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Abstract: The purpose of this research is to analyze the general equations of double diffusive magneto-
free convection in an Oldroyd-B fluid flow based on the fundamental symmetry that are presented
in non-dimensional form and are applied to a moving heated vertical plate as the boundary layer
flow up, with the existence of an external magnetic field that is either moving or fixed consistent with
the plate. The thermal transport phenomenon in the presence of constant concentration, coupled
with a first order chemical reaction under the exponential heating of the symmetry of fluid flow, is
analyzed. The Laplace transform method is applied symmetrically to tackle the non-dimensional
partial differential equations for velocity, mass and energy. The contribution of mass, thermal and
mechanical components on the dynamics of fluid are presented and discussed independently. An
interesting property regarding the behavior of the fluid velocity is found when the movement is
observed in the magnetic intensity along with the plate. In that situation, the fluid velocity is not zero
when it is far and away from the plate. Moreover, the heat transfer aspects, flow dynamics and their
credence on the parameters are drawn out by graphical illustrations. Furthermore, some special cases
for the movement of the plate are also studied.

Keywords: double diffusion; special functions; free convection; Oldroyd-b fluid; magneto hydrody-
namics; thermal transport phenomenon; graphs to illustrate the dynamics of the problem

1. Introduction

Double diffusive convection is a mixing process due to the interaction of different
components of fluid having different density gradients and rates of diffusion [1]. Oceanog-
raphy is the simplest example of this phenomena, in which the concentration of salt and
heat exist with distinct gradients, and they diffuse with different rates. For more details,
refer to [2–4].

Moreover, over the years, the study of mass and the thermal transport phenomenon
for the magneto-hydrodynamic (MHD) natural convective flow of fluids under the impact
of electrical conduction has gained much popularity in view of their applications in meteo-
rology, chemical engineering geophysics, solar physics and performance motion, which
leads to symmetrical aspects in both the structure and the physical process. The results for
this type of motions for the case of viscous fluids over vertical planes are developed for
diversified boundary conditions. For example, for an impulsively moving plate with the
radiation effects and ramp wall temperature [5], dynamics of a fluid of heat absorbing type
with mass transfer [6], analytical study with a random unsteady shear stress boundary
condition [7]. The MHD free convective flow passing through a micro channel along with
the conditions of temperature and velocity slip on the boundary has been studied in [8].
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Hussain et al. [9] performed an analysis of the MHD flow and heat transfer of ferrofluid
in a channel with non-symmetrical cavities. They investigated and addressed the thermal
transport properties of ferrofluid in the non-symmetric cavity in the channel with a mag-
netic field enforced on it. For other related and useful investigations, see [10–12] and the
references therein.

In all these investigations, it is remarkable to confer that the uniform magnetic flux in
the fluid is unyielding. Narahari and Debnath [13] conducted a useful analysis of MHD-
natural convective flow by way of a fixed heat flux with two cases, namely, either the inten-
sity of magnetic field is fixed respective to the fluid (MFFRF) or the area around the magnet
is fixed in respect to the plate (MFFRP). Later, results were obtained by Shah et al. [14,15]
for an MHD natural convective flowing up an erected plate through chemical reaction with
the varying temperature of the plate in the cases for MFFRF and MFFRP.

Furthermore, in the existing literature, the investigations are carried out only for
viscous fluid. There are few efforts performed for the case of rate type fluid, for example,
some work related to free convective flow for MHD Maxwell fluid up a perpendicular plate
can be found in [16–18], but they only correspond for the case of MFFRF.

In this paper, we explore a general study of double diffusive magneto-free-convection
flow for a rate type fluid over a plate that is not fixed in the existence of chemical reaction,
with a constant concentration and exponential heating of the plate. Nonetheless, our
aim is not only to generalize the results by considering rate type fluids and heat–mass
transfer, but to produce contemporary results for both oscillating and general motions of
the plate. It is important to mention that, in case of MFFRP, the velocity of the fluid does
not vanish outlying from the plate. Furthermore, expressions for the thermal boundary
layer and velocity of fluid expressed in terms of the thermal and mechanical concentration
contributions to the fluid motion are obtained. The solutions relating to the swaying
movements of the plate are also discussed and demonstrated, resulting in the sum of
transient and parts and steady state. Additionally, the influence of the involved parameters
in the velocity of the fluid are graphically highlighted for the slow accelerating motions
of the plate. Finally, the effective Prandtl number of impacts on the viscous of thermal
boundary face is graphically determined.

This paper is structured as follows. In Section 2, the mathematical model with appro-
priate initial and boundary conditions is established. The exact analytic expressions for
the velocity field is computed in Section 3. In Section 4, some special cases concerning the
motion of the plate are discussed as well as expressions derived from obtained solutions by
using different physical parameters. In Section 5, the results and discussion are presented
and graphs are shown to analyze the impacts of various system parameters on the flow.
Finally, in Section 6, some important conclusions are presented.

