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Abstract: Malaria is a deadly human disease that is still a major cause of casualties worldwide. In
this work, we consider the fractional-order system of malaria pestilence. Further, the essential traits
of the model are investigated carefully. To this end, the stability of the model at equilibrium points is
investigated by applying the Jacobian matrix technique. The contribution of the basic reproduction
number, R0, in the infection dynamics and stability analysis is elucidated. The results indicate that
the given system is locally asymptotically stable at the disease-free steady-state solution when R0 < 1.
A similar result is obtained for the endemic equilibrium when R0 > 1. The underlying system shows
global stability at both steady states. The fractional-order system is converted into a stochastic model.
For a more realistic study of the disease dynamics, the non-parametric perturbation version of the
stochastic epidemic model is developed and studied numerically. The general stochastic fractional
Euler method, Runge–Kutta method, and a proposed numerical method are applied to solve the
model. The standard techniques fail to preserve the positivity property of the continuous system.
Meanwhile, the proposed stochastic fractional nonstandard finite-difference method preserves the
positivity. For the boundedness of the nonstandard finite-difference scheme, a result is established.
All the analytical results are verified by numerical simulations. A comparison of the numerical
techniques is carried out graphically. The conclusions of the study are discussed as a closing note.

Keywords: stochastic epidemic model; malaria infection; stochastic generalized Euler; nonstandard
finite-difference method; positivity; boundedness

MSC: 65M06; 65M12; 35K15; 35K55; 35K57

1. Introduction

Malaria is a Latin word which means “foul air”. Biologically, malaria is an ailment due
to the microorganism plasmodium, which is a bug found in the mosquito. It is also observed
that not all mosquitoes transmit malaria; only the female mosquito Anopheles can inject this
plasmodium into the human body, causing the fatal malaria disease. Its incubation period
varies from 7 to 30 days, and research shows that five types of malarial parasites are found,
namely, P. malarie, P. ovale, P. vivax, P. falciparum and P. knowles. In particular, P. falciparum is
extremely dangerous and fatal, causing a wide range of physical symptoms, such as fever,
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flu, severe chills, vomiting, muscle aches, headache, nausea, diarrhea, tiredness, low blood
pressure, respiratory disorder, cerebral disorder, and hemoglobin in the urine, with some
cases showing jaundice and anemia.

Physicians knew about this disease at least 2000 years ago, and noted that it is very
common in marshy areas, where stagnant water is found frequently. It was assumed that
water and malaria have some relation, and some volunteers at that time drank from pond
water but they did not show any symptoms. A treatment for malaria was discovered
accidentally in the seventeenth century, when Americans started to use the bark of the
plant Quina to cure this disease in America. In 1880, the name plasmodium was given to
this parasite because it resembled the multinucleated cells of the sludge type. Nowadays,
the vaccine of malaria is used to prevent it, but it is not so effective due to the fact that
plasmodium has a very complicated life cycle. Trials and experiments are still in progress.
Currently, the vaccine RTSS is used, but it is still rather inefficient.

In America, about 2000 cases of malaria are diagnosed every year. According to
the World Health Organization, 2.29 billion cases of malaria were reported in 2019, and
2.28 billion cases were reported in 2018. In 2019, there were 409,000 deaths. In 2018,
411,000 causalities were recorded, worldwide. In 2019, 23% of deaths were calculated in
Nigeria, 11% in Congo, 5% in Tanzania, and 45% in Niger. The only region in the world
which is free of malaria in northern Australia. In total, 94% of cases were reported in Africa
which was the highest ratio in the world. Children under the age of 5 years are at high risk;
about 67% of children died worldwide in 2019. In Pakistan, during the monsoon season,
the ratio of malarial patients remains at its peak. It is calculated that about 300,000 cases
are reported every year in Pakistan. Some cautions are taken to control malaria, such as
wearing full clothes during summer, using different mosquito-repellent lotions, using a net
on windows and doors, having a proper sanitation system for water, using nets at night
while sleeping, using different medicated body oils, etc.

