analytic
functions of type normalized. Our method is based on the concepts of subordination and super-
ordination. As an application, a class of differential equations involving the suggested operator
is studied. As seen, the solution is provided by a certain hypergeometric function. We also cre-
ate a fractional coefficient differential operator. Its geometric and analytic features are discussed.
Finally, we use the Jackson’s calculus to expand the Raina’s differential operator and investigate
its properties in relation to geometric function theory.
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1. Introduction

Fractional calculus has grown in popularity in recent
years, thanks to its applications in science and engi-
neering. Fifty-first-order differential equations are used
to model almost all nonlinear physical processes. In
terms of the Mittag–Leffler function and its extensions,
all classes of fractional differential equations have solu-
tions in terms of this function (the Queen Function of
Fractional Calculus) (see [1–3]).

Basic power sums and polynomials, particularly the
Mittag–Leffler function and its generalizations (Raina’s
function), as well as polynomials and their implications,
are recognized to have extensive applications in various
areas of number theory, such as the theory of parti-
tions. Vector calculus, statistical studies, particlephysics,
optics, fluid studies, mechanical studies, quantum the-
ory and applications, thermal study, andmeasurements
all benefit from these functions (see [4–12]). This func-
tion has been investigated in different types of inequal-
ities and convex inequalities. Shu-Bo Chen et al. [13]
presented an integral formula inequality containing the
Raina’s function. Chu et al. [14] generalized harmoni-
cally ψ-convex with respect to Raina’s function on frac-
tal set. Rashid et al. [15] extended the Mittag–Leffler
kernel. Mohammed et al. [16–18] introduced various
studies on the generalized Mittag–Leffler kernel.

In this study, we look at how Raina’s function

Aμ
α,β(ζ ) =

∞∑
n=0

μ(n)

�(αn + β)
ζ n

may be used to extend a differential operator in the
open unit disk. The fractional differential operator is
employed to explain a variety of innovative normalized
analytic functions. Therefore, we utilize the convolution
product between the normalized Raina’s function and
analytic function satisfying the normalization equality
χ(0) = χ ′(0) − 1 = 0. To investigate a collection of dif-
ferential inequalities, the concept of differential sub-
ordination and superordination is employed. Further-
more, we investigate the geometric behaviour of the
diffusive wave differential equation, a family of analytic
functions. The novel convolution linear operator is used
for a variety of applications.

2. Approaches

In this section, we’ll go through the approaches we
employed.

2.1. Geometric approaches

We’ll go over some geometric function theory funda-
mentals covered in this book [19]

Definition 2.1: Introduce the set K := {ζ ∈ C : |ζ |
< 1}, which indicates the open unit disk. The analytic
functions χ1,χ2 in K are subordinated χ1 ≺ χ2 or

χ1(ζ ) ≺ χ2(ζ ), ζ ∈ K
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if for an analytic function ψ , |ψ | ≤ |ζ | < 1 fulfilling

χ1(ζ ) = χ2(ψ(ζ )), ζ ∈ K.

Definition 2.2: Define the subclass of analytic func-
tions

χ(ζ ) = ζ +
∞∑
n=2

anζ
n, η ∈ K

denoting by	 and satisfying χ(0) = χ ′(0) − 1 = 0.
Moreover, two functions φ,ϕ ∈ 	 are convoluted

(φ ∗ ϕ) if they achieve the product [20]

(φ ∗ ϕ)(ζ ) =
(
ζ +

∞∑
n=2

φnζ
n

)
∗
(
ζ +

∞∑
n=2

ϕnζ
n

)

= ζ +
∞∑
n=2

φnϕnζ
n.

Definition 2.3: Related to this class, the class S∗ of
starlike functions and the class C of convex functions.
Moreover, the classP := {ρ : ρ(ζ ) = 1 + ρ1ζ + ρ2ζ

2 +
· · · , ζ ∈ K} is a special class of analytic functions in K

with positive real part in K and ρ(0) = 1.

2.2. Raina’s function

Integrals and outcomes of many kinds of differential
equations fall within the category of special functions.
As a result, most integral sets contain descriptions of
special functions, and these special functions entail
the most fundamental integrals; at the very least, the
integral representation of special functions. Because
symmetries of differential equations are significant in
both physics and mathematics, the theory of special
functions is closely connected to several mathemat-
ical physics issues [21]. To begin, we’ll look at the
Mittag–Leffler function, which is a well-known special
function.

Definition 2.4: The power of the generalized Mit-
tag–Leffler function is as follows: [4]

Lμ
α,β(ζ ) =

∞∑
n=0

(μ)n

�(αn + β)

ζ n

n!
,

where

�(ζ ) =
∫ ∞

0
χζ−1 e−χ dχ , �(ζ ) > 0

is the gamma function and

(μ)n = �(μ + 1)
�(μ − n + 1)

is the Pochhammer operator. Obviously, we have [10]

L1
α,β(ζ ) =

∞∑
n=0

ζ n

�(αn + β)
.