2. Experimental Procedure

We are considering the time-dependent, incompressible, electrically conductive nat-
ural convective movement of an Oldroyd-B fluid over an erected plate, which is also
nonconductive and has infinite length. An unvarying magnetic intensity with strength B is
placed transversally on the plate along with the assumptions asserted that the magnetic
intensity is supposed to be fixed for the plate or to the fluid. Initially, it was supposed
that fluid and plate are static and have fixed species concentration C∞ and temperature
T∞. As time t = 0+, the plate starts to excel in opposition of the gravitational pull with
certain V f (t). Moreover, the temperature is stabilized at the expense of a relation in the
form T∞ + Tw(1− ae−bt), whereas the concentration is maintained at the value Cw. Here,
f (·) is a continuous piecewise function that dies out at t = 0. V is assumes as a constant
having dimension of velocity, and a, b, Tw and Cw are also constants.
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The following assumptions are introduced:

(i) Except for the variations in density with temperature in the body force, all other
physical properties are constant;

(ii) Comparing to the applied magnetic field, the magnetic field induced is insignificant;
(iii) Except for the effects of radiation along the chemical process (in between the species

concentration and the fluid), the Joule heating and viscous dissipation are neglected.

With the choice of an appropriate Cartesian coordinate system Oxyz and using the
Boussinesq and Rosseland approximations, the principal equations of Oldroyd-B fluid are
governed as [19,20]:

∂v(y, t)
∂t

=
1
ρ

∂τ(y, t)
∂y

+ g(T − T∞)βT + g(C− C∞)βC −
σB2

0
ρ

(v(y, t)− εV f (t)); y, t > 0, (1)

τ(y, t)
µ

(
1 + λ1

∂

∂t

)
=

(
1 + λ2

∂

∂t

)
∂v(y, t)

∂y
. (2)

Solving Equations (1) and (2) to eliminate τ from Equation (1), we obtain:

(
1 + λ1

∂

∂t

)
∂v
∂t

= v
(

1 + λ2
∂

∂t

)
∂2v
∂y2 +

(
1 + λ1

∂

∂t

)(
g(T − T∞)βT + gβC(C− C∞)−

σB2
0

ρ
(v− εV f (t))

)
. (3)

Additionally, heat and concentration equations are:

ρcp
∂T
∂t

= k
∂2T
∂y2 −

∂qr

∂y
, (4)

∂C
∂t

= D
∂2C
∂y2 − R(C− C∞), (5)

with initial/boundary conditions for all y, t > 0,

v(ι, t) = V f (t), C(ι, t) = Cw, T(ι, t) = T∞ − Tw(ae−bt − 1); t ≥ 0, (6)

v(y, t) < ∞, C(y, t)→ C∞ , T(y, t)→ T∞ , as y→ ∞, (7)

v(y, ι) = 0, C(y, ι) = C∞, T(y, ι) = T∞; ι = 0 and y ≥ 0, (8)

where v(y, t), C(y, t) and T(y, t) denotes the velocity, the species concentration and tem-
perature, respectively. D, and R are mass diffusivity and chemical reaction parameters,
respectively, whereas βT , βC, λ1, g, ν, ρ, λ2, k, qr, σ, and cp are thermal expansion coefficient
(it can be positive or negative), concentration expansion coefficient (it is always positive),
relaxation time, gravitational acceleration, kinematic viscosity, fluid density, retardation
time, thermal conductivity, radiative heat flux, electrical conductivity and specific heat at
constant pressure, respectively.

It is pertinent to mention that the parameter ε is 0 when MFFRF and 1 when MFFRP.
By adaptation (for an optically viscous fluid), then the Rosseland diffusion ap-

proach [11,21,22] is:

qr = −
4
3
σ

kR

∂T4

∂y
, (9)

where kR denotes the Rosseland mean attenuation coefficient and σ represents the
Stefan–Boltzmann constant. In the case when the disparity between T (fluid tempera-
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ture) and T∞ (free stream temperature) is small, Equation (4) changes into the following
simpler expression [21]:

∂2T(y, t)
∂y2 = Pre f f

∂T(y, t)
∂t

; for all t, y > 0, (10)

where Pre f f =
Pr

1 + Nr
, which is known as effective Prandtl number [23], is the transport

parameter regarding the diffusion (thermal and mass). Moreover, Nr and Pr are denoted
as the radiation–conduction parameter and the Prandtl number, respectively, where, Nr =
16
3

σ

kkR
T3

∞ and Pr =
µcp

k
.

