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Abstract A discrete fractional logistic map is pro-
posed in the left Caputo discrete delta’s sense. The
new model holds discrete memory. The bifurcation di-
agrams are given and the chaotic behaviors are numer-
ically illustrated.
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1 Introduction

For the chaos of continuous fractional differential
equations, a lot of fruitful results have been obtained in
the past decades. Probably more work has been devel-
oped for the fractional chaos and we mainly refer the
readers to the following development. Hartley et al. [1]
modified the Chua’s system to include fractional order
elements and reported that by varying the total system
order incrementally from 3.6 to 3.7, systems of “or-
der” less than three can exhibit chaos as well as other
nonlinear behaviors. From the view of kinetics, Za-
slavsky [2] systemically discussed what features of the
dynamics have. By using a truncated transfer function
method, Li and Chen [3] found that hyperchaos exists
in the fractional-order Rossler hyperchaotic equation
with order less than 4. Then, Li and Peng [4] gave the
predictor–corrector scheme of the fractional Chua’s
system and proved that the chaos there does exist. The
numerical scheme was used to discuss the phase dia-
grams and attractors of the chaos in later years.

Initially inspired by the discretization of the
Riemann–Liouville and the Caputo operators, the field
of the fractional difference equations is relatively new.
It is developing faster and several new applications
were deeply analyzed. For example, Atici and Eloe [5]
discussed the discrete initial value problem and gave
the existence results. Atici and Senguel [6] extended
the variational approach to the fractional discrete case
and provided a tool in the mathematical modeling.
Holm proposed the Laplace transform [7] for solv-
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ing discrete fractional equations in the nabla’s sense.
Abedel [8, 9] systemically discussed the Caputo and
the Riemann–Liouville fractional differences as well
as their properties. However, less efforts have been
contributed to the chaotic behaviors of the dynamical
systems.

For the famous logistic map

u(n + 1) = Ku(n)
(
1 − u(n)

)
(1)

popularized by May [10] in 1976, the system exhibits
chaotic behaviors for most values of the growth coef-
ficient K between 3.57 and 4. Naturally, one question
may be proposed: whether there is a discrete fractional
logistic map which has a generalized chaos behavior.

The fractional difference provides us a new power-
ful tool to characterize the dynamics of discrete com-
plex systems more deeply. Several discrete derivatives
were introduced recently in the literature [5–8], there-
fore a deeper analysis must be done in order to see the
effects in describing the dynamics. In this paper, we
investigate the chaotic behaviors of the following dis-
crete logistic map

CΔν
au(t) = μu(t + ν − 1)

(
1 − u(t + ν − 1)

)
,

t ∈ Na+1−ν, u(a) = c, 0 < ν ≤ 1, (2)

where CΔν
a is the left Caputo-like delta difference, Na

denotes the isolated time scale and Na = {a, a + 1,

a + 2, . . .} (a ∈ R fixed). For the function f (n), the
delta difference operator Δ is defined as Δf (n) =
f (n + 1) − f (n).

2 Preliminaries

We start with some necessary definitions from the dis-
crete fractional calculus and revisit the preliminary re-
sults.

Definition 2.1 [5] Let u: Na →R and 0 < ν be given.
Then the fractional sum of ν order is defined by

Δ−ν
a u(t) := 1

Γ (ν)

t−ν∑

s=a

(
t − σ(s)

)(ν−1)
u(s),

t ∈ Na+ν, (3)

where a is the starting point, σ(s) = s + 1 and t (ν) is
the falling function defined as

t (ν) = Γ (t + 1)

Γ (t + 1 − ν)
. (4)

Definition 2.2 [8] For 0 < ν,ν /∈ N and u(t) defined
on Na , the Caputo-like delta difference is defined by

CΔν
au(t)

:= Δ−(m−ν)
a Δmu(t)

= 1

Γ (m − ν)

t−(m−ν)∑

s=a

(
t − σ(s)

)(m−ν−1)
Δm

s u(s),

(5)

where t ∈ Na+m−ν,m = [ν] + 1.

