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A B S T R A C T   

The perturbed nonlinear Schrödinger (NLS) equation and the nonlinear radial dislocations model in microtubules 
(MTs) are the underlying frameworks to simulate the dynamic features of solitons in optical fibers and the 
functional aspects of microtubule dynamics. The generalized Kudryashov method is used in this article to extract 
stable, generic, and wide-ranging soliton solutions, comprising hyperbolic, exponential, trigonometric, and some 
other functions, and retrieve diverse known soliton structures by balancing the effects of nonlinearity and 
dispersion. It is established by analysis and graphs that changing the included parameters changes the waveform 
behavior, which is largely controlled by nonlinearity and dispersion effects. The impact of the other parameters 
on the wave profile, such as wave speed, wavenumber, etc., has also been covered. The results obtained 
demonstrate the reliability, efficiency, and capability of the implemented technique to determine wide-spectral 
stable soliton solutions to nonlinear evolution equations emerging in various branches of scientific, technolog-
ical, and engineering domains.   

Introduction 

Studies of soliton solutions to nonlinear evolution equations (NLEEs) 
have become increasingly important in the analysis of nonlinear phe-
nomena in recent years [1]. Soliton is a special form of solitary wave that 
travels by maintaining its outline, velocity, and amplitude. It has a 
number of interesting features that interprets various types of nonlinear 
incidents. NLEEs arise in diverse scientific fields, namely climatology, 
theoretical physics, chemistry, biology, optical pulses, technology of 
space, fluid dynamics, signal processing, laser technology, applied 
mathematics and computer engineering. There are some NLEEs that are 
used in a variety of applied science disciplines, as for instance, the 

Maxwell equation in electromagnetism [2], the heat equation in ther-
modynamics [3], the voltage analysis in nonlinear electrical trans-
mission lines [4], the Lotka-Volterra equation in biology [5], the highly 
dispersive Schrödinger equation in nonlinear optics [6], the Navier- 
Stokes equation in fluid dynamics [7], etc. These incidents are essen-
tially modeled by NLEEs, and the exact solutions of respective instances 
deliver a significant contribution in the nonlinear field. It is notable that, 
there has some significant advancement in the analysis of explicit so-
lutions in the current years. However, there is no unique method to 
examine all kind of NLEEs. Each equation has to be studied as a separate 
problem. For determining the exact solutions of individual problem, 
diverse group of mathematicians, physicists and engineers are working 
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simultaneously. Thus, several techniques for exploring analytic solu-
tions have been established. Some of them are, the new extended FAN 
sub-equation method [8], the sine-Gordon expansion technique [9], the 
Hirota method [10], the (G′/G)-expansion technique [11], the fractional 
dual-function scheme [12], the Darboux transformation method [13], 
the generalized Kudryashov technique [14], the physics-informed neu-
ral network scheme [15], the residual power series technique [16], the 
Laplace-Adomian decomposition approach [17], the finite difference 
method [18], the bilinear approach [19], A finite element method [20], 
the He’s variational approach [21], the exp( − φ(ξ))-expansion technique 
[22], the unified method and its generalized form [23], the improved 
Bernoulli sub-equation function technique [24], the sine–cosine tech-
nique [25], the Bäcklund transformation scheme [26], the sub-equation 
method [27], the q-homotopy analysis transform method [28], the 
special computational method [29], etc. 

Optical fiber communications are usually described by the perturbed 
NLS equation. In an optical fiber, light is contracted to a minor trans-
verse section, so that even moderate optical powers lead to high optical 
intensities. This is particularly the case, if fibers are used to transmit 
short pulses. Moreover, the simplest and most common nonlinear effect 
in fibers is the Kerr effect. In addition, the phase delay in the fiber gets 
larger if the optical intensity increases. A medium, in which the light 
intensity passing through it depends on its refractive index, reveals the 
Kerr law nonlinearity. The NLS equation consists of temporal evolution 
term and the dispersion term. The delicate balance confirms the stable 
propagation and existence of such solitons. The perturbed NLS equation 
with Kerr law nonlinearity has been studied by a several researchers, 
namely, Zai-Yun et al. [30] investigated this equation by using the 
cosine function technique, Jacobi-elliptic function technique and found 
some analytic solutions including hyperbolic functions. In addition, 
Shehata [31] presented the modified (G′

/G)-expansion technique for 
finding certain analytic solutions to the perturbed NLS equation. Bell, 
kink, and periodic soliton solutions of the perturbed NLS equation were 
obtained in [32]. By utilizing the direct algebraic technique, Eslami [33] 
derived some trigonometric function solutions to the perturbed NLS 
equation. The coupled NLS equation governs the evolution of spatial 
solitons in the photovoltaic photorefractive crystal studied by Dai and 
Wang [34]. Moreover, applying the modified auxiliary equation scheme, 
Mahak and Akram [35] describe the features of the perturbed NLS 
equation with Kerr law nonlinearity. They acquired singular and non-
singular complex wave solutions together with bright soliton, stable 
periodic soliton and symmetric waves. In recent times, Al-Ghafri et al. 
[36] investigated the perturbed NLS equation with Kerr law nonlinearity 
and achieved W-shaped and other solitons appeared in optical nano-
fibers. Hosseini et al. [37] investigated the high-order nonlinear 
Schrödinger equation with non-Kerr law media for diverse laws of 
nonlinearities. 