Continue by defining Raina’s function.

Definition 2.5: The power series determines Raina’s
function as follows [22]:

Aμ
α,β(ζ ) =

∞∑
n=0

μ(n)

�(αn + β)
ζ n, ζ ∈ K,

where α > 0,β ≥ 1 andμ := {μ(0),μ(1), . . . ,μ(n)} is a
bounded sequence of positive real numbers.

Remark 2.6:

• If μ(n) = 1, then we have L1
α,β(ζ );

• If μ(n) = (μ)n
n! , then we obtain Lμ

α,β(ζ );

• If α = 1,β = 1,μ(n) = (a)n(b)n
(c)n

, then we receive the
hypergeometric function

2G1(a, b; c; ζ ) =
∞∑
n=0

(a)n(b)n
(c)n

ζ n

�(n + 1)
.

Utilizing the function Aμ
α,β(ζ ), we the convolution

operator, for χ ∈ 	

A
μ
α,βχ(ζ ) =

(
�(α + β)

μ(1)

)
(Aμ

α,β ∗ χ)(ζ )

=
((

�(α + β)

μ(1)

)
μ(0) + ζ

+
∞∑
n=2

(
�(α + β)

μ(1)

)(
μ(n)

�(αn + β)

)
ζ n

)

∗
(
ζ +

∞∑
n=2

anζ
n

)

= ζ +
∞∑
n=2

(
�(α + β)

�(αn + β)

)(
μ(n)

μ(1)

)
anζ

n

:= ζ +
∞∑
n=2

�nanζ
n,

where

�n :=
(

�(α + β)

�(αn + β)

)(
μ(n)

μ(1)

)
.

(χ ∈ 	, ζ ∈ K, α > 0, β ≥ 1, μ = {μ(0), . . . ,μ(n)})
Now by using the Sàlàgean derivative [23], we have

A
μ
α,βχ(ζ ) = ζ +

∞∑
n=2

�nanζ
n

A
μ,2
α,βχ(ζ ) = ζ +

∞∑
n=2

n �n anζ
n

...

A
μ,k
α,βχ(ζ ) = ζ +

∞∑
n=2

nk �n anζ
n.

Clearly, A
μ,k
α,βχ(ζ ) ∈ 	. As a result, the Raina fractional

differential operator can be studied geometrically.
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Remark 2.7:

• The linear operator A
μ
α,βχ(ζ ) is a natural transform

of the analytic functionχ(ζ ) (χ(ζ ) → A
μ
α,βχ(ζ )). The

Raina’s summation, which is a generalization of the
Mittag–Leffler summation, is the name for this func-
tion

Lαχ(ζ ) ≡
∞∑
n=0

an
�(1 + αn)

ζ n.

And the Borel’s summation

Bχ(ζ ) ≡
∞∑
n=0

an
n!

ζ n.

• In the geometric function theory, the operator
A

μ
α,βχ(ζ ) is a generalization of the well-known linear

Carlson–Shaffer operator [24], when α = β = 1, and

μ(n) = (1)n(ℵ)n
(�)n

such that

�(ℵ, c)χ(ζ ) =
∞∑
n=0

(
(1)n(ℵ)n

�(n + 1)(c)n

)
anζ

n.

• When μ(n) = �(αn + β) for all n ≥ 1, we obtain the
well known the Sàlàgean differential operator [23]

A
μ,k
α,βχ(ζ ) = ζ +

∞∑
n=2

nkanζ
n.

2.3. Preparatory

The conclusions of this investigation into the differ-
ential subordination theory are established using the
following preliminaries:

Lemma 2.8 ([19]): Suppose that f (ζ ) and g(ζ ) are con-
vex univalent defining in K with f (0) = g(0). In addition,
for a constant ξ = 0, �(ξ) ≥ 0, the subordination

f (ζ ) + (1/ξ)ζ f ′(ζ ) ≺ g(ζ )

yields

f (ζ ) ≺ g(ζ ).

Lemma 2.9 ([19]): Define the general class of analytic
functions

�[�, n] = {υ : υ(ζ ) = � + �nζ
n + �n+1ζ

n+1 + · · · },

where � ∈ C and n is a positive integer. If ”∈ R, then

�{υ(ζ ) + ”ζυ ′(ζ )} > 0 ⇒ �(υ(ζ )) > 0.

Furthermore, if ”> 0 and υ ∈ �[1, n], then there occurs
two positive numbers ξ1 > 0 and ξ2 > 0 satisfying the
relation

υ(ζ ) + ”ζυ ′(ζ ) ≺
(
1 + ζ

1 − ζ

)ξ1

implies

υ(ζ ) ≺
(
1 + ζ

1 − ζ

)ξ2

.

Lemma 2.10 (see [25]): Let �, υ ∈ �[�, n], where υ is
convex univalent inK and for v1, v2 ∈ C, v2 = 0, then

v1�(ζ ) + v2ζ�
′(ζ ) ≺ v1υ(ζ ) + v2ζυ

′(ζ )

→ �(ζ ) ≺ υ(ζ ).