In 2020, Cristhian et al. proposed a SIR model to inhibit malaria [1]. In 2020,
Olaniyi et al. presented an SEIR mathematical model to control malaria among travelers [2].
In 2020, Kim et al. modulated an SEI model to save Korean people from Plasmodium
vivax [3]. Ibrahim et al. introduced an SEIR model to control the transmission of malaria
disease using awareness techniques [4]. In 2020, Baihaqi et al. proposed an SEIRS p-model
to investigate how malaria disease spreads among humans [5]. In 2020, Traore et al. pro-
posed an ELPN model by describing different stages of mosquitoes that are involved in
malaria transmission [6]. Djidjou et al. formulated an SEIR model to study the effects
of weather conditions for spreading malaria disease [7]. That year, Pandey presented a
mathematical model to describe how domestic and industrial effluents play a major role in
malaria spreading [8]. In 2019, Song et al. introduced a malaria-dynamics mathematical
model [9]. In turn, Ogunmiloro presented a model to simulate the infectivity of plasmod-
ium and toxoplasma [10]; Koutou et al. proposed an ELPA model to study the relationship
of malaria with mosquito population [11]; and Bakary et al. suggested a model to analyze
the impact of frequent biting of mosquitoes and blood transfusions [12].

Beretta et al. studied mathematically the mortality in children and adults caused
by malaria [13]. Rafia et al. observed the consequences of vaccination on the dynam-
ics of malaria [14]. In 2017, Traoré et al. presented a model to estimate the variation in
the intensity of malaria epidemic by considering the seasonal effects and frequent bite
rate of mosquitoes [15]. In 2017, Mojeeb et al. presented an SEIR model to investigate
the ways to control the mosquito population and eradication of malaria outbreaks [16].
Olaniyi suggested a system to demonstrate the non-linearity in malarial propagation [17].
In 2011, Mandal et al. projected a system to understand the propagation of malaria dis-
ease [18], Chitnis developed an SEIR model to check the propagation of malaria by infec-
tious mosquitoes [19] and Smith et al. presented a scientific design to predict the presence
of malaria in a human population [20]. The purpose of this work is to propose a stochastic
compartmental system using fractional operators to model the spreading of more general
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epidemics in a human population. Our scheme will be able to preserve various important
properties of the solutions [21–25].

2. Mathematical Models

In this section, we introduce the extended stochastic fractional epidemic model [26].
To start with, we quote some basic definitions of fractional calculus.

Definition 1. The Riemann–Liouville fractional derivative of ψ : R → R of order α > 0 is
defined as

RLDα
0 ψ(t) =

1
Γ(k− α)

dk

dtk

∫ t

0

ψ(s)
(t− s)k−α−1 ds, ∀t ∈ R, (1)

where k = [α] + 1, k− 1 < α < k and Γ is the gamma function. Meanwhile, the respective Caputo
fractional derivative of order α is given by

C
0 Dα

t ψ(t) =
1

Γ(k− α)

∫ t

0
(t− s)k−α−1 dk

dtkF (s)ds (2)

To start with, let us consider the following compartmental epidemic model studied
in [26]:

dSh(t)
dt1

= µhNh(t)− βhSh(t)
(

Iv(t)
Nv(t)

)
− αhSh(t), (3)

dIh(t)
dt1

= βhS(t)h Iv(t)− (δh + αh + γh)Ih(t), (4)

dRh(t)
dt1

= γh Ih(t)− αhRh(t), (5)

dSv(t)
dt1

= µV Nv(t)− βvSv(t)
Ih(t)
Nh(t)

− αvSv(t), (6)

dIv(t)
dt1

= βvSv
Ih(t)
Nh(t)

− αv Iv(t). (7)

In the above system, Sh(t) describes the susceptible population at time t, Ih(t) is the
infected population, Rh(t) is the number of recovered individuals, Sv(t) is the susceptible
mosquitoes, Iv(t) is the number of infected mosquitoes, Nh(t) is the population size, and
Nv(t) is the total mosquito population. Meanwhile, µh is the per capita birth rate of human
individuals [time−1], αh is the per capita natural death rate for human individuals [time−1],
δh denotes the per capita disease-induced death rate for human population [time−1], βh is
the contact rate of human population [time−1], γh represents the per capita recovery rate
of humans [time−1], µv denotes the per capita birth rate of mosquitoes [time−1], αv is the
per capita natural death rate of mosquitoes [time−1], and βv is the mosquito contact rate
[time−1].