The model of nonlinear kinetics of radial dislocation in MTs plays a 
key role in describing the dynamical functional characteristics of mi-
crotubules. Generally, microtubules are filamentous intracellular 
structures that are responsible for numerous kinds of actions in all 
eukaryotic cells. Thus, it is important to understand the features of the 
microtubules as well as the composition, assembly, disassembly and how 
the functions are regulated by the cells. Moreover, Microtubules acts in 
nucleic and cell division, organization of intracellular structure, intra-
cellular transport, as well as ciliary and flagellar motility. This model has 
been investigated by several researchers, viz., Zdravkovic’ et al. [38] 
describes the propagation of the solitary wave along the microtubules. 
Alam and Belgacem [39] applied the exp( − φ(ξ)) expansion technique 
for obtaining the exponential and hyperbolic function solutions. They 
have also established kink and periodic solutions. Zdravkovic’ and 
Zekovic’ [40] executed the series expansion unknown function scheme 
for extracting nonlinear dynamics of microtubules. Zdravkovic [41] 
established the mechanical models of microtubules in which continuum 
and semi-discrete approximations were discussed. Continuum approxi-
mation provides bell-type or kink-type solitons, while semi-discrete 

approximation computes the localized modulated waves moving along 
microtubules. Abdou [42] proposed the extended fractional sub- 
equation technique for fabricating the exact solutions of space–time 
fractional differential equations [43] appeared in nonlinear dynamics of 
microtubules. Justin et al. [44] studied chaotic vibration of microtu-
bules in which chaos is one of the main cytoskeletal elements of 
eukaryotic cells. He also showed that the role of chaos in different bio-
logical information processing in microtubules. Owyed [45] et al. put in 
use three integral schemes, namely the generalized Kudryashov, Ber-
noulli sub-equation function and the improved exp( − φ(ξ))-expansion 
techniques for obtaining new optical soliton solutions of space–time 
fractional nonlinear dynamics of microtubules. 

To obtain the analytic solutions of NLEEs Kudryashov [46] intro-
duced a new technique recognized as Kudryashov approach. Akinyemi 
et al [47] investigated the dynamic solitons of the perturbed Biswas- 
Milovic equation of refractive index with Kudryashov’s law using the 
first integral approach. The recently established generalized Kudryashov 
approach is compatible, realistic, and advantageous for extracting soli-
tary wave solutions to NLEEs. This approach has been implemented to 
achieve stable and analytic solutions to the Klein-Fock-Gordon equation 
[48], the Riemann wave and the Novikov-Veselov equations [49], the 
Fokas-Lenells equation [50], the Konopelchenko-Dubrovsky and the 
Landau-Ginzburg-Higgs equations [51], the Korteweg-de-Vries equation 
[52], the telegraph equation [53], the Phi-four and the fisher equations 
[54], the Estevez-Mansfield-Clarkson (EMC) equation, the sine-Gordon 
equation [55], the Landau-Ginsburg-Higgs equation [56], etc. 

To the optimal of our cognition and based on the analysis of the 
documents reachable in the literature, the perturbed NLS equation in the 
transmission of optical solitons occurring in optical fibers with Kerr law 
nonlinearity and the nonlinear model of the kinetics of radial disloca-
tions in microtubules have not been investigated by using the general-
ized Kudryashov technique earlier. Thus, supported by the earlier 
studies, the aim of this article is to ascertain standard, realistic, and far- 
reaching compatible solutions to these equations through the general-
ized Kudryashov technique. We have also analyzed the physical char-
acteristics and applicability of several obtained results to address the 
dynamical mechanisms of the wave equations under investigation. 

The remainder of the article is structured as follows: The algorithms 
of the generalized Kudryashov approach are described in section 2. 
Section 3 extracts the solutions to the perturbed NLS and radial dislo-
cations in microtubules (MTs) models. Section 4 is organized with the 
graphical representation and solution interpretations. The solutions are 
compared with those found in the literature in section 5, and in section 
6, conclusions are drawn. 

Algorithm of the generalized Kudryashov scheme 

Consider a NLEE with space and time variable (x, t) as follows: 

G(f , fx, ft, fxx, ftt, fxt,⋯) = 0 (1)  

where f(x, t) is unidentified function, G is the polynomial in f(x, t) with 
partial derivatives including uppermost derivatives and nonlinear term. 
The contexts of the generalized Kudryashov scheme are narrated in the 
succeeding steps. 

First step 

It can be presumed the wave variables in the form f(x, t) = f(ξ), ξ =

κx ± ωt (here, κ and ω express the wave number and traveling wave 
speed respectively) is suitable to convert the equation (1) into the sub-
sequent form of nonlinear equation: 

H(f , f ′

, f ′′) = 0 (2)  
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Second step 

Following the generalized Kudryashov approach, the solution of the 
nonlinear equation (2) is assumed in the succeeding form. 

f (ξ) =

∑N
i = 0 aiqi(ξ)
∑M

j=0bjqj(ξ)
=

a0 + a1q(ξ) + a2q2(ξ) + ⋯ + aNqN(ξ)
b0 + b1q(ξ) + b2q2(ξ) + ⋯ + bMqM(ξ)

(3)  

where the coefficients ai(i = 0, 1, 2,⋯,N) and bj(j = 0, 1, 2,⋯,M) need 
to be evaluated afterwards with aN ∕= 0 and bM ∕= 0. The categorical 
solution of q = q(ξ) will be pulling out from the nonlinear equation 
given below: 

dq(ξ)
dξ

= q2(ξ) − q(ξ). (4) 

Equation (4) possess a solution of the ensuing form. 

q(ξ) =
1

1 + Cexp(ξ)
, (5)  

where C is an integrating parameter. 

Third step 

The homogeneous balance technique is used to determine the posi-
tive integrals N and M come out in solution (3). 

Fourth step 

Inserting the solution (3) into equation (2) with the aid of equation 
(4), a polynomial in q(ξ) can be obtained. Then the similar index of q(ξ)
are equating to zero delivers an algebraic system of equation. Solving 
these equations by using Maple it can be achieved the values of the 
desired constants ai, bj and ω which will be used to attain the solution of 
equation (2). 

Extraction of solutions 

This segment describes the effectiveness of the generalized Kudrya-
shov scheme to pursue scores of soliton solutions of two NLEEs, namely, 
the perturbed NLS equation with Kerr law nonlinearity and the 
nonlinear dynamics of the radial dislocation in MTs. 