Theorem 2.3 [11] For the delta fractional difference
equation

CΔν
au(t) = f

(
t + ν − 1, u(t + ν − 1)

)
,

Δku(a) = uk, m = [ν] + 1, k = 0, . . . ,m − 1,
(6)

the equivalent discrete integral equation can be ob-
tained as

u(t) = u0(t) + 1

Γ (ν)

t−ν∑

s=a+m−ν

(
t − σ(s)

)(ν−1)

× f
(
s + ν − 1, u(s + ν − 1)

)
, t ∈Na+m,

(7)

where the initial iteration u0(t) reads

u0(t) =
m−1∑

k=0

(t − a)(k)

k! Δku(a). (8)

The existence results for the above nonlinear frac-
tional difference equation have been discussed in [11].

Remark From Eq. (5) to Eq. (7), the domain is
changed from Na+m−ν to Na+m and the function
u(t) is preserved to define on the isolated time scale
Na during the summation (see the right sides of (5)
and (7)). In view of this point, the discrete fractional
calculus is an good tool for the initialization of the
fractional difference equations.
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3 Chaos of the discrete logistic map

For a = 0 and ν = 1, the discrete logistic map (2) can
be reduced to the classical one

Δu(n) = μu(n)
(
1 − u(n)

)
, u(0) = c (9)

or

u(n + 1) = (1 + μ)u(n) − μu2(n), u(0) = c. (10)

Considering the transform

u(n) = 1 + μ

μ
v(n), (11)

Eq. (10) can be written as

v(n + 1) = (1 + μ)
(
v(n) − v2(n)

)
,

v(0) = μ

1 + μ
u(0)

(12)

which exhibits chaos behaviors for most values of μ

between 2.57 and 3.
From Theorem 2.3, we can obtain the following

equivalent discrete integral form of Eq. (2):

u(t) = u(0) + μ

Γ (ν)

t−ν∑

s=1−ν

(t − s − 1)(ν−1)

× u(s + ν − 1)
(
1 − u(s + ν − 1)

)
, t ∈N1.

(13)

As a result, the numerical formula can be presented
accordingly

u(n) = u(0) + μ

Γ (ν)

n∑

j=1

Γ (n − j + ν)

Γ (n − j + 1)

× u(j − 1)
(
1 − u(j − 1)

)
. (14)

Compared with the map of the integer order (10),
the fractionalized one (14) has a discrete kernel func-
tion. u(n) depends on the past information u(0), . . . ,

u(n − 1). As a result, the memory effects of the dis-
crete maps means that their present state of evolution
depends on all past states.

Assume ν = 0.8, u(0) = 0.3, and n = 100. We can
derive the numerical solutions u(n) using the Matlab.
In what follows, Figs. 1, 2 and 3 show the numerical
solutions for different μ. Particularly, the system ex-
hibits a chaotic behavior for μ = 2.5.

Fig. 1 Stable solution of the fractional discrete logistic map for
μ = 1.5 and ν = 0.8

Fig. 2 Vibration in the fractional discrete logistic map for
μ = 1.9 and ν = 0.8

Fig. 3 Chaos of the fractional discrete logistic map for μ = 2.5
and ν = 0.8

Using the numerical formula (14), set the step size
of μ as 0.005 and the bifurcation diagrams are plotted
in Figs. 4, 5 and 6. The discrete chaos reduces to the
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Fig. 4 The bifurcation diagram for n = 100, u(0) = 0.3, and
ν = 0.6

Fig. 5 The bifurcation diagram for n = 100, u(0) = 0.3, and
ν = 0.2

classical one for ν = 1 in Fig. 7. We can readily obtain
the intervals of μ where the chaos happens.

It can be concluded that the chaos zones are clearly
different when we change the difference order ν. The
bifurcation diagrams (4)–(7) illustrate the evolution
and explain this point.

4 Conclusions

This study introduces a fractional discrete logistic map
using the delta difference of fractional order. Com-
pared with the one of the integer order, the new model
has a discrete memory and a fractional difference or-
der ν. When we change the difference order ν in the
numerical results, new chaotic behaviors of the logis-
tic map are observed.

It is interesting to point out that the chaotic zones
not only depends on the coefficients μ but the differ-

Fig. 6 The bifurcation diagram for n = 100, u(0) = 0.3, and
ν = 0.01

Fig. 7 The bifurcation diagram for n = 100, u(0) = 0.3, and
ν = 1

ence order ν. We strongly believe that a combination
of the spirit of fractional calculus and the discrete point
of view will lead to a better description of fractional
dynamics. In this paper, we only consider the left Ca-
puto delta. We will compare with other types of the
discrete fractional calculus in future work and show
their differences in the applications.
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