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Dynamics and Ulam Stability for Fractional
q-Difference Inclusions via Picard Operators

Theory

Säıd Abbas, Mouffak Benchohra and Erdal Karapınar∗

Abstract

In this manuscript, by using weakly Picard operators we investigate
the Ulam type stability of fractional q-difference An illustrative example
is given in the last section.

1 Introduction

Not only fractional differential inclusions (FDIs) but also fractional differen-
tial equations (FDEs) have applications in mathematics, and other applied
sciences, see e.g. [18, 6, 7, 35, 38, 40, 21, 22, 37, 9, 17, 4, 5]. Fractional q-
difference equations received much attention from many authors; see e.g. [12].
Other interesting results about this subject can be found in [24].

Functional differential inclusions and coupled systems of differential inclu-
sions are a generalization of the concept of ordinary differential equation of
the form d

dtx(t) ∈ F (t, x(t)), where F is a multivalued map containing one
element (single-valued map). Differential inclusions arise in many situations
as differential variational inequalities, projected dynamical systems, linear and
nonlinear complementarity dynamical systems, discontinuous ordinary differ-
ential equations, and fuzzy set arithmetic; see e.g.[14, 19, 36].

Key Words: Fractional q-difference inclusion; multivalued weakly Picard operator; Ulam-
Rassias stability; fixed point inclusion.
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Ulam stability for functional differential equations and inclusions has been
widely considered; see e.g.[26, 27]. Picard operators [28, 29] seemed to be a
powerful method in the processing of Ulam stability theory [10, 27, 16], and
ordinary differential inclusions and equations; see e.g.[1, 29, 30, 31].

In this paper we first discuss the stability of the fractional q-difference
inclusion below in the sense of Ulam-Rassias

(cDα
q h)(t) ∈ F (t, h(t)); t ∈ J := [0, T ], (1.1)

along the initial condition
h(0) = h0 ∈ R, (1.2)

with T > 0, α ∈ (0, 1], q ∈ (0, 1), and F : J×R→ N(R) is a given multi-valued
map, N(R) is the family of all nonempty subsets of R, and cDα

q is the Caputo
fractional q-difference derivative of order α.

After getting a solution of (1.1), we shall investigate the coupled fractional
q-difference inclusions{

(cDα1
q1 g1)(t) ∈ F1(t, g1(t), g2(t)),

(cDα2
q2 g2)(t) ∈ F1(t, g1(t), g2(t))

; t ∈ J, (1.3)

with the initial conditions {
g1(0) = i1

g2(0) = i2,
(1.4)

where T > 0, qi ∈ (0, 1), αi ∈ (0, 1], ii ∈ R, Fi : J× R→ N(R); i = 1, 2.
This paper initiates the application of Picard operators for the study of

Ulam stability for problems (1.1)-(1.2) and (1.3)-(1.4).

2 Preliminaries

We deal with the following collection

C(J) := {g : J→ R| g is continuous }.

Then, C(J) forms a Banach space by regarding the supremum (uniform) norm
‖g‖C := supτ∈J |g(τ)|.

L1(J) := {g : J→ R|g is measurable and Lebesgue integrable function.}

Then, L1(J) forms a Banach space by regarding ‖g‖L1 = ‖g‖1 =
∫
J
|g(τ)|dτ.
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Over a metric space (M, δ), the symbol P(E) denotes the family of all
nonempty subsets of E ⊂M. Then, we set

Pπ(E) = {F ∈ P(E) : F fulfills the property π},

where, π can be, for instance, bounded, closed, compact, convex (in short,
bd, cl, cp, cv). For clarification, consider, for example
Pbd,cl(E) = {F ∈ P(E) : F is bounded and closed}.

A multivalued function G : J→ Pcl(E) is called measurable whenever the
mapping

τ → dist(u, G(t)) = inf{‖u− ν‖ : ν ∈ G(τ)}

is measurable for each u ∈ E.
A mapping Hd : P(E)×P(E)→ [0,∞) ∪ {∞} described by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

is called Hausdorff metric, where d(a,B) = inf
b∈B

d(a, b), d(A, b) = inf
a∈A

d(a, b)

and A,B ⊂ E. Then, the coupled (Pbd,cl(E), Hd) is named as Hausdorff metric
space.