Perturbed NLS equation with Kerr law nonlinearity 

Considering the perturbed NLS equation with Kerr law nonlinearity 
[30]: 

iut + uxx + α|u|2 + i
[
γ1uxxx + γ2|u|

2ux + γ3
(
|u|2

)

xu
]
= 0. (6) 

wherein γ1 is a third order dispersion restraint and γ2, γ3 are steeping 
cohort. Equation (6) represents the extension of optical solutions in 
nonlinear optical fibers with Kerr law nonlinearity [32]. We assume the 
subsequent wave variable for equation (6). 

u(x, t) = v(ξ) exp(iψ)

where 

ξ = βx+ ct, ψ = kx − ωt (7)  

where c is the speed of wave propagation. Equation (6) is converted into 
a nonlinear equation by means of the wave transformation variable (7), 
and splitting the real and imaginary parts, we find the following couple 
of equations. 

γ1β3v+(γ2β + 2γ3)+
(
c + 2kβ − 3γ1k2β

)
v = 0. (8)  

β2(1 − 3γ1k)v′′ +
(
ω − k2 + γ1k3)v+(α − γ2k)v3 = 0. (9) 

Integrating (8) by keeping constant of integration to be zero, we find. 

γ1β3v′′ + {c − β k(3γ1k − 2) }v+
1
3

β(γ2 + 2γ3)v
3 = 0. (10) 

For c = β k(3 γ1k − 2), ω = k2(1 − γ1k), k = (γ2 + 2γ3 − 3αγ1)/

6γ1γ3andβ = (3αγ1 − 2γ2)/2γ1γ3, Eqs. (9) and (10) are identical. 
Therefore, it is sufficient to solve either of these two equations. We will 
investigate Eq. (10), therefore, assuming R = β3γ1, S =

β k(3γ1k − 2)andT = 1
3 β (γ2 + 2γ3), Eq. (10) can be written in the sub-

sequent form: 

R v′′ + (c − S)v+Tv3 = 0. (11) 

Eq. (11) and the Eq. (1) in Ref. [57] are analogous. Equation (1) in 
Ref. [57] was solved directly and tanh, rational and exponential type 
solutions have been obtained. Alternatively, in this article, the Eq. (11) 
has been investigated by the generalized Kudryashov method. In 
requirement of the Kudryashov approach, we consider the homogeneous 
balance between v’’ and v3 in equation (11) and it is established the 
relation N = M+1 which delivers N = 2 for M = 1. Therefore, solution 
(3) is simplified in the following form. 

v(ξ) =
a0 + a1q + a2q2

b0 + b1q
, (12)  

wherein a2 ∕= 0 and the constants ao, a1, a2, b0 and b1 are to be deter-
mined. Introducing the solution (12) along with equation (4) into 
equation (11) and equating the comparable exponent of q(ξ) to zero, 
subsequent algebraic set of equations can be attained. 

Ta3
0 + ca0b2

0 − Sa0b2
0 = 0.

Ra1b2
0 + ca1b2

0 − Sa1b2
0 + 3Ta2

0a1 − Rb1a0b0 + 2ca0b1b0 − 2Sa0b1b0 = 0.

− 3Ra1b2
0 +Rb2

1a0 + ca0b2
1 + ca2b2

0 − Sa0b2
1 − Sa2b2

0 + 3Ta2
0a2 + 3Ta0a2

1

+ 4Ra2b2
0 + 3Rb1a0b0 − Ra1b0b1 + 2ca1b1b0 − 2sa1b1b0 = 0.

Ta3
1 + ca1b2

1 − Sa1b2
1 + 2Ra1b2

0 − 10Ra2b2
0 − Rb2

1a0 +Ra1b0b1  

− 2Rb1a0b0 + 3Ra2b0b1 + 2ca2b1b0 − 2Sa2b1b0 + 6Ta0a1a2 = 0.

ca2b2
1 − Sa2b2

1 + 3Ta0a2
2 + 3Ta2

1a2 + 6Ra2b2
0 +Rb2

1a2 − 9Ra2b0b1 = 0.

3Ta1a2
2 − 3Rb2

1a2 + 6Ra2b0b1 = 0.

Ta3
2 + 2Rb2

1a2 = 0.

Using computer algebra system Maple, we analyze the above system 
of equations and obtain the following group of values and the respective 
solutions: 

Cohort 1 

c =
1
2

R+ S, a0 = 0, a1 =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√
b1

T
, a2 =

2Rb1
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√ , b0 = 0, b1 = b1.

Introducing these values into the solution (12) with the help of 
equation (5), we obtain the following exponential function solution 

v(ξ) = −
R
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√

(
− 1 + Aexp(ξ)
1 + Aexp(ξ)

)

. (13) 

This solution can be transformed into the hyperbolic function 

v(ξ) = −
R
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√

(
(A − 1)cosh(ξ/2) + (A + 1)sinh(ξ/2)
(A + 1)cosh(ξ/2) + (A − 1)sinh(ξ/2)

)

. (14) 

Connecting the solution together with time–space variables, we 
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attain the ensuing rational function solution 

u(x, t) = −
R
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√

⎛

⎜
⎜
⎝
(A − 1)cosh

( βx+ct
2

)
+(A+1)sinh

( βx+ct
2

)

(A+1)cosh
( βx+ct

2

)
+(A − 1)sinh

( βx+ct
2

)

⎞

⎟
⎟
⎠exp(i(kx − ωt)).

(15) 

Since A is an integrating constant, we might designate its value 
independently. Choosing A = 2, solution (15) turns into the form 

u(x, t) = −
R
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√

⎛

⎜
⎜
⎝

cosh
( βx+ct

2

)
+ 3sinh

( βx+ct
2

)

3cosh
( βx+ct

2

)
+ sinh

( βx+ct
2

)

⎞

⎟
⎟
⎠exp(i(kx − ωt) ). (16) 

Again, choosing A = 4, solution (15) turns into the form 

u(x, t) = −
R
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√

⎛

⎜
⎜
⎝

3cosh
( βx+ct

2

)
+ 5sinh

( βx+ct
2

)

5cosh
( βx+ct

2

)
+ 3sinh

( βx+ct
2

)

⎞

⎟
⎟
⎠exp(i(kx − ωt) ). (17) 

On the other hand, choosing A = 1, solution (15) becomes 

u(x, t) = −
R
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√ tanh
(

βx + ct
2

)

exp(i(kx − ωt) ). (18) 

Furthermore, choosing A = − 1, solution (15) becomes 

u(x, t) = −
R
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√ coth
(

βx + ct
2

)

exp(i(kx − ωt) ). (19) 

In the similar way, varying the integral constant A results other an-
alytic solutions. However, for the sake of conciseness, these solutions are 
not included in this section. 