Introducing the following dimensionless quantities

t∗ =
V2

ν
t, y∗ =

V
ν

y, v∗ =
v
V

, b∗ =
ν

V2 b, T∗ =
T − T∞

Tw
, λ2

∗ =
V2

ν
λ2,

C∗ =
C− C∞

Cw − C∞
, R∗ =

ν

V2 R, λ1
∗ =

V2

ν
λ1, f ∗(t) = f

( ν

v2 t∗
)

.

(11)

into (3)—(8), (10) and drop the ∗, our problem is transformed into the following non-
dimensional form and can be written as:(

1 + λ1
∂

∂t

)
∂v(y, t)

∂t
=

(
1 + λ2

∂

∂t

)
.
∂2v(y, t)

∂y2 +

(
1 + λ1

∂

∂t

)
(T(y, t)−M(v(y, t)− ε f (t)) + NC(y, t)), (12)

∂2T(y, t)
∂y2 = Pre f f

(
∂T(y, t)

∂t

)
, (13)

∂2C(y, t)
∂y2 = Sc ·

(
∂C(y, t)

∂t
+ RC(y, t)

)
. (14)

for t, y > 0 and with the boundary and initial conditions

v(ι, t) = f (t), C(ι, t) = 1, T(ι, t) = 1− ae−bt; t > 0, (15)

v(y, t) < ∞, C(y, t), T(y, t)→ 0 as y→ ∞, (16)

v(y, ι) = T(y, ι) = C(y, ι) = 0 for ι = 0 and y ≥ 0, (17)

where N is the ratio of buoyancy forces, while M, Sc and R denote the magnetic parameter,
Schmidt number and dimensionless chemical reaction parameter, respectively. Moreover,

they are defined as N =
βC(Cw − C∞)

βTTw
, M =

σB2

ρ

ν

V2 and Sc =
ν

D
. The Schmidt number

is a transport parameter with respect to the mass diffusivity, whereas N, calibrating the
comparative contribution for the mass transportation on the natural convective flow [20],
can have a negative or positive value. In the absence of the buoyancy force impact from the
mass diffusion, we have N = 0.

3. Solution of the Problem

It is extremely essential to point out that the expressions for the temperature and
concentration commensurate to the similar problem can be found in the existing literature;
in this paper, our target is to establish the fluid velocity expressions. We applied the
standard Laplace transform method. Now, the Laplace transformed derived equations for
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T(y, τ) and C(y, τ), namely Equation (15) in [23] and Equation (20) in [14], respectively,
yield

T(y, q) =
e−y
√

Pre f f q

q
− ae−y

√
Pre f f q

q + b
, (18)

C(y, q) =
e−y
√

Sc(q+R)

q
. (19)

where q is the Laplace transform parameter.

3.1. Calculation of Thermal Boundary Layer Thickness

When a fluid flows over a heated surface, then, due to the difference in temperature of
surface and fluid, heat transfer takes place till an equilibrium temperature is attained. This
heat transfer supervenes at plate surface as there is no relative motion noticed between the
fluid and fluid’s surface. During the process of attaining the stabilization state, the fluid
transmits heat to the leftover layers of fluid until it attains ambient temperature. As a result,
a layer is settled (where the temperature down gradually) called thermal boundary layer.
It is significant that, as the thermal outline layer becomes thicker, the convective energy
transfer coefficient decreases. So, it is favorable to minimize the thickness of the thermal
outline layer in order to enhance the convective thermal coefficient. Considering that
δT(t) denotes the measure of thermal boundary layer, if δ1T is the thermal boundary layer

thickness, then δT(t) =
δ1T∫
0

T(y, t)dy and the differential equation of the thermal boundary

layer thickness are obtained by integration.
Equation (13), with respect to y from 0 to ∞ using the fact that lim

y→∞
T(y, t) = lim

y→∞
∂T(y,t)

∂y =

0 and introducing the measure of thermal layer, can be written as follow

Pre f f
dδT(t)

dt
= − ∂T(y, t)

∂y

∣∣∣∣
y=0

(20)

Solving Equation (20) by employing the Laplace transform with the concerned initial
conditions and δT(0) = 0, we obtain

δT(q) =
1√

Pre f f q

(
1
q
− a

q + b

)
. (21)

or equivalently

δT(q) =
1√

Pre f f

(
1

q3/2 −
a

(q + b)
√

q

)
. (22)

Now, employing the inverse Laplace transform to Equation (22) yields

δT(t) =
2√

Pre f f π

√t−
ae−bt√πer f

(
i
√

bt
)

√
b

. (23)

3.2. Calculation of the Velocity Field

Implementing the Laplace transform on Equation (12) and making use of the concerned
initial conditions, the ordinary differential equation obtained is

(
q + λ1q2

)
v(y, q) = (1 + λ2q)

d2v(y, q)
dy2 + (1 + λ1q)

(
NC(y, q) + T(y, q) + M(εF(q)− v(y, q))

)
. (24)
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with boundary conditions

v(ι, q) = F(q), v(y, q) < ∞ as y→ ∞ and ι = 0. (25)

where the Laplace transforms of f (t) and v(y, t) are denoted by F(q) and v(y, q) respectively.
Introducing Equations (18) and (19) into (24), it yields

(1 + λ2q)
∂2v(y, q)

∂y2 −
(

M + λ1q2 + (1 + λ1M)q
)
v(y, q)

= −(1 + λ1q)
(

εM F(q) +
(

1
q
− a

q + b

)
e−y
√

Pre f f q + N
1
q

e−y
√

Sc·(R+q)
)

.