Lemma 2.11 (see [26]): Let υ ,℘ ∈ �[�, n], where ℘ is
convex univalent inK and the functionalυ(ζ ) + ωζυ ′(ζ )
is univalent forω > 0. Then

℘(ζ ) + ωζ℘′(ζ ) ≺ υ(ζ ) + ωζυ ′(ζ ) → ℘(ζ ) ≺ υ(ζ ).

Lemma2.12 ([27]): Assume that�analytic inK fulfilling
�(0) = 0. Then theupper value of�on the circle |ζ | = 1at
the point ζ0 = r eiθ , θ ∈ [−π ,π ], 0 < q < 1 is

ζ0(ðq�(ζ0)) = ”�(ζ0), ”≥ 1,

where ðq represents the Jackson fractional derivative (or
quantum fractional derivative).

3. Outcomes

In this study, we formulate the next class of normalized
analytic functions and study its properties in view of the
geometric function theory.

Definition 3.1: A function χ ∈ 	 is called to be in the
class�μ,k

α,β(ς , ρ) if it fulfils the inequality(
1 − ς

ζ

)
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′ ≺ ρ(ζ ).

(ζ ∈ K, ς ∈ [0, 1], ρ(0) = 1, α > 0, β ≥ 1),
(1)

where ρ is convex univalent in K.

Obviously, the convex univalent function

ρ(ζ ) = Aζ + 1
Bζ + 1

,

is a member in the class

P :=
{
ρ ∈ K : ρ(η) = 1 +

∞∑
n=1

ρiζ
n

}
.

Consider the functional�χ : K → K, as in the following
structure:

�χ(ζ ) :=
(
1 − ς

ζ

)
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′ (2)
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Based on Definition 3.1, we have the following
inequality:

�χ(ζ ) ≺ Aζ + 1
Bζ + 1

, ζ ∈ K.

Our study is as follows:

3.1. Inequalities outcomes

We start with the next property of Raina’ s operator.

Theorem 3.2: Let χ ∈ �
μ,k
α,β(ς , ρ) such that

�{�χ(ζ )} = �
{(

1 − ς

ζ

)
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′
}

:= �
{
1 +

∞∑
n=1

σn

}
> 0

Then the inequality is fully filled by the coefficient bound-
aries of�χ with the probability measure dω(θ):

|σn|
2

≤
∫ 2π

0
|e−inθ |dω(θ),

Moreover, if

�(eiυ�χ(ζ )) > 0, ζ ∈ K, υ ∈ R

then χ ∈ �
μ,k
α,β(

Aζ+1
Bζ+1 ) and

�χ(ζ ) = Aζ + 1
Bζ + 1

, ξ ∈ K, |A| = |B| = 1.

Proof: Since

�(�χ(ζ )) = �
(
1 +

∞∑
n=1

σnζ
n

)
> 0,

then�χ(ζ ) is a Carathéodory function in the open unit
disk. Continuously, theCarathéodorypositivistmethod-
ology brings that

|σn| ≤ 2
∫ 2π

0
|e−inθ |dω(θ),

where dω is a probability measure. Additionally, if

�(eiυ�χ(ζ )) > 0, ζ ∈ K, υ ∈ R

then in virtue of [20, Theorem 1.6] and for fixed number
υ ∈ R, we get

ρ(ζ ) = Aζ + 1
Bζ + 1

, ζ ∈ K, |A| = |B| = 1.

Moreover, we have from the proof of [20, Theorem 1.6]

�χ(ζ ) ∗ ρ(ζ ) = 0,

and that such that the range (�χ ∗ ρ)(K) i s contained
in the interior of ρ(K). This yields 0 ∈ (�χ ∗ ρ)(K).
Hence,

χ ∈ �
μ,k
α,β

(
ς ,

Aζ + 1
Bζ + 1

)
.

�

The next outcomes indicate the necessary and suffi-
cient method for the functional sandwich theory.

Theorem 3.3: Let the following conditions hold:

ςζ [Aμ,k
α,βχ(ζ )]

′′ + [Aμ,k
α,βχ(ζ )]

′ ≺ p2(ζ ) + ζp′
2(ζ ), (3)

where p2(0) = 1 and convex in K. Additionally, assume
that�χ(ζ ) is univalent inK such that�χ ∈ �[p1(0), 1] ∩
O,where O presents the set of all univalent analytic func-
tions g with limζ∈∂O g = ∞ and

p1(ζ ) + ζp′
1(ζ ) ≺ ςζ [Aμ,k

α,βχ(ζ )]
′′ + [Aμ,k

α,βχ(ζ )]
′. (4)

Then

p1(ζ ) ≺ �χ(ζ ) ≺ p2(ζ )

and p1(ζ ) is the best sub-dominant and p2(ζ ) is the best
dominant.

Proof: Let

�χ(ζ ) =
(
1 − ς

ζ

)
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′.