Cohort 2 

c = − R+ S, a0 = 0, a1 =
2
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√
b0

T
, a2 = −

2
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√
b0

T
, b0 = b0, b1

= − 2b0 

With the help of (5), we obtain the following solution by inserting the 
values stated above in the solution formula (12): 

v(ξ) = 2
̅̅̅̅̅̅̅̅̅̅
− 2R

T

√
A

A2exp(ξ) − exp( − ξ)
. (20) 

In hyperbolic form, it can be expressed in terms of space and time 
coordinates as 

v(x, t) = 2
̅̅̅̅̅̅̅̅̅̅
− 2R

T

√
A

(A2 − 1)cosh(βx + ct) + (A2 + 1)sinh(βx + ct)
. (21) 

Connecting the wave variable in equation (7) formulates the new 
general solution structure 

Fig. 1. 3D and 2D plots of solution (16) corresponding to c = − 2 and other definite values R = T = β = − 2.  

Fig. 2. 3D and 2D plots of solution (16) corresponding to c = − 0.54 and other 
definite values R = T = − 2, β = − 0.48. 

Fig. 3. 3D and 2D profiles of solution (18) for c = − 0.06 and other fixed values R = T = − 2, β = 2.  

Fig. 4. 3D and 2D profiles of solution (18) for the wave speed c = 0.15 and 
other fixed values β = − 0.67,R = 1.09,T = 2. 
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Fig. 5. 3D and 2D envelopes of solution (22) for c = − 0.01 and other values A = − 0.25, β = 1.97,R = T = − 2.  

Fig. 6. 3D and 2D envelopes of solution (22) for the wave speed c = 0.54 and other values A = − 0.23, β = 1.51,R = − 2,T = − 0.69.  

Fig. 7. 3D and 2D plots of solution (26) regarding c = − 1.24 and other values of β = 0.03,R = − 1.18,T = − 0.90.  

Fig. 8. 3D and 2D plots of solution (26) regarding the wave speed c = 1.21 and other values of β = 0.03,R = − 1.18,T = − 0.90.  
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Fig. 9. 3D and 2D contours of solution (26) for the wave speed c = 0.03 and 
other values of T = − 0.90, β = 0.03,R = − 1.18. 

Fig. 10. 3D and 2D contours of solution (26) for c = − 0.21 and other values of β = − 0.01,R = − 0.73,T = − 0.97.  

Fig. 11. 3D and 2D structures of solution (29) due to c = − 0.01 and other values of A = − 0.12, β = − 0.54,R = − 0.88,T = − 0.90.  

Fig. 12. 3D and 2D structures of solution (29) due to the wave velocity c = 0.01 and other values of A = − 0.12, β = 1.51,R = − 0.80,T = − 0.90.  

Fig. 13. 3D and 2D profiles of solution (40) corresponding to the wave speed ω = 0.39 and other values of A = 1.26, κ = − 0.01.  

Fig. 14. 3D and 2D profiles of solution (40) corresponding to the wave speed 
ω = 0.15 and other values of A = 1.26, κ = − 0.01. 
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u(x, t)=2
̅̅̅̅̅̅̅̅̅̅
− 2R

T

√
A

(A2 − 1)cosh(βx+ct)+(A2 +1)sinh(βx+ct)
exp(i(kx − ωt)).

(22) 

Since A is an integrating constant, one might accept its value 
extensively. For the value A = 2, we derive the soliton solution in terms 
of the hyperbolic function 

u(x, t) = 2
̅̅̅̅̅̅̅̅̅̅
− 2R

T

√
2

3cosh(βx + ct) + 5sinh(βx + ct)
exp(i(kx − ωt) ). (23) 

For the value A = − 4, we attain the following soliton solution in 
terms of hyperbolic form 

u(x, t) = 2
̅̅̅̅̅̅̅̅̅̅
− 2R

T

√
− 4

15cosh(βx + ct) + 17sinh(βx + ct)
exp(i(kx − ωt) ).

(24) 

For A = 1, we obtain a solution of the form 

u(x, t) =
̅̅̅̅̅̅̅̅̅̅
− 2R

T

√

csch(βx+ ct)exp(i(kx − ωt) ). (25) 

Again, for A = i, the solution (22) turns into the form given below 

u(x, t) =
̅̅̅̅̅̅
2R
T

√

sech(βx+ ct)exp(i(kx − ωt) ). (26) 

Similarly, for different values of the integral constant A, different 
types of analytic solutions emerge. These solutions, however, are not 
recorded in this part for the sake of simplicity. 

Cohort 3 

c = 2R+ S, a0 = −
Rb1
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√ , a1 =
2Rb1
̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√ , a2 =

̅̅̅̅̅̅̅̅̅̅̅̅
− 2TR

√
b1

T
, b0 = −

1
2
b1, b1

= b1.

Assigning the preceding values into the solution (12), by taking 
equation (5) into account, we obtain the following soliton solution 

v(ξ) =
̅̅̅̅̅̅̅
2R
− T

√
A2exp(ξ) + exp( − ξ)
A2exp(ξ) − exp( − ξ)

. (27) 

This solution can be transformed into the subsequent hyperbolic 
function solution 

v(ξ) =
̅̅̅̅̅̅̅
2R
− T

√ (
A2 − 1

)
sinh(ξ) +

(
A2 + 1

)
cosh(ξ)

(
A2 + 1

)
sinh(ξ) +

(
A2 − 1

)
cosh(ξ)

. (28) 

We determine the resulting rational function solution relating to the 
solution (28) with the space and time variables 

u(x, t)=
̅̅̅̅̅̅̅
2R
− T

√ (
A2 − 1

)
sinh(βx+ct)+

(
A2 +1

)
cosh(βx+ ct)

(
A2 +1

)
sinh(βx+ct)+

(
A2 − 1

)
cosh(βx+ ct)

exp(i(kx − ωt)).