(26)

The obtained solution of (26), with the boundary conditions (25), is

v(y, q) = F(q)e
−y

√
M+λ1q2+(1+λ1 M)q

1+λ2q +
εM · (1 + λ1q) · F(q)

M + λ1q2 + (1 + λ1M) · q ·

1− e
−y

√
M+λ1q2+(1+λ1 M)q

1+λ2q



+
(1 + λ1q)

(
1
q −

a
q+b

)
(q + λ2q2)Pre f f − (M + λ1q2 + (1 + λ1M)q)

e−y
√

Pre f f
√

q − e
−y

√
M+λ1q2+(1+λ1 M)q

1+λ2q



+
1
q
· N
((q + R)(1 + λ2q)Sc− (M + λ1q2 + (1 + λ1M)q))

e−y
√

Sc
√

(q+R) − e
−y

√
M+λ1q2+(1+λ1 M)q

1+λ2q

.

(27)

By introducing the relations (A1) and (A2) from the Appendix A into Equation (27),
implementing the inverse Laplace transform and with the use of Equations (A3) and (A4),
as defined in Appendix A, the equation for velocity field can be written as:

v(y, t) = vT(y, t) + vm(y, t) + vC(y, t). (28)

where

vm(y, t) =
t∫

0
ω1(y, s; M, λ1, λ2) · f (t− s)ds

+εM
t∫

0
ω2(s; M, λ1) · f (t− s)ds− εM ·

t∫
0

s∫
0

ω2(u; M, λ1)ω1(y, s− u; M, λ1, λ2) f (t− s)duds,
(29)

vT(y, t) = −
t∫

0
ω3(s; M, λ1, λ2, Pre f f )er f c

(
y

2
√

t−s

)
ds

+a
t∫

0
ω3(s; M, λ1, λ2, Pre f f )φ

(
y
√

Pre f f , t− s; 0,−b
)

ds

+
t∫

0

s∫
0

ω1(y, u; M, λ1, λ2)ω3(t− s; M, λ1, λ2, Pre f f )duds

−a
t∫

0

s∫
0

ω3(t− s; M, λ1, λ2, Pre f f )e−buω1(y, s− u; M, λ1, λ2)duds,

(30)

vC(y, t) = N

 t∫
0

s∫
0

ω1(y, u; λ1, λ2, M)ω4(t− s; λ1, λ2, Sc, R, M)duds − φ
(

y
√

Sc, t; R, 0
). (31)

stands for its mechanical component, thermal component and concentration component,
respectively.
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Furthermore, in the above expressions

ω1(y, t; M, λ1, λ2) = L−1

e
−y

√
M+λ1q2+(1+λ1 M)q

1+λ2q


=

∞
∑

k=0

∞
∑

l=0

∞
∑

m=0

(−y)k ·(M)
k
2−l ·(λ1)

m ·(1+λ1 M)l−m ·Γ( k
2+1)

k!m!(l−m)!·(λ2)
k
2 ·Γ( k

2−l+1)
· G1,l+m, k

2
(− 1

λ2
, t),

ω2(t; λ1, M) = L−1
{

1 + λ1q
λ1q2 + (1 + λ1M)q + M

}
=

∞
∑

α=0

(−M)α

(λ1)
α+1 ·

(
G1,−α−1,α+1(−(M + 1

λ1 ), t) + λ1G1,−α,α+1(−(M + 1
λ1 ), t)

)
,

ω3(t; λ1, λ2, Pre f f , M) = L−1

 1 + λ1q

(λ2Pre f f − λ1)q2 +
(

Pre f f − 1− λ1M
)

q−M


=

∞
∑

β=0

(M)β

(λ2Pre f f−λ1)
β+1 ·

(
G1,−β−1,β+1(−

Pre f f−1−λ1 M
λ2Pre f f−λ1

, t) + λ1G1,−β,β+1(−
Pre f f−1−λ1 M

λ2Pre f f−λ1
, t)
)

,

ω4(t; λ1, λ2, Sc, R, M) = L−1
{

1 + λ1q
(λ2Sc − λ1)q2 + (Sc(1 + λ2R)− (1 + λ1M))q + (ScR−M)