A computation implies

�χ(ζ ) + ζ�′
χ (ζ ) = ς [Aμ,k

α,βχ(ζ )]
′

+

ζ(ςζ [Aμ,k
α,βχ(ζ )]

′′ − (ς − 1)[Aμ,k
α,βχ(ζ )]

′)
+(ς − 1)[Aμ,k

α,βχ(ζ )]

ζ

+
(1 − ς)[Aμ,k

α,βχ(ζ )]

ζ

= ςζ [Aμ,k
α,βχ(ζ )]

′′ + [Aμ,k
α,βχ(ζ )]

′.

As a result, the following double inequality is obtained

p1(ζ ) + ζp′
1(ζ ) ≺ �χ(ζ ) + ζ�′

χ (ζ ) ≺ p2(ζ ) + ζp′
2(ζ ).

As a conclusion, the desired result is yielded by Lem-
mas 2.10 and 2.11. �

Theorem 3.4: Let

�χ(ζ ) = (1 − ς)

ζ
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′

then ⎛
⎝A

μ,k
α,βχ(ζ )]

′

ζ

⎞
⎠ ε1 + [Aμ,k

α,βχ(ζ )][ε1 + 3ε2]
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+ ε2ζ [A
μ,k
α,βχ(ζ )]

′′ ≺
(
1 + ζ

1 − ζ

)ξ1

⇒ �χ(ζ ) ≺
(
1 + ζ

1 − ζ

)ξ2

.

(ξ1 > 0, ξ2 > 0, ε1 = 1 − ς , ε2 = ς > 0)

Proof: A computation yields

�χ(ζ ) + ζ�′
χ (ζ )

= (1 − ς)

ζ
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′

+ ζ

(
(1 − ς)

ζ
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′
)′

=
⎛
⎝ [Aμ,k

α,βχ(ζ )]
′

ζ

⎞
⎠ ε1 + [ε1 + 3ε2][A

μ,k
α,βχ(ζ )]

+ ε2ζ [A
μ,k
α,βχ(ζ )]

′′

≺
(
1 + ζ

1 − ζ

)ξ1

According to Lemma 2.9 with ”= 1, we get

�χ(ζ ) ≺
(
1 + ζ

1 − ζ

)ξ2

.

�

3.2. Fractional differential equation

In this part, we continue our study using the convo-
lution linear operator. We formulate the operator to
present a generalized formula of the diffusive wave
differential equation. When inertial acceleration is sub-
stantially lower than all other sources of acceleration, or
when there is mostly sub-critical flow with low Froude
values, the diffusive wave is viable.

In light of the suggested operator, we utilize the
class�μ,k

α,β(ς ,
1+ζ
1−ζ

) to develop a class of fractional diffu-
sive wave differential equations. We look at the upper
bound of the diffusive wave equation. The formula is as
follows:(

1 − ς

ζ

)
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′ = Aζ + 1
Bζ + 1

,

([Aμ,k
α,βχ(0)] = 0, ς ∈ [0, 1], ζ ∈ K).

(5)

The solution to (5) is given by the following result.

Theorem3.5: Letχ ∈ �
μ,k
α,β(ς ,

1+ζ
1−ζ

). Then (5) has a solu-
tion expressed by

[Aμ,k
α,βχ(ζ )] = ζ

(
2ζ 2G1(1, 1 + 1

ς
, 2 + 1

ς
, ζ )

ς + 1
+ 1

)
,

(6)

where 2G1(a, b, c; ζ ) indicates the hypergeometric
function.

Proof: Assume that χ ∈ �
μ,k
α,β(ς ,

1+ζ
1−ζ

). Then it satisfies
the differential equation(

1 − ς

ζ

)
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′ = ϕ(ζ ) + 1
1 − ϕ(ζ )

,

where ϕ is a Schwarz function with the property: |ϕ| ≤
|ζ | < 1 and ϕ(0) = 0. Now, by using Schwarz lemma,
equality ϕ(ζ ) = σζ , |σ | = 1 (see [28, Theorem 5.34])
implies the differential equation

(1 − ς)

ζ
[Aμ,k

α,βχ(ζ )] + ς [Aμ,k
α,βχ(ζ )]

′ = ζ + 1
1 − ζ

.

Rearrange the above equation, we have

[Aμ,k
α,βχ(ζ )]

′ + 1 − ς

ςζ
[Aμ,k

α,βχ(ζ )] =
(
1
ς

)(
1 + ζ

1 − ζ

)
.

Multiply the above equation by the functional

T(ζ ) = exp
(∫

1 − ς

ςζ
dζ
)

= ζ
1−ς
ς ,

we have

ζ
1−ς
ς [Aμ,k

α,βχ(ζ )]
′ +

(
1 − ς

ς

)
ζ

1−2ς
ς [Aμ,k

α,βχ(ζ )]

=
(
1
ς

)(
1 + ζ

1 − ζ

)
.

ζ 1/ς−1[Aμ,k
α,βχ(ζ )]

′ −
[Aμ,k

α,βχ(ζ )]
(
(1 − ς)ζ 1/ς−2

)
ς

=
(
ζ 1/ς−1

ς

)(
1 + ζ

1 − ζ

)
.