(29) 

Since A is a subjective constant, we might accept its value intuitively. 
Thus, for A = ±

̅̅̅
2

√
, we attain the next soliton solution 

u(x, t) =
̅̅̅̅̅̅̅
2R
− T

√
3sinh(βx + ct) + 5cosh(βx + ct)
5sinh(βx + ct) + 3cosh(βx + ct)

exp(i(kx − ωt) ). (30) 

Moreover, for the value A =±
̅̅̅
6

√
, we ascertain the under mentioned 

soliton solution 

u(x, t) =
̅̅̅̅̅̅̅
2R
− T

√
35sinh(βx + ct) + 37cosh(βx + ct)
37sinh(βx + ct) + 35cosh(βx + ct)

exp(i(kx − ωt) ). (31) 

For A = ±i, we develop the tanh function solution of the form 

u(x, t) =
̅̅̅̅̅̅̅
2R
− T

√

tanh(βx+ ct)exp(i(kx − ωt) ). (32) 

Many more solutions can be obtained by putting distinct values of 
the integrating constant A in each group. Due to simplicity, we did not 
report those solutions herein. 

The obtained soliton solutions have substantial applications in 
different fields of science and engineering, such as the propagation of 
light in optical fiber and planar waveguides including self-phase mod-
ulation, four-wave mixing, ultra-short pulses, optical solitons, 

Fig. 15. 3D and 2D contours of solution (48) regarding the wave speed ω = 2 and other constant κ = 0.03.  

Fig. 16. 3D and 2D contours of solution (50) regarding the wave speed ω = 0.92 and other constant κ = 0.03.  
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stimulated Raman scattering etc. 

Nonlinear dynamics of the radial dislocation in MTs 

The nonlinear dynamics of the radial dislocations in MTs can be 
expressed in the following form [38]: 

I
∂2φ
∂t2 − kl2∂2φ

∂x2 + pEφ −
pE
6

φ3 + γ
∂φ
∂t

= 0, (33)  

where φ(x, t) represents the angular displacement of the whole dimer, l 
implies the MTs length, p signifies the intrinsic electric field magnitude, 
k denotes the bonding interaction of inter dimer within the same pro-
tofilaments (PFs), I represents the coefficient of viscosity. 

To remodel (33) into nonlinear equation, we use the following uni-
fied coordinate 

φ(x, t) = φ(ξ)

where 

ξ = κx − ωt, (34)  

where in κ and ω defines the nonzero constants representing the wave 
number and frequency respectively. Thus, equation (33) converts to 

(
Iω2 − kl2κ2) φ′′ − γωφ

′

+ pEφ −
pE
6

φ3 = 0. (35) 

The following potential transformation 

φ(ξ) =
̅̅̅
6

√
u(ξ), (36) 

converts the equation (35) into the ensuing form 
(
Iω2 − kl2κ2

)

pE
u′′ −

ωγ
pE

u′

+ u − u3 = 0. (37) 

According to the principle of generalized Kudryashov scheme, 
balancing u’’ and u3 in equation (37), we obtain N = 2 for M = 1 from 
the balancing relation N = M + 1. Thus, the solution (3) can be stated in 
the ensuing form 

u(ξ) =
a0 + a1q + a2q2

b0 + b1q
, (38) 

where a2 and b1 are non-zero constants. Embedding the solution (38) 
into (37) and setting the conforming power of q(ξ) to zero, it is obtained 
the following set of algebraic equations. 

pEa3
0 − pEa0b2

0 = 0  

− kl2κ2b1a0b0 + Iω2b1a0b0 + γωb1a0b0 − 2pEb1a0b0 = 0 

Ta
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+
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A

0 3
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̅̅̅
̅̅̅
̅̅̅
̅̅̅
̅̅̅
̅̅̅
̅̅̅
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−
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1
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√
)
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(
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−
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−
c)
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1

√

(x
−
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+
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)

]
}

ei(K
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Ω
t)
. 
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 (
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) 
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d 
(3

2)
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u(
x,

t)
=

̅̅̅
̅̅̅
̅̅̅̅

−
2R T

√
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ch
(β

x
+
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)e

xp
(i(

kx
−
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))

.  

u(
x,
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=
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̅̅̅̅ 2R −
T

√
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nh
(β

x
+
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)e

xp
(i(

kx
−

ωt
))

.  
  

Table 2 
Comparison of the determined results with Zdravkovic′ et al. [60].  

Zdravkovic′ et al. [60] solutions Solutions established in this article 

The result (16) is 
φ(x, t) =

K
2

(

1+tanh
( 3(κx − ωt)

4ρ

))

.   

The results (49), (50) and (51) are 
φ(x, t) =

±
̅̅̅
6

√ cosh(κx − ωt) − sinh(κx − ωt)
11cosh(κx − ωt) + 13sinh(κx − ωt)

. 

φ(x, t) = ∓

̅̅̅
6

√

2

(
1 − tanh

( κx − ωt
2

))
.  

φ(x, t) = ∓

̅̅̅
6

√

2

(
1 − coth

( κx − ωt
2

))
. 

The result (24) is 
φ(x, t) =

i
K′

2

(

1+tanh
( 3(κx − ωt)

4ρ

))

.   

The results (57) and (58) are 
φ(x, t) =

− 4
̅̅̅
6

√
( cosh

( κx − ωt
2

)
+ sinh

(κx − ωt
2

)

− 3cosh
( κx − ωt

2

)
− 5sinh

(κx − ωt
2

)

)

.  