}

=
∞
∑

η=0

(M−ScR)η

(λ2Sc−λ1)
η+1 ·

(
G1,−η−1,η+1(− Sc(1+λ2R)−(1+λ1 M)

λ2Sc−λ1
, t) + λ1G1,−η,η+1(− Sc(1+λ2R)−(1+λ1 M)

λ2Sc−λ1
, t)
)

.

where φ(y, t; a, b) and Ga,b,c(., t) are written in the Appendix A (A4) and (A12), respectively.
It can be verified easily that the solution of v(y, t) expressed in Equation (28) satisfies

the imposed boundary and initial conditions.
Regarding the limit of velocity as y→ ∞ , we have

lim
y→∞

v(y, t) =


0 i f ε = 0

M
t∫

0
ω2(s; M, λ1) f (t− s)ds i f ε = 1.

(32)

Eventually, for the case when magnetic flux is fixed with respect to plate (MFFRP), the
fluid does not stay at rest when it is very far from the plate.

Next, for the validation of our results, we take λ1 = 0 and λ2 = 0 in Equations (29)–(31),
and then recover the corresponding equations Equation (27)–(29) in [15], as Shah et al. ob-
tained for the viscous fluid case. Furthermore, when f (t) = H(t) (the Heaviside unit step
function) and λ1 = 0 and λ2 = 0 in relation to (29), we can use Equations (A5) and (A6)
from the Appendix A. The achieved solution expressions are the same as those derived by
Narahari and Debnath (Equation (11-A) in [13]), taking ao = 0, and also Tokis (Equation (12)
in [24]), for the case when thermal and concentration effects ignored. Evidently, by adjust-
ing f (·) in different appropriate forms, the exact solution of fluid motion of these types
is recovered.

In the next section, we explore the fluid dynamics under the effect of oscillating motion
or the slow acceleration of the plate coupled with the objective for the deep understanding
of the physical aspects of the acquired results.
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4. Various Cases Concerning the Motion of the Plate

Notice that the mass and thermal parts of velocity are independent of the movement
of the plate. However, thermal and mass transport can impact the fluid flow, due to the
fact that it is logically needed to perceive that if their control is ignored or prominent in
some fluid motions with desirable applications in modern technology.

Now, we will establish the solution expression relative to motions generated due to
the oscillation of the plate and the slow acceleration in the plate (when α < 1).

4.1. Case-I: Variably Accelerating Plate

In this case, Equation (29) becomes, after substituting f (t) = H(t)tα, with α > 0

vαm(y, t) =
t∫

0
ω1(y, s; M, λ1, λ2) · (t− s)αds

+εM
t∫

0
ω2(s; M, λ1) · (t− s)αds− εM ·

t∫
0

s∫
0
(t− s)αω2(u; M, λ1) ·ω1(y, s− u; M, λ1, λ2)duds.

(33)

which represents the motion of fluid caused by highly, slowly or constantly accelerating
the plate.

Additionally, considering the case for α = 0, i.e., when f (t) = H(t), we obtain

v0m(y, t) =
t∫

0
ω1(y, s; λ1, λ2, M)ds

+εM ·
t∫

0
ω2(s; λ1, M)ds− εM ·

t∫
0

s∫
0

ω2(u; λ1, M)ω1(y, s− u; λ1, λ2, M)duds.
(34)

Further, by taking the limit λ1, λ2 → 0 for Equation (33), we obtain

vm(y, t) =
y

2
√

π

t∫
0

(t− s)α

s
√

s
exp

(
−y2

4s
−Ms

)
ds + εM

t∫
0

(t− s)αe−Mser f
(

y
2
√

s

)
ds. (35)

the solutions for the viscous fluid [15] case.

4.2. Case-II: Oscillating Plate

Inserting f (t) = cos(ωt) H(t) or sin(ωt)H(t) into Equation (29), we obtain

vcm(y, t) =
t∫

0
ω1(y, s; λ1, λ2, M) cos(ω(t− s))ds + εM

(
Me−Mt

M2 + ω2 +
cos(ωt + θ)√

M2 + ω2

)

−εM
t∫

0

(
Me−Ms

M2 + ω2 +
cos(ωs + θ)√

M2 + ω2

)
ω1(y, t− s; λ1, λ2, M)ds,

(36)

vsm(y, t) =
t∫

0
ω1(y, s; λ1, λ2, M) sin[ω(t− s)]ds + εM

(
ωe−Mt

M2 + ω2 +
sin(ωt− θ)√

M2 + ω2

)

−εM
t∫

0

(
ωe−Ms

M2 + ω2 +
sin(ωs− θ)√

M2 + ω2

)
ω1(y, t− s; λ1, λ2, M)ds.