To generalize systems (3)–(7), we use fractional operators by a scaling of the model.
From (3),

1
µhNh

dSh
dt1

=
µhNh
µhNh

− βh
µh

(
Sh
Nh

)(
Iv

Nv

)
−
(

αh
µh

)(
Sh
Nh

)
, (8)

which leads to the equation
dsh
dt

= 1− βshiv − α1sh, (9)

where sh = Sh
Nh

, iv = Iv
Nv

, α1 = αh
µh

, β = βh
µh

and t = t1µh. Similarly,
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dih
dt

= βshiv − (γ + α1)ih, (10)

div

dt
= v(1− iv)− δiv. (11)

Here, γ = δh+γh
µh

, v = βv
Nv

, δ = αv
µv

, Rh = Nh − Sh − Ih, and Sv = Nv − Iv. Finally, the
following time-fractional system results:

Dα
t sh = 1− βαsh(t)iv(t)− αα

1sh(t), (12)

Dα
t ih = βαsh(t)iv(t)− (αα

1 + γα)ih(t), (13)

Dα
t iv = vα(1− iv(t))ih(t)− δαiv(t). (14)

In this system, we convey that Dα
t = C

0 Dα
t and, for simplicity, the birth rate and

death are same. Moreover, the solution region for systems (12)–(14) is Ω = {(sh, ih, iv) :
sh + ih + iv ≤ 1, sh ≥ 0, ih ≥ 0, iv ≥ 0}.

Finally, we investigate a stochastic extension of the fractional epidemic models (12)–(14)
following various stochastic approaches available in the literature [27–30]. More precisely,
we consider the following system of stochastic differential equations, which extends our
fractional epidemic model:

Dα
t sh(t) = 1− βαsh(t)iv(t)− αα

1sh(t) + σ1sh(t)dB1(t),

Dα
t ih(t) = βαsh(t)iv(t)− (αα

1 + γα)ih(t) + σ2ih(t)dB2(t),

Dα
t iv(t) = vα(1− iv)ih(t)− δαiv(t) + σ3iv(t)dB3(t).

(15)

Here, σ1, σ2, and σ3 are stochastic perturbations of each state variable and Bm(t) is the
autonomous Brownian motion for each m = 1, 2, 3.

3. Mathematical Analysis

This part is devoted to obtain the equilibrium points of steady states and stability
analysis of systems (12)–(14). To that end, we set Dα

t sh(t) = Dα
t ih(t) = Dα

t iv(t) = 0.
Then, there are two equilibria of the epidemic models (12)–(14), which are the disease-free
E0 = (sh0 , ih0 , iv0) = (1, 0, 0), and the disease-existing steady state E1 = (s∗h, i∗h , i∗v). It is easy
to check algebraically that

i∗v =
vαi∗h

vαi∗h + δα
, (16)

s∗h =
(αα

1 + γα)(vαi∗h + δα)

βαvα
, (17)

i∗h =
βαvα − αα

1(α
α
1 + γα)δα

vα(αα
1 + γα)(βα + αα

1)
. (18)

On the other hand, to obtain the basic reproductive number, we apply the next
generation approach. This method assures that the following identity is satisfied:[

i∗h
i∗v

]
= F

[
ih
iv

]
−V

[
ih
iv

]
, (19)

where

F =

[
0 βαsh
0 0

]
, V =

[
(αα

1 + γα) 0
−vα δα

]
. (20)
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As a consequence,

FV−1 =
1

δα(αα
1 + γα)

[
βαshvα βαshαα + vα

0 0

]
(21)

We conclude that the basic reproductive number is

R0 =
βαvα

δα(αα
1 + γα)

. (22)

In what follows, we require the Jacobian associated to ouR system fractional differential
equations. Its determination is a straightforward task, and it can be readily checked that it
is given by

J(sh, ih, iv) =

−βαiv − αα
1 0 −βαsh

βαiv −(αα
1 + γα) βαsh

0 vα(1− iv) −vαih − δα

 (23)

Theorem 1. The disease-free steady-state E0 is locally asymptotically stable when R0 < 1.