φ(x, t) =

̅̅̅
6

√

2

(
1+tanh

( κx − ωt
2

))
.  
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3kl2κ2b1a0b0 + kl2κ2b2
1a0 − γωb1a0b0 − 3Iω2b1a0b0 + 4kl2κ2a2b2

0 − Iω2b2
1a0  

+ γωb2
1a0 − pEb2

1a0 − pEa2b2
0 − 4Iω2a2b2

0 − 2γωa2b2
0 + 3pEa2

0a2 = 0  

3kl2κ2a
2 b0b1 − 2kl2κ2b1a0 + Iω2b2

1a0 − γIb2
1a0 + 10Iω2a2b2

0 + 2γωab2
0 − kl2κ2b2

1a0  

− 3Iω2a2b0b1 − 10kl2κ2a2b2
0 + 2Iω2b1a0b0 − 3γωa2b0b1 − 2pEa2b0b1 = 0  

− 9kl2κ2a2b0b1 + kl2κ2a2b2
1 + 9Iω2a2b0b1 + 6kl2κ2a2b2

0 + 3γωa2b0b1  

− γωa2b2
1 − pEa2b2

1 − 6Iω2a2b2
0 + 3pEa0a2

2 − Iω2a2b2
1 = 0  

6kl2κ2a2b0b1 − 3kl2κ2a2b2
1 − 6Iω2a2b0b1 + γωa2b2

1 + 3Iω2a2b2
1 = 0  

− 2Iω2a2b2
1 + pEa3

2 + 2kl2κ2a2b2
1 = 0 

The aforementioned set of equations has been interpreted using 
Maple, and found the subsequent solutions: 

Cohort 1 

κ = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kEp(9EIp − 2γ2)

√

2kγl
, ω = −

3
2

pE
γ
, a0 = 0, a1 = 0, a2 = ±b1, b0

= 0, b1 = b1.

Using the values of the parameters accumulated in cohort 1 into 
solution (38) and connected to the solution (36) give an exponential 
function solution in the subsequent form 

φ(ξ) = ±

̅̅̅
6

√

1 + A exp(ξ)
. (39) 

The definite structure of the waves is necessary to describe the so-
lutions in a realistic way. Since the hyperbolic function provides good 
structure, we will convert the exponential function into hyperbolic 
function. Therefore, the hyperbolic identity develops the above solution 
into the ensuing form 

φ(x, t) = ±

̅̅̅
6

√

1 + A(cosh(κx − ωt) + sinh(κx − ωt) )
. (40) 

For integral constant A = ±3, the solution (40) becomes 

φ(x, t) = ±

̅̅̅
6

√

1 ± 3(cosh(κx − ωt) + sinh(κx − ωt) )
. (41) 

Furthermore, the value of A = ±7 represents an explicit soliton 

φ(x, t) = ±

̅̅̅
6

√

1 ± 7(cosh(κx − ωt) + sinh(κx − ωt) )
. (42) 

But, for A = 1, from (39) we obtain the standard kink soliton 
solution 

φ(x, t) = ±

̅̅̅
6

√

2

(
1 − tanh

(κx − ωt
2

))
, (43)  

where κ = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kEp(9EIp− 2γ2)

√

2kγl and ω = − 3
2

pE
γ . For alternative values of the 

integral constant A, there can be established other exact solutions. These 
solutions, however, are not determined in this section due to length 
constraints. 

Cohort 2 

κ = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kEp(9EIp − 2γ2)

√

4kγl
, ω = −

3
4

pE
γ
, a0 = 0, a1 = 0, a2 = ±

1
2

b1, b0

= −
1
2
b1, b1 = b1.

Inserting these values into the solution (38) and along with (36), we 

derive the succeeding form of solution 

φ(ξ) = ±

̅̅̅
6

√

− 1 + A2exp(2ξ)
. (44) 

The hyperbolic identity develops the above solution into the ensuing 
form 

φ(x, t) = ±
̅̅̅
6

√ cosh(κx − ωt) − sinh(κx − ωt)
(
A2 − 1

)
cosh(κx − ωt) +

(
A2 + 1

)
sinh(κx − ωt)

. (45) 

Since the above solution has an integrating constant A, we might opt 
its value subjectively. Therefore, solution (45) turns into the hyperbolic 
(sinh, cosh) function for A = ±

̅̅̅
2

√
. 

φ(x, t) = ±
̅̅̅
6

√ cosh(κx − ωt) − sinh(κx − ωt)
3cosh(κx − ωt) + 5sinh(κx − ωt)

. (46) 

Similarly, for A = ±2
̅̅̅
3

√
, from solution (45), we attain 

φ(x, t) = ±
̅̅̅
6

√ cosh(κx − ωt) − sinh(κx − ωt)
11cosh(κx − ωt) + 13sinh(κx − ωt)

. (47) 

But, for A =±i, we ascertain kink shape soliton from (46) as follows: 

φ(x, t) = ±

̅̅̅
6

√

2

(
1 − tanh

(κx − ωt
2

))
. (48) 

Furthermore, for A = 1, from solution (46), we found the singular 
kink soliton given as: 

φ(x, t) = ±

̅̅̅
6

√

2

(
1 − coth

(κx − ωt
2

))
(49) 

where κ = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kEp(9EIp− 2γ2)

√

4kγl and ω = − 3
4

pE
γ . For other values of the 

elementary constant A, there can obtain further exact solutions. These 
solutions, however, are not documented in this section due to length 
limitation. 

Cohort 3 

κ = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kEp(9EIp − 2γ2)

√

2kγl
, ω =

3
2

pE
γ
, a0 = b1, a1 = 0, a2 = − b1, b0

= b1, b1 = b1.

Placing the values arranged in cohort 3 into solution (38) and 
considering of solution (36) formulates an explicit solution in terms of 
exponential function. 

φ(ξ) =
̅̅̅
6

√
Aexp(ξ/2)

Aexp(ξ/2) + exp(− ξ/2)
. (50) 

The hyperbolic identity develops the above solution into the ensuing 
form 

φ(x, t) =
̅̅̅
6

√
A

⎛

⎜
⎝

cosh
(

κx− ωt
2

)
+ sinh

(
κx− ωt

2

)

(A + 1)cosh
(

κx− ωt
2

)
+ (A − 1)sinh

(
κx− ωt

2

)

⎞

⎟
⎠. (51) 

Since the above solution has an integrating constant A, one might 
select its value definitely. Therefore, solution (51) develops to the 
rational function solution for A = 2. 