(37)

Again, the limit λ1, λ2 → 0 yields the appropriate results for the viscous fluid [15]
case, as follows:

vcm(y, t) =
y

2
√

π

t∫
0

cos[ω(t− s)]
s
√

s
exp

(
−y2

4s
−Ms

)
ds + εM

t∫
0

cos[ω(t− s)]e−Mser f
(

y
2
√

s

)
ds, (38)
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vsm(y, t) =
y

2
√

π

t∫
0

sin[ω(t− s)]
s
√

s
exp

(
−y2

4s
−Ms

)
ds + εM

t∫
0

sin[ω(t− s)]e−Mser f
(

y
2
√

s

)
ds. (39)

It can be noticed that the non-dimensional velocities vcm(y, t) and vsm(y, t)(as given
in Equations (36) and (37)) represent the movement of the fluid starting sometime later.
Finally, when the transients depart, Equations (36) and (37) become

vcmp(y, t) =
∞∫
0

ω1(y, s; M, λ1, λ2) · cos(ω(t− s))ds +
εM√

ω2 + M2
· cos(ωt + θ)

− εM√
ω2 + M2

∞∫
0

cos(ωs + θ)ω1(y, t− s; M, λ1, λ2)ds,

(40)

vsmp(y, t) =
∞∫
0

ω1(y, s; M, λ1, λ2) · sin[ω(t− s)]ds +
εM√

ω2 + M2
· sin(ωt− θ)

− εM√
ω2 + M2

∞∫
0

sin(ωs− θ)ω1(y, t− s; M, λ1, λ2)ds,

(41)

which are the required steady-state solution expressions.
Moreover, it can be easily verified that the acquired results also fulfill the involving

conditions at the boundary, also governing Equation (12) by ignoring the concentration
and effects caused by heat. Over a certain specific time, fluids flow in accordance with
Equations (40) and (41), with the exception of thermal and mass effects. Applying the limit
on Equations (40) and (41) as y→ ∞ , then we have

vcmp(∞, t) =

 0 i f ε = 0
M√

M2 + ω2
cos(ωt− θ) i f ε = 1, (42)

vsmp(∞, t) =

 0 i f ε = 0
M√

M2 + ω2
sin(ωt− ϕ) i f ε = 1. (43)

For good analogy, if we replace f (t) = H(t) cos(ωt) or f (t) = H(t) sin(ωt) into
Equation (32), then, we obtain

vc(∞, t) =


0 i f ε = 0

− M2

M2 + ω2 e−Mt +
M√

M2 + ω2
cos(ωt− θ) i f ε = 1,

(44)

vc(∞, t) =

 0 i f ε = 0
Mω

M2 + ω2 e−Mt +
M√

M2 + ω2
sin(ωt− θ) i f ε = 1. (45)

which are in agreement with Equations (42) and (43). Equations (44) and (45) also involve
the transient elements of velocity at infinity for the case MFFRP.

5. Results and Discussion

In this paper, the general equations of double diffusive magneto-free convection in a
Oldroyd-B fluid are represented in non-dimensional form and are applied to the flow at the
boundary of unsteady fluids past a moving upright heating plate subject to the availability
of an external magnetic flux that either moves or is fixed coupled with the plate. The thermal
transport phenomenon was discussed in the presence of constant concentration along with a
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first order chemical reaction under exponential heating. The Laplace transform method was
applied to interpret the dimensionless differential equations for velocity, mass and energy.
The contribution of mass, thermal and mechanical components on the dynamics of fluid are
presented and discussed independently. For the sake of exploring the physical perspective
of the analytically accomplished results, two particular cases are considered in this paper
to examine the effects of the system parameters N, Sc, R, Pre f f , λ1, λ2 and variables on
fluid motion. Additionally, the motion of a slowly accelerating plate is discussed and
displayed graphically.

Figure 1 demonstrates the effect of time on the velocity profile at distinct times. It
is observed that velocity increases as a function of time. Figure 2 shows the plot of the
mechanical term of velocity vm(y, t) versus y at varying values of times. The same trend is
observed as in Figure 1. Moreover, the velocities corresponding to MFFRP are considerably
larger in comparison to the case of MFFRF. In both situations, we see the smooth decline in
velocity from definite large values at the endpoint to an asymptotical value as y enlarge.
Furthermore, it can be seen from these figures that, when y approaches to infinity, the
values that exist asymptotically for both velocities are non-zero for the case of MFFRP.

Figure 3 represents the effects of N on the fluid’s velocity, at time t = 0.8 and t = 1.4
for both aiding and opposing flows. For adding flow N > 0, the thermal buoyancy force is
supported by the buoyancy force (caused by species diffusion), which, as a result, causes
the rise in velocity and a rise in the values of N. For opposing flow N < 0, the buoyancy
force results in a reversal flow effect and, hence, resists the flow of fluid.