Definition 2.1. [14] The set

SG = {g ∈ L1(J) : g(τ) ∈ G(τ) , a.e. τ ∈ J},

is the selection set of G. Moreover, the set selector SF◦g, for each g ∈ C(J)
from F ◦g is formulated by SF◦g := {u ∈ L1(J) : u(τ) ∈ F (τ, g(τ)), a.e. τ ∈ J}

A selfmapping O on a metric space (M, δ) is called

(P.o.) Picard operator (P.o.) if Fix O = {z∗} for z∗ ∈ M and
(On(z0))n∈N → z∗ for any z0 ∈M.

(w.P.o.) weakly Picard operator (w.P.o) if (On(z))n∈N → z∗ ∈ M, in a
way that z∗ ∈ Fix O, (limit may depend on z).

(k.w.P.o.) k-weakly Picard operator (c.w.P.o) if it is (w.P.o) and
d(z,O∞(z)) ≤ k d(z,O(z)); z ∈ X.

where Fix O = {z : z = Oz}. Further, for a (w.P.o) O, we set O∞ = O∞(z) =
lim
n→∞

On(z). Notice that O∞(M) = Fix O.

A multivalued mapping Q : M → P(M) on (M, δ) is called weakly Picard
operator (m.w.P.o.)[23, 32], if for each g ∈M and y ∈ Q(x), there is (gn)n∈N
where
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(i) g0 = g, g1 = y;

(ii) gn+1 ∈ Q(gn), n ∈ N;

(iii) (gn)n∈N → g∗ so that g∗ ∈ Fix Q.

Set A := {ϕ : [0,∞) → [0,∞)| ϕ increasing, and limn→∞ ϕn(t) → 0 for
every t ∈ [0,∞}, where ϕn is the n-th iterate of ϕ. Here ϕ is called comparison
function [34]. If ϕ ∈ A then ϕ is continuous at 0 and ϕ(t) < t for all t > 0.
Furthermore, we set

S := {ϕ : [0,∞) → [0,∞)| ϕ strictly increasing&

∞∑
n=1

ϕn(t) < ∞ for all t ∈ [0,∞)},

Here, ϕ ∈ S is called strictly comparison function and S ⊂ A.

Definition 2.2. For ϕ ∈ A, operator Q : M→ Pcl(M) is called ϕ-multivalued
weakly Picard (briefly ϕ−m.w.P. operator) if it is a m.w.P. and there is a
selection O∞ : ΛQ → Fix Q of Q∞ so that

d(θ,O∞(θ, ν)) ≤ ϕ(d(θ, ν)); for all (θ, ν) ∈ ΛQ.

In particular, if ϕ(z) = kz, for all z ∈ R+, for some k > 0 then Q is named as
k-multivalued weakly Picard operator (k-m.w.P.o.).

Definition 2.3. An operator Q : M→ Pcl(M) is named

a) multivalued k-Lipschitz if there is k ≥ 0 with

Hδ(Q(q),Q(ν)) ≤ γδ(q, v); for each q, ν ∈M, (2.1)

b) a multivalued k−contraction if (2.1) holds for k ∈ [0, 1),

c) a multivalued ϕ−contraction if there is a ϕ ∈ S with

Hδ(Q(q),Q(ν)) ≤ ϕ(δ(q, ν)); for each q, ν ∈M.

Definition 2.4. [1]. The inclusion g ∈ Q(g) is named generalized Ulam type
(g.U.t) stable if there is ϕ ∈ S such that for each ε > 0 and solution g ∈ C(J)
of

Hδ(g(τ), (Qg)(τ)) ≤ ε; τ ∈ J,

there is a solution u ∈ C(J) of g ∈ Q(g) (inclusion) so that

|g(τ)− u(τ)| ≤ θQ(ε); τ ∈ J.