The solution of the above first-order differential
equation is

[Aμ,k
α,βχ(ζ )] = ζ

(
2ζ 2G1(1, 1 + 1

ς
, 2 + 1

ς
, ζ )

ς + 1
+ 1

)
,

where 2G1(a, b, c; ζ ) indicates the hypergeometric func-
tion. This completes the proof. �

Example 3.6: Let χ ∈ �
μ,k
α,β(ς ,

1+ζ
1−ζ

), where ς = 1/2.
Then in view of Theorem 3.5, we get the solution

[Aμ,k
α,βχ(ζ )] = ζ

(
4ζ 2G1(1, 3, 4, ζ )

3
+ 1

)

= ζ + 1.3ζ 2 + ζ 3 + 0.8ζ 4 + 0.67ζ 5

+ 0.57ζ 6 + O(ζ 7), |ζ | < 1.

3.3. First order differential operator

In the next study, we employ the Raina’s operator to
define a new generalized differential operator.

Definition 3.7: For non-negative real numbers λ let
[[λ]] be the integer part of λ. For χ ∈ 	, and by employ-
ing the Raina’s operator [Aμ,k

α,βχ(ζ )], we have the follow-
ing extended linear differential operator:

Aλ[Aμ,k
α,βχ(ζ )] = Aλ−[[λ]](A[[λ]][Aμ,k

α,βχ(ζ )])
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= k1(λ − [[λ]], ζ )
k1(λ − [[λ]], ζ ) + k0(λ − [[λ]], ζ )

× (A[[λ]][Aμ,k
α,βχ(ζ )])

+ k0(λ − [[λ]], ζ )
k1(λ − [[λ]], ζ ) + k0(λ − [[λ]], ζ )

× (ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′, (7)

where for ν = λ − [[λ]] ∈ [0, 1),

A0[Aμ,k
α,βχ(ζ )] = [Aμ,k

α,βχ(ζ )]

Aν [Aμ,k
α,βχ(ζ )] = k1(ν, ζ )

k1(ν, ζ ) + k0(ν, ζ )
[Aμ,k

α,βχ(ζ )]

+ k0(ν, ζ )
k1(ν, η) + k0(ν, ζ )

(ζ [Aμ,k
α,βχ(ζ )]

′)

= k1(ν, ζ )
k1(ν, η) + k0(ν, ζ )

[
ζ +

∞∑
n=2

�nn
kanζ

n

]

+ k0(ν, ζ )
k1(ν, ζ ) + k0(ν, ζ )

(
[ζ +

∞∑
n=2

�n n
k+1an ζ

n]

)

= ζ +
∞∑
n=2

(
k1(ν, ζ ) + nk0(ν, ζ )
k1(ν, ζ ) + k0(ν, ζ )

)
nk �n anζ

n

:= ζ +
∞∑
n=2

κnn
k �n anζ

n

A1[Aμ,k
α,βχ(ζ )] = ζ([Aμ,k

α,βχ(ζ )])
′, . . . ,

A[[λ]][Aμ,k
α,βχ(ζ )] = A1(A[[λ]]−1[Aμ,k

α,βχ(ζ )]),

where

κn :=
(

k1(ν, ζ ) + nk0(ν, ζ )
k1(ν, ζ ) + k0(ν, ζ )

)
;

and the functions k1, k0 : [0, 1] × K → K are analytic in
K with

k1(ν, ζ ) = −k0(ν, ζ ),

lim
ν→0

k1(ν, ζ ) = 1, lim
ν→1

k1(ν, ζ ) = 0, k1(ν, ζ ) = 0,

∀ζ ∈ K, ν ∈ (0, 1),

and

lim
ν→0

k0(ν, ζ ) = 0, lim
ν→1

k0(ν, ζ ) = 1, k0(ν, ζ ) = 0,

∀ζ ∈ K, ν ∈ (0, 1).

It is clear that, for constant coefficients, Aν [Aμ,k
α,β

χ(ζ )] ∈ 	. For example k0(ν, ζ ) = ν and k1(ν, ζ ) =
1 − ν.

Clearly, if λ assumes only non-negative integer
values, that is if λ − [[λ]] = 0, α = β = 1, μ(n) = n!,
∀n ≥ 1, thenwe have the Sàlàgean differential operator
[23].Wealsohave thedifferential operator in [29],which
is based on the same assumptions. In this section, we

examine the geometric properties of the complex con-
formable derivative (7) when applied to functions with
a positive real portion.

Theorem 3.8: For a fixed number ε ∈ (0, 1) and λ ∈
[0,∞) let

k0(λ − [[λ]], ζ ) =
(

ε

1 − ε

)
k1(λ − [[λ]], ζ ).

Then

Aλ+2[Aμ,k
α,βχ(ζ )]

Aλ+1[Aμ,k
α,βχ(ζ )]

∈ P =⇒
Aλ+1[Aμ,k

α,βχ(ζ )]

Aλ[Aμ,k
α,βχ(ζ )]

∈ P .