φ(x, t) = 2
̅̅̅
6

√

⎛

⎜
⎝

cosh
(

κx− ωt
2

)
+ sinh

(
κx− ωt

2

)

3cosh
(

κx− ωt
2

)
+ sinh

(
κx− ωt

2

)

⎞

⎟
⎠. (52) 

If we put A = ±4, solution (51) is noted as 

φ(x, t) = 4
̅̅̅
6

√

⎛

⎜
⎝

cosh
(

κx− ωt
2

)
+ sinh

(
κx− ωt

2

)

5cosh
(

κx− ωt
2

)
+ 3sinh

(
κx− ωt

2

)

⎞

⎟
⎠. (53) 
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But, if we select A = 1, solution (53) takes the tanh function solution 

φ(x, t) =
̅̅̅
6

√

2

(
1+ tanh

(κx − ωt
2

))
, (54)  

where κ = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kEp(9EIp− 2γ2)

√

2kγl and ω = 3
2

pE
γ . For distinct choices of integrating 

constant A, we obtain more soliton solutions. For the sake of smooth-
ness, we have ignored herein the other solutions. In the subsequent 
section, we have depicted some graphical development of the mentioned 
solutions for realizing feasibility. 

Graphical portrayal and interpretation 

A plot is a graphical procedure for demonstrating a data set through 
the graph to express how two or more variables are related. To represent 
the nonlinear phenomena appropriately, graphical description is an 
important tool. This module contributes graphical depictions of the 
obtained results to the perturbed NLS equation with Kerr law nonline-
arity and nonlinear dynamics of the radial dislocations in MTs. We 
develop ample soliton profiles by receiving different values of the 
existing unknowns of each result. The behaviors of the solutions are 
sketched in 3D and 2D contours which describes the mechanism of the 
illustrated wave profiles. 

Interpretations of solutions to the perturbed NLS equation 

The perturbed NLS equation deals with certain exact solutions which 
are accumulated in equations (15)-(32). The obtained solutions deliver a 
sort of wave structures by taking modulus plot like the kink soliton, flat 
kink soliton, compacton, bell shape soliton, anti-bell shape soliton, and 
other soliton shapes which have a significant feature in analyzing 
various types of nonlinear incidents. The kink soliton describes the 
propagation in fiber-optic communication which transmits information 
by transferring pulses of infrared light from one place to another through 
an optical fiber. The light is a form of carrier wave that is modulated to 
carry information. In addition, the analysis of compacton deals with a 
variety of nonlinear events, such as a cluster’s hydrodynamic model, 
liquid drop fission and fusion mechanisms, super-deformed nuclei, etc. 
The delineation of the graphs of the solutions (16), (18), (22), (26) and 
(29) for the perturbed NLS equation are represented by the Figs. 1–10. 
The graphs of the other solutions have been ignored due to uniformity. 

The solution (16) describes the kink soliton structure for c = − 2 and 
other unknown values of R = T = β = − 2. But, increasing the value of 
c = − 0.54 and constant β = − 0.48 represent a flat structured kink soli-
ton. The 3D envelopes are sketched in Fig. 1 and Fig. 2 within the limit 
− 4 ≤ x ≤ 4,1 < t ≤ 4 and 2D envelopes are sketched for t = 0. 

The solution (18) represents the standard smooth kink soliton for the 
value c = − 0.06 and other unknown values of β = 2, R = T = − 2. This 
kind of shape travels from one asymptotic location to the next. On the 
other hand, the wave shape slightly changes for assigning the wave 
speed c = 0.15 and other unknown values of β = − 0.67,R = 1.09,T =

2. The 3D envelopes are portrayed in Fig. 3 and Fig. 4 within the limit 
− 10 ≤ x ≤ 10,2 < t ≤ 10 and 2D envelopes are shown for t = 0.

The solution (22) behaves the general soliton structure for c = − 0.01 
and other values of A = − 0.25, β = 1.97, R = T = − 2. When the 
wave speed increases to c = 0.54, and other values are A = − 0.23, β =

1.5, R = − 2, T = − 0.69, we attain another soliton shape. The 3D en-
velopes are outlined in Fig. 5 and Fig. 6 within the limit − 0.5 ≤ x ≤ 0.5,
0 < t ≤ 2 and 2D envelopes are outlined for t = 0. 

The solution (26) demonstrates bell-shaped soliton for c = − 1.24 
and other unknown values of β = 0.03,R = − 1.18,T = − 0.90. On the 
other hand, if the wave speed changes (c = 1.21) and other parameters 
remain unchanged, we receive the anti-bell shape soliton shown in 
Fig. 8. The 3D envelopes are presented in Fig. 7 and Fig. 8 within the 
limit − 10 ≤ x ≤ 10,0 < t ≤ 5 and 2D envelopes are presented for t =

0.

Furthermore, the solution (26) reveals a significant wave profile 
entitled as compacton for the wave speed c = 0.03 and other unnamed 
values of T = − 0.90, β = 0.03, R = − 1.18. Compacton is a special type 
of wave structure with compact support where the nonlinear term 
confines to a finite core, thus the exponential wings disappear. The 3D 
envelope is shown in Fig. 9 within the boundary 
− 20 ≤ x ≤ 20,0 < t ≤ 10 and 2D envelope is shown for t = 0. In 
contrast, if the wave speed is negative and other parameters are also 
negative (β = − 0.01,R = − 0.73,T = − 0.97), we find a parabolic shape 
soliton profile. The 3D envelope is outlined in Fig. 10 within the 
boundary − 7 ≤ x ≤ 7, 0 < t ≤ 5 and 2D envelope is outlined for t = 0. 