In case of ϕ(t) = kt; k > 0, it is called Ulam type stable.
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Definition 2.5. [1, 2, 3]. The fixed point inclusion g ∈ Q(g) is named gen-
eralized Ulam-Rassias type stable with respect to φ if there is a real number
cN,φ > 0 such that for each solution g ∈ Cγ of

Hd(g(τ), (Qg)(τ)) ≤ φ(τ); t ∈ I,

there is a solution u ∈ C(J) of g ∈ Q(g) (inclusion) such that

|g(τ)− u(τ)| ≤ cN,φφ(τ); t ∈ I.

In case of φ(t) = kt; k > 0, it is called Ulam-Rassias type stable.

Lemma 2.6. [39] Let Q be a multivalued mapping from a complete metric
space (M, δ) to Pcl(M), and λ ∈ S. If Q is a λ-contraction, then Fix Q 6= ∅.
Moreover, {Q is (w.P.o).

Theorem 2.7. [20] Let Q be a multivalued mapping from a complete metric
space (M, δ) to Pcl(M), and λ ∈ S. If Q forms a multivalued λ−contraction,
then

(1) h is a m.w.P. operator;

(2) If additionally λ(κτ) ≤ κλ(τ) for every τ ∈ R+ (where κ > 1), then h is

a ϕ-m.w.P. operator, with ϕ(τ) := τ +

∞∑
n=1

λn(τ), for each τ ∈ R+;

(3) Let S : M → Pcl(M) be a λ−contraction and η > 0 be such that
Hδ(S(τ),Q(τ)) ≤ η for each τ ∈ E. Suppose that λ(κτ) ≤ κλ(τ) for
every τ ∈ R+ (where κ > 1). Then,

Hδ(Fix S ,Fix F ) ≤ ϕ(η).

For ε ∈ R, we set

[ε]q =
1− qε

1− q
.

Definition 2.8. [15] The q-derivative of order n ∈ N of g : J→ R is described
as (D0

qg)(τ) = g(τ),

(Dqg)(τ) := (D1
qg)(τ) =

g(τ)− g(qτ)

(1− q)τ
; τ 6= 0, (Dqg)(0) = lim

t→0
(Dqg)(τ),

and
(Dn

q g)(τ) = (DqD
n−1
q g)(τ); τ ∈ J, n ∈ {1, 2, . . .}.
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Set Is := {sqn : n ∈ N} ∪ {0}.

Definition 2.9. [15] The q-integral of g : Is → R is described as

(Iqg)(s) =

∫ s

0

g(τ)dqτ =

∞∑
n=0

t(1− q)qng(sqn).

(DqIqg)(s) = g(s), while if g is continuous at 0, then

(IqDqg)(s) = g(s)− g(0).

Definition 2.10. [8] The Riemann-Liouville fractional q-integral of order α ∈
R+ := [0,∞) of a function g : J→ R is defined by (I0q g)(s) = g(s), and

(Iαq g)(s) =

∫ t

0

(s− qτ)(α−1)

Γq(α)
g(τ)dqτ ; t ∈ J.

Definition 2.11. [25] The Caputo fractional q-derivative of order α ∈ R+ of
a function g : J→ R is defined by (CD0

qg)(s) = g(s), and

(CDα
q g)(s) = (I [α]−αq D[α]

q g)(s); s ∈ J.

Lemma 2.12. [25] Let α ∈ R+. Then

(Iαq
CDα

q g)(s) = g(s)−
[α]−1∑
k=0

tk

Γq(1 + k)
(Dk

q g)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDα

q g)(s) = g(s)− g(0).

Lemma 2.13. Assume that SF◦g ⊂ C(J) for each g ∈ C(J). Then (1.1)-(1.2)
is equivalent to g ∈ Q(g), where Q : C(J) → P(C(J)) is the multi-function
described as

(Qg)(τ) = {g0 + (Iαq g)(τ) : g ∈ SF◦g}.