Proof: For k0(λ − [[λ]], ζ ) = ε
1−ε

k1(λ − [[λ]], ζ ) and
by Definition 3.7, we get

Aγ [Aμ,k
α,βχ(ζ )] = (1 − ε)(A[[λ]][Aμ,k

α,βχ(ζ )])

+ εζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′

Aλ+1[Aμ,k
α,βχ(ζ )] = ζ(A[[λ]][Aμ,k

α,βχ(ζ )])
′

+ εζ 2(A[[λ]][Aμ,k
α,βχ(ζ )])

′′

and

Aλ+2[Aμ,k
α,βχ(ζ )] = ζ(A[[λ]][Aμ,k

α,βχ(ζ )])
′ + (1 + 2ε)

× λ2(A[[λ]][Aμ,k
α,βχ(ζ )])

′′

+ εζ 3(A[[λ]][Aμ,k
α,βχ(ζ )])

′′′.

Obviously, we obtain

�
⎛
⎝Aλ+2[Aμ,k

α,βχ(ζ )]

Aγ+1[Aμ,k
α,βχ(ζ )]

⎞
⎠ > 0

if and only if

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 +

(1 + ε)ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′′

+εζ 2(A[[λ]][Aμ,k
α,βχ(ζ )])

′′′

(A[[λ]][Aμ,k
α,βχ(ζ )])

′

+εζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

> 0.

Accordingly, if and only if

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 +

ζ [(1 − ε)(A[[λ]][Aμ,k
α,βχ(ζ )])

+εζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′]′′

[(1 − ε)(A[[λ]][Aμ,k
α,βχ(ζ )])

+εζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′]′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

> 0. (8)

The convexity of a function is obtained by combining
the inequality 8 with the idea of convex functions:

(1 − ε)(A[[λ]][Aμ,k
α,βχ(ζ )]) + εζ [A[[λ]][Aμ,k

α,βχ(ζ )]]
′.
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But all convex functions are starlike, thenwe obtain that

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ [(1 − ε)(A[[λ]][Aμ,k
α,βχ(ζ )])

+εζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′]′

(1 − ε)(A[[λ]][Aμ,k
α,βχ(ζ )])

+εζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

> 0. (9)

The inequality 9 occurs if and only if

�
⎛
⎝Aλ+1[Aμ,k

α,βχ(ζ )]

Aλ[Aμ,k
α,βχ(ζ )]

⎞
⎠ > 0

and this ends the proof. �

Themain condition to put on the operatorA[[λ]][Aμ,k
α,β

χ(ζ )] is computed by our second theorem, for the func-
tional

Aλ+1[Aμ,k
α,βχ(ζ )]

ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′

to be of positive real part.

Theorem 3.9: For a positive number ε ∈ (0, 1) and λ ∈
[0,∞) let

k1(λ − [[λ]], ζ ) =
(

ε

1 − ε

)
k0(λ − [[λ]], ζ ).

IfA[[λ]][Aμ,k
α,βχ(ζ )] ∈ C, then

Aλ+1[Aμ,k
α,βχ(ζ )]

ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′
∈ P(ε).

Proof: Applying the differential operator rule to

Aλ+1[Aμ,k
α,βχ(ζ )] = A(Aλ[Aμ,k

α,βχ(ζ )])

implies

Aλ+1[Aμ,k
α,βχ(ζ )]

= Aλ−[[λ]](A[[λ]]+1[Aμ,k
α,βχ(ζ )])

= Aλ−[[λ]]{A[A[[λ]][Aμ,k
α,βχ(ζ )]}

= Aλ−[[λ]]{ζ [A[[λ]][Aμ,k
α,βχ(ζ )]]

′}

= k1(λ − [[λ]], ζ )
k1(λ − [[λ]], ζ ) + k0(λ − [[λ]], ζ )

× {ζ [A[[λ]][Aμ,k
α,βχ(ζ )]]

′}

+ k0(λ − [[λ]], ζ )
k1(λ − [[λ]], ζ ) + k0(λ − [[λ]], ζ )

× {ζ [(A[[λ]][Aμ,k
α,βχ(ζ )])

′ + ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′′]}

= k1(λ − [[λ]], ζ )
k1(λ − [[λ]], ζ ) + k0(λ − [[λ]], ζ )

× {ζ [A[[λ]][Aμ,k
α,βχ(ζ )]]

′}

+ k0(λ − [[λ]], ζ )
k1(λ − [[λ]], ζ ) + k0(λ − [[λ]], ζ )

× {ζ [A[[λ]][Aμ,k
α,βχ(ζ )]]

′}

+ k0(λ − [[λ]], ζ )
k1(λ − [[λ]], ζ ) + k0(λ − [[λ]], ζ )

× {ζ 2[A[[λ]][Aμ,k
α,βχ(ζ )]]

′′}
= ζ [A[[λ]][Aμ,k

α,βχ(ζ )]]
′

+ k0(λ − [[λ]], ζ )
k1(λ − [[λ]], ζ ) + k0(λ − [[λ]], ζ )

× {ζ 2[A[[λ]][Aμ,k
α,βχ(ζ )]]

′′}. (10)

Dividing Equation 10 by the term ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′
and utilizing the relation

k1(λ − [[λ]], ζ ) =
(

ε

1 − ε

)
k0(λ − [[λ]], ζ ),

we get

Aλ+1[Aμ,k
α,βχ(ζ )]

ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′

= 1 + (1 − ε)
ζ(A[[λ]][Aμ,k

α,βχ(ζ )])
′′

(A[[λ]][Aμ,k
α,βχ(ζ )])

′
.