Proof. Let I3 represent the identity matrix of size 3× 3. In order to study the stability at
the point E0(1, 0, 0), observe firstly that

|J(1, 0, 0)− λI3| =

∣∣∣∣∣∣
−αα

1 − λ 0 −βα

0 −(αα
1 + γα)− λ βα

0 v −δα − λ

∣∣∣∣∣∣ = 0, (24)

if and only if λ satisfies λ = −αα
1 or the quadratic equation

λ2 + (αα
1 + γα + δα)λ + δααα

1 + δαγα − vαβα = 0. (25)

By using Routh–Hurwitz criteria for second-order polynomials, we conclude that the
system is locally asymptotically stable at E0 if R0 < 1.

Theorem 2. If R0 > 1, then the system is locally asymptotically stable at E1.

Proof. Proceeding as in the previous theorem, it follows that the characteristic equation
associated to the Jacobian matrix at the equilibrium point is given by

λ3 + λ2(−A− D− G) + λ(AD + AG + DG− EF)− ADG− BCF + AEF = 0, (26)

where A = −βαiv − αα
1 , B = −βαsh, C = βαiv, D = −(αα

1 + γ), E = βαsh, F = vα(1− iv)
and G = −vαih− δα. The conclusion readily follows now from the Routh–Hurwitz criterion
for cubic polynomials.

The following lemma is provided to improve the global stability analysis of the system
(12)–(14).

Lemma 1 (Leon [31]). Let x : [0, ∞)→ R+ be a continuous function, and let t0 ≥ 0. Then, for
any time t ≥ t0, α ∈ (0, 1) and x∗ ∈ R+, the following inequality holds:

Dα

[
x(t)− x∗ − x∗ln

x(t)
x∗

]
≤
(

1− x∗

x(t)

)
Dαx(t). (27)

We tackle now the global asymptotic stability of the system (12)–(14) at the equilibrium
points.

Theorem 3. If R0 < 1, then the system is globally asymptotically stable at E0.
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Proof. Firstly, let us define the Lyapunov functional

G =

(
sh + (ih + iv)− sh0 − sh0 log

sh
sh0

)
=

(
sh − sh0 − sh0 log

sh
sh0

)
+ ih + iv. (28)

Using Lemma 1 now, we obtain that

Dα
t G ≤

(
sh − sh0

sh

)
Dα

t sh + Dα
t ih + Dα

t ih

=

(
sh − sh0

sh

)
(1− βαshiv − αα

1sh) + βαshiv − (αα
1 + γα)ih + v(1− iv)ih − δαiv

=
−(sh − sh0)

2

shsh0

− (αα
1 + γα)

(
ih −

βαshiv

αα
1 + γα

)
− δα

(
iv −

vα(1− iv)ih
δα

)
.

(29)

Clearly, Dα
t G < 0 if R0 < 1. Meanwhile, Dα

t G = 0 if sh = 1, ih = 0 and iv = 0. We
conclude that the system is globally asymptotically stable at the disease-free equilibrium
point when R0 < 1.

Theorem 4. The system (12)–(14) is globally asymptotically stable at E1 when R0 > 1.

Proof. The proof is similar to that of the previous theorem. In this case, we construct the
Lyapunov functional at E1 as

G =

(
sh − s∗h − s∗h log

sh
s∗h

)
+

(
ih − i∗h − i∗h log

ih
i∗h

)
+

(
iv − i∗v − i∗v log

iv

i∗v

)
. (30)

Using Lemma 1 and proceeding as in the proof of the preceding theorem, it follows
that

Dα
t G ≤

(
sh − s∗h

sh

)
Dα

t sh +

(
ih − i∗h

ih

)
Dα

t ih +

(
iv − i∗v

iv

)
Dα

t iv

= −
(sh − s∗h)

2

(shs∗h)
−

βαshiv(ih − i∗h)
2

(ihi∗h)
− vih(iv − i∗v)2

ivi∗v
.

(31)

Observe that Dα
t G ≤ 0 when R0 > 1. Moreover, Dα

t G = 0 if sh = s∗h, ih = i∗h and
iv = i∗v , which means that the system is globally asymptotically stable at the endemic
equilibrium solution.