In this manuscript, we launch the study of the Ulam stability for Caputo
fractional q-difference inclusions and related coupled systems via Picard op-
erators theory, and it is structured as follows: Section 2 the first main result,
existence and stability of (1.1) and (1.2), is expressed. Additionally, in Sec-
tion 3; we obtain similar results for the coupled system (1.3)-(1.4). Lastly, in
Section 4 an example is expressed to indicate the applicability of the derived
theorem of the paper.
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3 Caputo Fractional q-Difference Inclusions

Definition 3.1. g is a solution of (1.1)-(1.2) if it achieves the condition (1.2),
and the equation g(τ) = g0 + (Iαq g)(τ) on J, where g ∈ SF◦g.

(H1) The multifunction τ 7−→ F (τ, g) is jointly measurable for each g ∈ R

(H2) The multifunction g 7−→ F (τ, g) is l.s.c. for a.a. τ ∈ J;

(H3) There exists a function % ∈ L∞(J,R+) and λ ∈ S so that

Hδ(F (τ, g), F (τ, g)) ≤ %(τ)λ(|g− g|), (3.1)

and
Tα‖%‖L∞
Γq(1 + α)

≤ 1, (3.2)

for almost all τ ∈ J, and each g, g ∈ R;

(H4) There exists q ∈ L1(J,R+) such that

F (τ, g) ⊂ q(τ)B0,

where B0 = {g ∈ C(J) : ‖g‖C < 1}, for almost all τ ∈ J and each g ∈ R.

A self-mapping λ on [0,∞) is called quasi-homogenous function if If λ(zτ) ≤
�λ(τ) for every τ ∈ R+, where � > 1.

Theorem 3.2. Assume (H1)− (H4) hold. Then:

(a) Pb. (1.1)-(1.2) admits least one solution and Q is a m.w.P.o.;

(b) Furthermore, if λ is quasi-homogenous, then Pb. (1.1)-(1.2) is g.U.t
stable, and N is a ϕ-m.w.P.o., with

ϕ(τ) := t+

∞∑
n=1

λn(τ), τ ∈ R+.

Proof. First, we assert Q(g) ∈ Pcp(C(J)) for each g ∈ C(J).
For each g ∈ C(J) there exists f ∈ SF◦g, (see [33]). Thus ν(τ) = g0 +(Iαq f)(τ)
verify ν ∈ Q(g). From (H1) and (H4), via Theorem 8.6.3. in [11], the set Q(g)
is compact, for each g ∈ C(J).

Next, we assert Hδ(Q(g),Q(g)) ≤ λ(‖g− g‖C) for each g, g ∈ C(J).
Let g, g ∈ C(J) and h ∈ Q(g). Then, there exists f ∈ SF◦g, with

h(τ) = g0 + (Iαq f)(τ).
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We get, from (H3)

Hδ(F (τ, g(τ)), F (τ, g(τ))) ≤ %(τ)λ(‖g− g‖C).

Consequently, there is w ∈ SF◦g, with

|f(τ)− w(τ)| ≤ %(τ)λ(‖g− g‖C); τ ∈ I.

Construct a map G : J→ P(R) by

G(τ) = {b ∈ R : |f(τ)− b(τ)| ≤ %(τ)λ(‖g− g‖C)}.

Due to the measurability of g(τ) = G(τ)∩F (τ, g(τ)) (Proposition III.4 in [13]),
then there is f which is a measurable selection function for g. Thus, f ∈ SF◦g,
and for each τ ∈ J,

|f(τ)− f(τ)| ≤ %(τ)λ(‖g− g|C).

Let the function
h(τ) = g0 + (Iαq f)(τ).

Then

|h(τ)− h(τ)| ≤ Iαq |f(τ)− f(τ)|
≤ Iαq (%(τ)λ(‖g− g‖C))

≤ ‖%‖L∞λ(‖g− g‖C)

(∫ τ

0

|τ − qs|(α−1)

Γq(α)
dqs

)
≤ Tα‖%‖L∞

Γq(1 + α)
λ(‖g− g‖C).

Thus, from (4.2) yields

‖h− h‖C ≤ λ(‖g− g‖C).