Figure 1. Trace of v(y, t) versus y for Pre f f = 4.5, Sc = 0.8, λ1 = 0.7, λ2 = 0.3, α = 0.7, N = 2.5,
R = 0.7 and varying of t.

The Sc (Schmidt number) and R (the chemical reaction) influence on a fluid’s velocity
can be noticed in Figures 4 and 5. It can be observed that velocity is in a decreasing trend,
corresponding to the increase in the values of both of these parameters. Furthermore, we
should point out that, for the case of MFFRP, the momentum profiles are superior.
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Figure 2. Trace of Vm(y, t) versus y for Pre f f = 4.5, Sc = 0.8, λ1 = 0.7, λ2 = 0.3, α = 0.7, N = 2.5,
R = 0.7 and varying of t.

Figure 3. Trace of v(y, t) versus y at t = 0.8 and t = 1.4 for Pre f f = 4.5, Sc = 0.8, λ1 = 0.7, λ2 = 0.3,
α = 0.7, R = 0.7 and varying of N.

As expected, Figures 6 and 7 represent the fluid velocity in both cases (when MFFRF
or MFFRP), showing a decreasing trend for the relaxation time but showing a reverse trend
for retardation time. So, the relaxation time serves as the shear thickening parameter. It can
be observed that the effect of λ1 vanishes along time, but velocity rises due to the increase
in the value of λ2. Figure 8 depicts the decay in velocity due to the increase in the values of
Pre f f . Moreover, the three components of the velocity contributions on the movement of the
fluid are plotted in Figure 9 for both cases, i.e., MFFRP and MFFRF. These figures depict the
contribution of each component and the appreciable impact on the fluid’s velocity, which
cannot be ignored. Finally, as displayed in Figure 10, the thickness of thermic boundary
layer reduces, corresponding to the raising values of effective Prandtl number parameter.
It can be noted that we have set a = 0.70, b = 0.10, M = 0.6, in all Figures (1–10).
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Figure 4. Trace of v(y, t) versus y at t = 0.4 and t = 0.8 for N = 2.5, Pre f f = 4.5, λ1 = 0.7, λ2 = 0.3,
α = 0.7, R = 0.7 and varying of Sc.

Figure 5. Trace of v(y, t) versus y at t = 0.8 and t = 1.4 for N = 2.5, Pre f f = 4.5, Sc = 0.8, λ1 = 0.7,
λ2 = 0.3, α = 0.7 and varying of R.

Figure 6. Trace of v(y, t) versus y at t = 0.4 and t = 0.8 for N = 2.5, Pre f f = 4.5, R = 0.7 λ2 = 0.3,
α = 0.7Sc = 0.8 and varying of λ1.
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Figure 7. Trace of v(y, t) versus y at t = 0.4 and t = 0.8 for R = 0.7, N = 2.5, Pre f f = 4.5, λ1 = 0.7,
α = 0.7 Sc = 0.8, and varying of λ2.

Figure 8. Trace of v(y, t) versus y at t = 0.4 and t = 0.8 for N = 2.5, λ1 = 0.7, λ2 = 0.3, α = 0.7,
R = 0.7, Sc = 0.8 and varying of Pre f f .

Figure 9. Behavior of velocities Vm(y, t), VT(y, t) + Vm(y, t) and VT(y, t) + Vm(y, t) + VC(y, t) versus
y at t = 0.8 for Pre f f = 0.71, Sc = 0.8, λ1 = 0.7, λ2 = 0.3, R = 0.7 and N = 2.5.
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Figure 10. Behavior of the thermal boundary layer thickness for the varying values of Pre f f .

6. Conclusions

The thermal transport phenomenon was discussed in the presence of a constant con-
centration along with a first order chemical reaction, thermal conductivity with exponential
heating. The Laplace transform method was applied to tackle the non-dimensional partial
differential equations for velocity, mass and energy. The contribution of mass, thermal
and mechanical components on the dynamics of fluid were presented and discussed in-
dependently. For the sake of exploring and understanding the physical perspective of the
analytically accomplished results, in this paper, two particular cases were considered, the
slowly accelerating or oscillating motion of the plate. Furthermore, the impact of variables
and pertinent parameters, such as N, λ1, Sc, Pre f f , R and λ2, on the motion of the fluid is
illustrated graphically and examined for the slowly accelerating movement in the plate.
We can conclude that:

• It can be noticed that, at infinity for the fixed magnetic field relative to the plate, the
fluid velocity does not settle to zero.

• It can be perceived that, in the case of MFFRP, the velocity is significantly larger as we
compare with the case of MFFRF.

• The fluid velocity decreases in relation to the relaxation time and its impact dies out
with time, but shows the reverse behavior of retardation time.

• For N > 0, there is an increase in velocity graphically for the values of N. An opposite
trend was observed for N < 0.