Before closing this section, we investigate the sensitivity of the parameters of the
fractional epidemic model. To that end, we employ the derivative based local method to
take the partial derivatives of outputs with respect to inputs. Let

R0 =
βv

(α1 + γ)δ
. (32)

Observe that the following are satisfied:

Aβ =
β

R0
× ∂R0

∂β
= 1 > 0, (33)

Av =
v

R0
× ∂R0

∂v
= 1 > 0, (34)

Aα1 =
α1

R0
× ∂R0

∂α1
= −( α1

α1 + γ
) < 0, (35)

Aδ =
δ

R0
× ∂R0

∂δ
= −1 < 0, (36)

Aγ =
γ

R0
× ∂R0

∂γ
= − γ

(α1 + γ)
< 0. (37)
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As a conclusion, β and v are sensitive, and all the remaining parameters concerning the
reproduction number are not sensitive.

4. Numerical Model

We present three generalized stochastic fractional techniques to solve the stochas-
tic fractional-order system (15), namely, Euler, Runge–Kutta and a nonstandard finite-
difference (NSFD) scheme. The first two are already standard techniques which are well
known in the literature [32,33]. The third model is a new technique which is constructed
using a non-local approach [34]. Throughout, ∆t representS the temporal step-size.

Stochastic Euler method:

sn+1
h = sn

h +
(∆t)α

Γ(α + 1)
[1− βαsn

h in
v − αα

1sn
h + σ1∆B1sn

h ],

in+1
h = in

h +
(∆t)α

Γ(α + 1)
[βαsn

h in
v − (αα

1 + γα)in
h + σ2∆B2in

h ],

in+1
v = in

v +
(∆t)α

Γ(α + 1)
[vα(1− in

v )i
n
h − δαin

v + σ3∆B3in
v ].

(38)

Stochastic Runge–Kutta method:

ωn+1 = ωn +
1
6
[M1 + 2M2 + 2M3 + M4],

M1 = (∆t)φ(tn, ωn) + (∆t)σ∆Bψ(tn, ωn),

M2 = (∆t)φ
(

tn +
1
2

∆t, ωn +
1
2

M1

)
+ (∆t)σ∆Bψ

(
tn 1

2
∆t, ωn,

1
2

M1

)
,

M3 = (∆t)φ
(

tn +
1
2

∆t, ωn +
1
2

M2

)
+ (∆t)σ∆Bψ

(
tn 1

2
∆t, ωn,

1
2

M2

)
,

M4 = (∆t)φ(tn + h̄, ωn + M3) + (∆t)σ∆Bψ(tn h̄, ωn, M3).

(39)

NSFD method: 

sn+1
h =

sn
h +

(∆t)α

Γ(α+1) [1 + σ1∆B1sn
h ]

1 + hα

Γ(α+1) (βαin
v + αα

1)
,

in+1
h =

in
h +

(∆t)α

Γ(α+1) [β
αsn

h in
v + σ2∆B2in

h ]

1 + hα

Γ(α+1) (α
α
1 + γα)

,

in+1
v =

in
v +

(∆t)α

Γ(α+1) [v
αin

h + σ3∆B3in
v ]

1 + hα

Γ(α+1) (v
αin

h + δα)
.

(40)

Next, we establish the most important properties of the NSFD method.

Theorem 5 (Positivity). The deterministic form of system (40) preserves the non-negativity of the
solution.

Proof. All the equations in the system (40) contain no negative term. So, if the initial condi-
tions are non-negative, then the numerical solutions remain non-negative, as desired.

Theorem 6 (Boundedness). Suppose that the initial data of (40) are nonnegative. Then, there
exists a constant K(n, α) ≥ 0, such that sn

h , in
h , in

v ∈ [0, K(n, α)], for each n ∈ N.

Proof. By adding and rearranging the equations of the numerical model (40), we readily
check that
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sn+1
h + in+1

h + in+1
v

≤ sn+1
h

[
1 +

(∆t)α(βαin
v + αα

1)

Γ(α + 1)

]
+ in+1

h

[
1 +

(∆t)α(αα
1 + γα)

Γ(α + 1)

]
+ in+1

v

[
1 +

(∆t)α(vαin
h + δα)

Γ(α + 1)

]
= (sn

h + in
h + in

v ) +
(∆t)α

Γ(α + 1)
[1 + σ1∆B1sn

h + βαsn
h in

v + σ2∆B2in
h + vαin

h + σ3∆B3in
v ].

(41)

The proof is established using mathematical induction, letting K(n + 1, α) be the right
end of this chain of identities and inequalities.