By verbatim with changing the roles of g and g, it yields

Hδ(Q(g),Q(g)) ≤ λ(‖g− g‖C).

Hence, Q is a λ−contraction.
(a) Lemma 2.6 infer that Q possesses a fixed point on J, and from [Theorem
2.7, (i)] we conclude that Q is a m.w.P.o.
(b) The problem (1.1)-(1.2) is g.U-H stable. For clarification, for ε > 0 and
ν ∈ C(J) there is g ∈ C(J) so that

g(τ)− g0 ∈ (Iαq F )(τ, ν(τ)); τ ∈ J,
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and
‖g− ν‖C ≤ ε,

where
(Iαq F )(τ, ν(τ)) = {(Iαq w)(τ); w ∈ SF◦ν}; τ ∈ J.

Then Hδ(y,Q(y)) ≤ ε. Moreover, the multivalued map Q is λ−contraction, and
from [Theorem 2.7, (i)-(ii)], Q is a ϕ-m.w.P.o. Tus, g ∈ Q(g) is g.U-H stable.
Hence, our problem (1.1)-(1.2) is g.U-H stable. Theorem 2.7,(iii) concludes
the result.

4 Caputo Fractional q-Difference Inclusions

Ulam stability of the problem (1.1)-(1.2) shall be discussed in this section.

Definition 4.1. If a continuous g along the initial condition (1.2) achieve
g(t) = g0 + (Iαq g)(t) on J, where g ∈ SF◦g, then we say that it is a solution of
the problem (1.1)-(1.2)

Now, we present requirements for both Ulam stability of problem (1.1)-
(1.2).

The following are the basic requirements for our aim:

(H1) The multifunction t 7−→ F (t, g) is jointly measurable for each g ∈ R

(H2) The multifunction g 7−→ F (t, g) is lower semi-continuous for almost all
t ∈ J;

(H3) There exists ρ ∈ L∞(J,R+) and ϕ ∈ S so that for for almost all t ∈ J,
and each g, g ∈ R, we have

Hd(F (t, g), F (t, g)) ≤ %(t)ϕ(|g− g|), (4.1)

and
Tα‖%‖L∞
Γq(1 + α)

≤ 1; (4.2)

(H4) we have F (t, g) ⊂ q(t)B(0, 1), for almost all t ∈ J and each g ∈ R, where
q : J→ R is integrable and B(0, 1) = {g ∈ C(J) : ‖g‖C < 1}.

Theorem 4.2. Suppose that (H1) − (H4) are achieved by the multifunction
F : J× R→ Pcp(R) Then,

(a) Problem (1.1)-(1.2) possesses a solution and Q is a m.w.P.o;
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(b) In addition, if λ is quasi-homogenous, then the problem defined by (1.1)-
(1.2) is g.U.t. stable, and Q is a λ-m.w.P.o, where λ is described as

λ(t) := t+

∞∑
n=1

ϕn(t), for each t ∈ [0,∞).

Remark 4.3. Note that SF◦g is nonempty for all g ∈ C(J) on account of
(H1) F has a measurable selection (see [13], Theorem III.6)

Proof. Let Q a mapping as described in Lemma 2.13. We assert that it
achieves the hypothesis of Theorem 2.7. We assert first that Q(x) ∈ Pcp(C(J))
for each g ∈ C(J).
On account of Theorem 2 in [33], for each g ∈ C(J) there is f ∈ SF◦g, for
all t ∈ J. Then, ν(t) = g0 + (Iαq f)(t) has the property ν ∈ Q(g). In addition,
taking (H1) and (H4), together with Theorem 8.6.3. in [11], we find that for
each g ∈ C(J), the set Q(g) is compact.

Next, we assert that Hd(Q(g),Q(g)) ≤ ϕ(‖g− g‖C) for each g, g ∈ C(J).
Let g, g ∈ C(J) and h ∈ Q(g). So, there is f ∈ SF◦g, so that

h(t) = g0 + (Iαq f)(t),

for each t ∈ J. Due to (H3), we have

Hd(F (t, g(t)), F (t, g(t))) ≤ %(t)ϕ(‖g− g‖C).