• The contributions of velocity components (mechanical, thermal and concentration) are
considerable and cannot be ignored.

• The thickness of thermal boundary layer and velocity decline, corresponding to the
increase in the effective Prandtl number.
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Appendix A

(1 + λq)(β + (1− ∂)q)

q · (q + β) ·
(

λq2 +
(

1− Pre f f + λM
)

q + M
)

=
1
M

1
q
+

∂(βλ− 1)

λβ2 −
(

1− Pre f f + λM
)

β + M

1
q + β

+
λ

M

(
1− Pre f f

)
β− (1 + ∂)M− λ(β− (1− ∂)M)β

λ(β−M)β−
(

1− Pre f f

)
β + M

· q

λq2 +
(

1− Pre f f + λM
)

q + M

+

(
1− Pre f f

)(
(∂− 1) ·M + β

(
1− Pre f f

)
+ λβ

(
(M− β) ·

(
1− Pre f f

)
−M∂

))
M
(

M−
(

1− Pre f f

)
β− λβ(M− β)

) 1

λq2 +
(

1− Pre f f + λM
)

q + M
.

(A1)

1
q · (λq2 + λM + 1− Sc− ScR + M)

=
1

M− ScR

(
1
q
− λq + 1− Sc + λM

λq2 + λM + 1− Sc− ScR + M

)
. (A2)

L−1

{
e−g
√

q

q

}
= er f c

(
g

2
√

t

)
, L−1

{
e−g
√

q
}
=

g
2t
√

πt
exp

(
− g2

4t

)
, L−1

{
e− f
√

q+∂

q− b

}
= φ( f , t; ∂, b). (A3)

φ( f , t; ∂, b) =
ebt

2

[
e− f
√

∂+ber f c
(

f
2
√

t
−
√
(∂ + b)t

)
+ e f

√
∂+ber f c

(
f

2
√

t
+
√
(∂ + b)t

)]
. (A4)

t∫
0

1√
s

exp
(
− f 2

4s
− σs

)
ds =

√
π

2
√

σ

{
e− f
√

σer f c
(

f
2
√

t
−
√

σt
)
− e f

√
σer f c

(
f

2
√

t
+
√

σt
)}

. (A5)

t∫
0

1
s
√

s
exp

(
−y2

4s
− as

)
ds =

√
π

y

{
e−y
√

aer f c
(

y
2
√

t
−
√

at
)
− ey

√
aer f c

(
y

2
√

t
+
√

at
)}

. (A6)

L−1{e−zq} = δ(t− z). (A7)

f (t) ∗ δ(t− z) = f (t− z). (A8)

L−1
{

ea(q−
√

q2−b2) − 1
}
=

am√
t2 + 2at

I1

(
b
√

t2 + 2at
)

, (A9)

where I1(·) is known as the Bessel function of the first kind in modified form.

L−1
{

e−g
√
(q+z)2−b2

}
= e−gzδ(t− z) + e−zt bg

t2 − g2 I1

(
b
√

t2 − g2
)

. (A10)



Symmetry 2022, 14, 209 16 of 17

Proof: Consider e−g
√
(q+z)2−b2

=e−g
√
(q+z)2−b2

eg(q+z)e−g(q+z)=eg
(

q+z−
√
(q+z)2−b2

)
−g(q+z)

−e−g(q+z) + e−g(q+z) = e−gz
[(

eg(q+z−
√
(q+z)2−b2) − 1

)
e−gq + e−gq

]
Taking the Laplace inverse on both sides, we obtain

L−1
{

e−g
√
(q+z)2−b2

}
= e−gz

[
bg

t2 + 2yt
I1

(
b
√

t2 + 2gt
)

e−zt ∗ δ(t− z) + δ(t− z)
]

= e−gzδ(t− z) + e−gz

(
bg

(t− g)2 + 2g(t− g)
I1

(
b
√
(t− g)2 + 2g(t− g)

)
e−z(t−g)

)
.

L−1
{

e−g
√

λq2(1+λM)q+M
}
= ψ(g, t; λ, M)

ψ(g, t; λ, M) = e−g 1+λM
2
√

λ δ
(

t− g
√

λ
)
+ e−

1+λM
2λ t 1− λM

2
√

λ

g
t2 − g2λ

I1

(
1− λM

2λ

√
t2 − g2λ

)
.

(A11)

L−1
{

ρx

(ρz − υ)r

}
= Gz,x,r(υ, t); Re(zr− x), Re(ρ) > 0,

∣∣∣∣ υ
ρz

∣∣∣∣< 1,

Gz,x,r(υ, t) =
∞
∑
`=0

υ`Γ(r + `)

Γ(r)Γ(`+ 1)
· t(r+`)z−x−1

Γ((r + `)z− x)

(A12)
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