The convexity ofA[[λ]][Aμ,k
α,βχ(ζ )], it becomes

�
⎧⎨
⎩1 +

ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′′

(A[[λ]][Aμ,k
α,βχ(ζ )])

′

⎫⎬
⎭ > 0.

Hence, it yields that

�
⎧⎨
⎩

Aλ+1[Aμ,k
α,βχ(ζ )]

ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′

⎫⎬
⎭ > ε.

This ends the proof. �

3.4. Quantum starlikemethodology

Quantum calculus (QC) is a novel field of mathemat-
ical analysis and its applications, with applications in
physics and mathematics. Jackson [30, 31] originally
defined andenhanced the functions of q-differentiation
and q-integration. The geometric function theory idea
of q-calculus was later incorporated by Ismail et al. [32].
QC is now being used by researchers to propose and
build new Ma and Minda classes. Seoudy and Aouf [33]
suggested a quantum starlike function subclass based
on q-derivatives. Recently, Zainab et al. [34] employed
a novel curve to create appropriate q-stralikeness crite-
ria. Different types of q-stralik functions dominated by a
2D-Julia set were explored by Samir et al. [35]. Further-
more, QC is used to generalize a variety of differential
and integral operators [36–42].
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Definition 3.10: The Jackson derivativemay be shown
using the difference operator below.

(ðq)p(ζ ) = p(ζ ) − p(qζ )

ζ(1 − q)
, q ∈ (0, 1) (11)

such that

ðq(ζ
c) =

(
1 − qc

1 − q

)
ζ c−1.

The total of the numbers is also included in the Maclau-
rin’s series representation.

(ðqp)(ζ ) =
∞∑
k=0

pk[k]qζ
k−1, (12)

where

[k]q := 1 − qk

1 − q
.

Note that

ðq� = 0, lim
q→1−

(ðqp)(ζ ) = p′(ζ ),

where � is a constant. Then there’s the multiplication
rule, which is formulated by multiplying two numbers
together

ðq(p1(ζ )p2(ζ )) = p2(ζ )ðqp1(ζ ) + p1(qζ )ðqp2(ζ )

= p2(qζ )ðqp1(ζ ) + p1(ζ )ðqp2(ζ ).

We then use the q-parametric Mandelbrot function to
formulate our q-starlike class, linking it to the normal-
ized function subclass in the process K

G( )(ζ ) =  + ζ 2

( ∈ C, ζ ∈ K).
(13)

We aim to investigate the sufficient conditions on the
twoparameters  andq to obtain theq-starlike function.

Theorem 3.11: Assume that ! ∈ Kwith !(0) = 1 and

1 + ζ(ðq!(ζ )) ≺
√
1 + ζ , ζ ∈ K. (14)

If for some positive constant j achieves the inequalities

j > 1 +
√
3
2
, 0 < q ≤ 2j2 − 4j − 1

2j2
, (15)

then for some  ∈ C,we have

!(ζ ) ≺ G( )(ζ ) =  + ζ 2. (16)

Proof: Formulate a function � by

�(ζ ) := 1 + ζ(ðq!(ζ )).

The condition (14) implies that

1 + ζ(ðq!(ζ )) = √
1 + υ(ζ ),

(υ(0) = 0, |υ(ζ )| ≤ |ζ | < 1)

A computation gives

υ(ζ ) = �
2(ζ ) − 1.

Our aim is to show that

|υ(ζ )| = |�2(ζ ) − 1| < 1,

where ζ0 ∈ K satisfying

!(ζ ) = [ + υ2(ζ )].

Consume not; if so, the preceding conclusion applies

�(η) = 1 + η(ðq[ + υ2(η)]).

Employing Jackson’s derivative principles as well as the
formula

υ(qζ ) = υ(ζ ) − (1 − q)ζðqυ(ζ ),

and

ðqυ
2(ζ ) = ðqυ(ζ )[2υ(ζ ) − (1 − q)ζðqυ(ζ )],

we obtain

�(ζ ) = 1 + ζðqυ(ζ )[2υ(ζ ) − (1 − q)ζðqυ(ζ )].

Consider the existence of a point ζ0 ∈ K such that

max
|ζ |≤|ζ0|

|υ(ζ )| = |υ(ζ0)| = 1

and

ζ0(ðqυ(ζ0)) = jυ(ζ0), j ≥ 1.