Consequently, there is w ∈ SF◦g, with

|f(t)− w(t)| ≤ %(t)ϕ(‖g− g‖C); t ∈ J.

We set G : J→ P(R) as follows

G(t) = {w ∈ R : |f(t)− w(t)| ≤ %(t)ϕ(‖g− g‖C)}.

Note that g(t) = G(t) ∩ F (t, g(t)) is a measurable multivalued operator due
to Proposition III.4 in [13]. Consequently, there is a measurable selection
function f for g. Thus, f ∈ SF◦g, and

|f(t)− f(t)| ≤ %(t)ϕ(‖g− g|C),

for all t ∈ J. Define
h(t) = g0 + (Iαq f)(t),
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for each t ∈ J. Consequently, we find

|h(t)− h(t)| ≤ Jαq |f(t)− f(t)|
≤ Jαq (%(t)ϕ(‖g− g‖C))

≤ ‖%‖L∞ϕ(‖g− g‖C)

(∫ t

0

|t− qs|(α−1)

Γq(α)
dqs

)
≤ Tα‖%‖L∞

Γq(1 + α)
ϕ(‖g− g‖C),

for each t ∈ J. On account of (4.2), we find

‖h− h‖C ≤ ϕ(‖g− g‖C).

Regarding the analogy, changing the roles of g and g, yields

Hd(Q(g),Q(g)) ≤ ϕ(‖g− g‖C).

As a result, Q is a ϕ−contraction.

By taking Lemma 2.6 into account, we deduce that fixed point of Q pos-
sesses a solution of the inclusion (1.1)-(1.2) on J. Further, [Theorem 2.7, (i)]
yields that Q is a m.w.P.o.

Now, we assert that the problem (1.1)-(1.2) is g.U.t stable.
For this purpose, take ε > 0 and ν ∈ C(J) for which there is g ∈ C(J) so that

g(t)− g0 ∈ (Jαq F )(t, ϑ(t)); t ∈ J,

and
‖g− ν‖C ≤ ε,

with
(Jαq F )(t, ν(t)) = {(Jαqw)(t); w ∈ SF◦ν}; t ∈ J.

Then Hd(y,Q(y)) ≤ ε. In addition, we conclude that Q is a multivalued
ϕ−contraction. Regarding [Theorem 2.7, (i)-(ii)], we deduce that Q is a Ψ-
m.w.P.o. Thus, the fixed point problem g ∈ Q(g) is g.U.t. stable. In conclu-
sion, the problem (1.1)-(1.2) is g.U.t. stable. The rest follows from [Theorem
2.7,(iii)].

5 Coupled System of Caputo Fractional q-Difference
Inclusions

This section is devoted for the existence, uniqueness and Ulam stability of
(1.3)-(1.4). Here, C := C(J)× C(J) denotes the Banach space with the norm

‖(g, ν)‖C = ‖g‖C + ‖ν‖C .
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Lemma 5.1. Let G : C→ C described as

(G(g1, g2))(t) = ((G1g1)(t), G2g− 2)(t)); t ∈ J, (5.1)

where Gi : C(J)→ C(J); i = 1, 2, are defined by

(Gi(g1, g2))(t) = ii + (Jαi
qi gi)(t); t ∈ J, (5.2)

where gi ∈ SFi◦gi ; i = 1, 2. Then, fixed points of G form the solutions of the
system (1.3)-(1.4).

Definition 5.2. By a coupled solutions of problem (1.3)-(1.4) we mean a
continuous coupled functions (g1, g2) those satisfy the initial condition (1.4),
and the equations gi(t) = ii + (Jαi

qi νi)(t) on J, where νi ∈ SFi◦gi
; i = 1, 2.

Keeping Lemma 5.1 on mind, we shall investigate the existence and Ulam
stability of (1.3)-(1.4), as in Theorem 4.2.