Next, we examine the stability of the NSFD system (40).

Definition 2 (Arenas et al. [21]). The discrete system (40) is asymptotically stable if there
exist constants K1, K2 and K3 with the property that sn+1

h ≤ K1, in+1
h ≤ K2 and in+1

v ≤ K3 as
α→ 1−.

Theorem 7. Under the hypotheses of Theorem 6, the system (40) is asymptotically stable.

Proof. The conclusion of this result is a direct consequence of Theorem 6.

Before closing this section, we provide some numerical simulations for the stochastic
fractional-order epidemic model (15). To that end, we fix the model parameters as given
by Table 1 (see [26]). To start with, Figure 1 depicts the convergence behavior of each
compartment of the model at the endemic equilibrium (EE). The behavior of the graphs is
investigated for various values of α. Each graph adopts a random path to reach the EE at
the temporal step-size h = 0.1. When the step-size is increased, the infected population
may diverge at each value of the non-integer parameter. We conclude from this that the
generalized stochastic Euler method fails to illustrate the actual behavior of the disease
dynamics.

Table 1. Model parameters employed in the simulations of this work. Here, DFE stands for disease-
free equilibrium, and EE for endemic equilibrium.

Parameters Values

δα 0.6
αα

1 1
βα (DFE) 3
βα (EE) 3.5

γα 0.6
vα 0.3
σ1 0.09
σ2 0.008
σ3 0.007
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Figure 1. The graphical behavior of each sub-population is presented in the (a) numerical solution
of sh, (b) numerical solution of ih, (c) numerical solution of iv and (d) numerical solution of ih, with
different values of α, using the generalized fractional stochastic Euler method.

In a second experiment, we used the generalized stochastic Runge–Kutta method
to solve the same problem of the last paragraph. The results are shown in Figure 2,
which provides the convergence behavior of each compartment of the model at endemic
equilibrium (EE) for various values of α. When the step-size is increased above ∆t = 0.1, the
infected population may diverge at each value of α. Again, we conclude that this method
is not a reliable tool to reflect the actual behavior of the model. On the contrary, Figure 3
provides two runs (left and right columns) obtained by means of the generalized stochastic
NSFD. The results show that this technique converges to the equilibrium solution for each
of the values of α considered, using steps of sizes between ∆t = 0.1 and ∆t = 100, and at
a low computational cost. In that sense, this method is more robust and reliable than the
standard approaches used for comparison purposes.
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Figure 2. The graphical performance of each sub-population is presented in the (a) numerical solution
of sh, (b) numerical solution of ih, (c) numerical solution of iv and (d) numerical solution of ih, with
different value of α, using the generalized fractional stochastic Runge–Kutta method.
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Figure 3. The graphical behavior of each sub-population is presented for two sets of numerical
experiments (left and right columns) with different values of α, using the generalized fractional
stochastic NSFD.

5. Conclusions

In this work, we departed from a fractional-order disease model and transformed it
into a non-parametric perturbation stochastic model. A generalized stochastic fractional
NSFD method was proposed and applied to solve the epidemic model under study. The
proposed scheme preserves the positivity of the numerical solutions at each temporal step.
The generalized stochastic fractional NSFD is also capable of preserving the boundedness
of the approximations. We proved that the given system has two steady states, namely, a
disease-free and an endemic steady state. Furthermore, the constraints under which the
given system is locally and globally asymptotically stable were investigated. It is concluded
that the system attains the local and global stability when the disease is absent if R0 < 1.
In the same way, the role of R0 when R0 > 1 was studied for the endemic equilibrium.
Two other methods (a generalized fractional Euler method and a generalized Runge–Kutta
method) were also applied to compare the obtained results. The simulations showed
that the proposed scheme is superior in terms of its capability to identify correctly the
equilibrium solutions, in that sense our present report investigated a structure-preserving
technique [35–37] to solve a mathematical system in epidemiology. As a final comment,
we would like to point out that the investigation of the stochastic system is justified by the
fact that solutions exist for that model. Indeed, notice that the drift functions of this model
are locally Lipschitz continuous, which implies that the solutions exist locally. The global
existence follows an argument similar to that in [38]. We do not provide the details, as such
a study is outside the scope of the present work.
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