We proceed to prove

|υ(ζ )| = |�2(ζ ) − 1| < 1,

utilizing Jack Lemma 2.12.
Letting υ(ζ0) = eiθ , we get

|�2(ζ ) − 1|
= |1 + 2t[1 + ζðqυ(ζ )[2υ(ζ ) − (1 − q)ζðqυ(ζ )]]

+ [1 + ζðqυ(ζ )[2υ(ζ ) − (1 − q)ζðqυ(ζ )]]2

− 1|ζ=ζ0

= |2 + 2ζðqυ(ζ )[2υ(ζ ) − (1 − q)ζðqυ(ζ )]

+ 1 + 2ζðqυ(ζ )[2υ(ζ ) − (1 − q)ζðqυ(ζ )]

+ [ζðqυ(ζ )[2υ(ζ ) − (1 − q)ζðqυ(ζ )]]2|ζ=ζ0

= |3 + 2ζ0ðqυ(ζ0)[2υ(ζ0) − (1 − q)ζ0ðqυ(ζ0)]

+ 2ζ0ðqυ(ζ0)[2υ(ζ0) − (1 − q)ζ0ðqυ(ζ0)]

+ [ζ0ðqυ(ζ0)[2υ(ζ0) − (1 − q)ζ0ðqυ(ζ0)]]2|
= |3 + 2jυ(ζ0)[2υ(ζ0) − (1 − q)jυ(ζ0)]

+ 2jυ(ζ0)[2υ(ζ0) − (1 − q)jυ(ζ0)]

+ [jυ(ζ0)[2υ(ζ0) − (1 − q)jυ(ζ0)]]2|
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≥ |3 + 4jυ2(ζ0)[2 − (1 − q)j ]|
= |3 + 4j e2iθ [2 − (1 − q)j ]|
≥ 1,

where

j > 1 +
√
3
2
,

2j2 − 4j − 1
2j2

≤ q < 1,

which contradicts (15). Hence, we obtain (16). �

The followingexamples involve theRaina’ s operator.

Example3.12: For apositivenumber ε ∈ (0, 1) andλ ∈
[0,∞) let

k1(λ − [[λ]], ζ ) = ε

1 − ε
k0(λ − [[λ]], ζ ).

• If A[[λ]][Aμ,k
α,βχ(ζ )] ∈ C, then in view of Theorem 3.9,

we have

!(ζ ) :=
Aλ+1[Aμ,k

α,βχ(ζ )]

ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′
∈ P(ε).

That is !(0) = 1. Moreover, if

1 + ζðq

⎛
⎝ Aλ+1[Aμ,k

α,βχ(ζ )]

ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′

⎞
⎠ ≺

√
1 + ζ ,

whereq satisfies (15) thenaccording to Theorem3.11

Aλ+1[Aμ,k
α,βχ(ζ )]

ζ(A[[λ]][Aμ,k
α,βχ(ζ )])

′
≺ G( )(ζ ).

• If

Aλ+2[Aμ,k
α,βχ(ζ )]

Aλ+1[Aμ,k
α,βχ(ζ )]

∈ P

then in view of Theorem 3.8, we get

!(ζ ) :=
Aλ+1[Aμ,k

α,βχ(ζ )]

Aλ[Aμ,k
α,βχ(ζ )]

∈ P .

That is !(0) = 1. In addition, if

1 + ζðq

⎛
⎝Aλ+1[Aμ,k

α,βχ(ζ )]

Aλ[Aμ,k
α,βχ(ζ )]

⎞
⎠ ≺

√
1 + ζ ,

where q satisfies (15) then by Theorem 3.11, we have

Aλ+1[Aμ,k
α,βχ(ζ )]

Aλ[Aμ,k
α,βχ(ζ )]

≺ G( )(ζ ).

• Let

φ(ζ ) =
[Aμ,k

α,βχ(ζ )]

ζ
,

where φ(0) = 1. If

1 + ζðqφ(ζ ) ≺
√
1 + ζ ,

where q achieves the inequality (15) then in virtue of
Theorem 3.11, we obtain

φ(ζ ) ≺ G( )(ζ ).

4. Conclusion

Raina’s transformations in K were generalized utiliz-
ing conformable calculus and Jackson calculus in the
above investigation. TheRaina’s convolutionoperator is
acted on the normalized subclass. As an application, we
considered the proposed linear convolution operator
in fractional differential equation, type wave equation.
The solution of a certain type of diffusion differential
equation,which is utilized as a case study, is determined
by the hypergeometric function.

More investigation is presented by formulating the
Raina’s convolution operator in a conformable frac-
tional calculus. We studied the main sufficient condi-
tions to get stralike geometry of the operator (see The-
orems 3.8 and 3.9).

Finally, the quantum calculus is utilized to recognize
the q-starlike function together with the q-parametric
Mandelbort function. As an application, we applied
the result using the Raina’s convolution operator (see
Example 3.12).
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