Theorem 5.3. Assume that the multifunctions Fi : J × R × R → Ncp(R)
satisfy the following hypotheses

(H01) The multifunctions t 7−→ Fi(t, g1, g2) are jointly measurable for each
gi ∈ R; i = 1, 2,

(H02) The multifunctions gi 7−→ F (t, g1, g2) are lower semi-continuous for al-
most all t ∈ J;

(H03) There exist pi ∈ L∞(J,R+) and ϕi :∈ S such that

Hd(Fi(t, g1, g2), Fi(t, g1, g2) ≤ pi(t)ϕi(|gi − gi|), (5.3)

and
Tαi‖pi‖L∞
Γq(1 + αi)

≤ 1; (5.4)

or for almost all t ∈ J, and each g1, g2, g1, g2 ∈ R.

(H04) There exist integrable functions qi : J→ R such that for almost all t ∈ J
and each gi ∈ R; i = 1, 2, we have

Fi(t, g1, g2) ⊂ qi(t)B(0, 1),

where B(0, 1) = {ν ∈ C(J) : ‖ν‖C < 1}.

Then, we have

(a) Problem (1.3)-(1.4) possess a solution and G is a m.w.P.o;
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(b) In addition, if each ϕi is quasi-homogenous, ( i = 1, 2, ) then the problem
(1.3)-(1.4) is g. U. t. stable, and G is a Ψ-m.w.P.o, with Ψ = (Ψ1,Ψ2)

and the the functions Ψi; i = 1, 2 defined by Ψi(t) := t +

∞∑
n=1

ϕni (t), for

each t ∈ [0,∞).

6 An Example

We aim to deal with the Cauchy problem of Caputo fractional 1
4−difference

inclusion {
(CD 1

4

1
2 g)(t) ∈ F (t, g(t)); t ∈ [0, 1],

g(t)|t=0 = 1,
(6.1)

for

F (t, g(t)) = {ν ∈ C([0, 1],R) : |f1(t, g(t))| ≤ |ν| ≤ |f2(t, g(t))|}; t ∈ [0, 1],

where f1, f2 : [0, 1]× R→ R, such that

f1(t, g(t)) =
t2g(t)

(1 + |g(t)|)e10+t
, f2(t, g(t)) =

t2g(t)

e10+t
.

Set α = 1
2 and suppose that F is both convex and closed multivalued function.

Notice that the solutions of the problem (6.1) are the solutions

g ∈ A(g) ( the fixed point inclusion)

where the multifunction operator A : C([0, 1],R) → P(C([0, 1],R)) is de-
scribed as

(Ag)(t) =
{

1 + (J
1
2
1
4

f)(t); f ∈ SF◦g
}

; t ∈ [0, 1].

For each t ∈ [0, 1] and all z1, z2 ∈ C([0, 1],R), we have

‖f2(t, z2)− f1(t, z1)‖C ≤ t2e−10−t‖z2 − z1‖C .

Consequently, we conclude that all hypotheses (H1)− (H3) are achieved with
%(t) = t2e−10−t.

As a next step, we indicate that condition (4.2) is fulfilled for T = 1. For
clarification, we note that ‖%‖L∞ = e−9, Γ 1

4
(1 + 1

2 ) > 1
2 . After an elementary

calculation, one can get that

∆ :=
T

3
4 ‖%‖L∞

Γ 1
4
(1 + 1

2 )
< 2e−9 < 1.
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Furthermore, (H4) is fulfilled with q(t) = t2e−10−t

‖F‖P ; t ∈ [0, 1], where

‖F‖P = sup{‖f‖C : f ∈ SF◦g}; for all g ∈ C([0, 1],R).

As a result, Theorem 4.2 implies that:

(a) The problem (6.1) possesses a solution and A is a m.w.P.o.

(b) The function ϕ(t) = ∆t forms quasi-homogenous. Hence, the problem
(6.1) is g.U.t. stable, and A is a Ψ-m.w.P.o, with the function Ψ defined
by Ψ(t) := t+ (1−∆t)−1, for each t ∈ [0,∆−1).
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Ulam stability results for Hadamard partial fractional integral inclusions
via Picard operators, Stud. Univ. Babeş-Bolyai Math., 61 (4) (2016), 409-
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