The solution (29) defines the plane kink type soliton for c = − 0.01 
and other values A = − 0.12,β = − 0.54,R = − 0.88,T = − 0.90. This 
shape of soliton started from the origin and later it moves parallel to the 
ground. Alternatively, the shape and direction change with respect to 
the positive wave velocity c = 0.01 and other unknown values A =

− 0.12, β = − 0.54, R = − 0.88, T = − 0.90. The 3D envelopes are 
delineated in Fig. 11 and Fig. 12 within the limit 0 ≤ x ≤ 4,0 < t ≤ 3 
and 2D envelopes are delineated for t = 0.

The dynamics of the nonlinear radial dislocations in MTs 

The nonlinear dynamics of the radial dislocations in MTs delivers a 
variety of exact solutions which are accumulated in equations (40)-(54). 
The obtained solutions deliver a sort of wave structures, like kink, flat 
kink, double soliton, and other shapes which have a significant feature 
in analyzing various nonlinear incidents. The delineation of the graphs 
of the solutions (40), (48) and (52) for the stated NLEE are represented 
by the Figs. 13–16. The graphs of the other solutions have been 
neglected due to uniformity. 

The solution (40) implies the flat kink soliton profile corresponding 
to the wave speed ω = 0.39 and other unidentified values A = 1.26, κ =

− 0.01. The shape of this wave ascends from right to left and later it 
travels with a constant velocity. But, only reducing the wave speed 
(ω = 0.15), there is a small change of this shape arranged in Fig. 14. The 
3D envelopes are portrayed in Fig. 13 and Fig. 14 within the limit 
0 ≤ x ≤ − 6, 0 < t ≤ 5 and 2D envelopes are portrayed for t = 0. 

The solution (48) shows the standard kink soliton for the wave speed 
ω = 2 and another unknown constant κ = 0.03. This shape moves from 
one infinitesimal state to another. Again, the wave speed ω = 0.92 de-
velops another type of kink soliton which is smoother than before. The 
3D envelopes are sketched in Fig. 15 and Fig. 16 within the limit 
− 5 ≤ x ≤ − 5,0 < t ≤ 4 and 2D envelopes are sketched for t = 0.

Comparison of the results 

In this module, the results acquired in this article are compared with 
the results deduced by other researchers. 

Comparison of solutions of the perturbed NLS equation 

In order to extract exact soliton solutions to the perturbed NLS 
equation, diverse academics used several solving approaches, as for 
instance, Zai-Yun et al. [32] investigated bell-shaped, kink and periodic 
soliton profiles along with a small number of solutions by taking the 
advantage of the bifurcation method. Eslami [33] examined the complex 
wave solutions and sketched only two graphs with the aid of direct 
algebraic scheme. But, in this article, the generalized Kudryashov 
scheme is adopted for determining scores of soliton solutions to the 
perturbed NLS equation with Kerr law nonlinearity and acquired kink, 
flat kink, smooth kink, bell-shaped, anti-bell shaped, compacton, para-
bolic and general type of solitons shown in the 3D and 2D graphics. The 
solutions of the perturbed NLS equation are compared in Table 1. 

From Table 1, it is observed that Moosaei et al. [58] found only a few 
numbers of solutions in terms of tan and tanh functions. But we have 
established a large number of analytical solutions in this article related 
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to sinh, cosh, tanh, coth, sech functions presented in 2D and 3D graphical 
structures. It is important to note that the findings of this study are 
practical, compact size, meaningful, and easy to understand when it 
comes to nonlinear wave applications. It could also be used in plasma 
physics, semiconductor materials, heat pulse propagation in solids, 
nonlinear optical phenomena, etc. 

Comparison of solutions of the nonlinear dynamics of the radial 
dislocations in MTs 

Several studies investigated the nonlinear dynamics of radial dislo-
cations in MTs using various schemes and established some exact solu-
tions. For instance, Baskonus et al. [59] acquired a couple of rational 
solutions of tan and tanh functions by using the exponential function 
scheme. In this work, the generalized Kudryashov approach yields a 
range of solitary wave solutions for the nonlinear dynamics of radial 
dislocations including kink soliton, flat kink soliton and double soliton 
shapes which have a significant feature in studying various types of 
nonlinear incidents. In Table 2, the resultant solutions are compared to 
those obtained by Zdravkovic et al. [60] using the modified extended 
tanh function scheme. 

It is noticed that Zdravkovic’ et al. [60] found only tanh function 
solutions. On the other hand, we ascertain a sort of exact solutions 
incorporating sinh, cosh, coth and tanh functions that are distinctive and 
far-reaching. As a fundamental component of the cytoskeleton, the 
resulting solutions could interpret the mechanism of microtubules, 
particularly the cell nucleus and membrane. MTs are dynamical in the 
real field and in a stable state, the dimers of MTs are kept in straight 
position by PFs. When these dimers use hydrolyses energy, they become 
nonlinear and turn into kink-shaped excitations. These stimulated di-
mers, on the other hand, return to the starting stage with their own, as 
illustrated by the kink-shaped soliton. 

Conclusion 

The perturbed NLS equation with Kerr law nonlinearity and 
nonlinear dynamics of the radial dislocation in MTs have been investi-
gated in this article through the generalized Kudryashov approach and 
in terms of hyperbolic, rational, and trigonometric functions, we have 
confirmed some broad-spectral, functional, and advanced soliton solu-
tions. The obtained solutions have been compared to existing solutions 
that have already been found in the literature, and it is evident from this 
comparison that some of the obtained solutions are comparable to 
earlier findings and some solutions are distinct from others. In partic-
ular, the solutions (13), (20), (27), (39) and (50) are wide-spectrum and 
significant. Figurative representations of some of the obtained solutions, 
such as kink shaped profile, flat kink, compacton, bell-shaped profile, 
anti-bell shape, double soliton profile, and other soliton shapes, have 
been plotted in three- and two-dimensional format using independent 
values of the unknown parameters to demonstrate the compatibility of 
the solutions. The solutions have been validated using the computer 
algebra system for reliability by setting them into the main equations 
and confirming that they are correct. This study may be valuable for 
future research in terms of technique and precision of solutions, notably 
in solving NLEEs, which have a high level of efficacy in the nonlinear 
arena. 
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