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In many �ow phenomenons of �uid with medium molecular weight, the energy �ux is e�ected due to the inhomogeneity of
concentration of mass. is contribution of the concentration to the energy �ux is considered as di�usion-thermo e�ect or Dufour
e�ect. In this research article the di�usion-thermo e�ect is addressed for the magnetohydrodynamics (MHD) �ow of Je�rey’s
fractional �uid past an exponentially accelerated vertical plate with generalized thermal and mass transports through a porous
medium. For the generalization of the thermal and mass �uxes the constant proportional Caputo (CPC) fractional derivative is
utilized. e governing of this generalized �ow are reduced to non-dimensional forms and then solved semi analytically by Laplace
transform. In additions the physical aspects of �ow and material parameters especially the e�ect of Du and fractional parameters
are discussed by sketching the graphs. From the graphical illustration, it is concluded that in the presence of Dufour e�ect �ow
speeds up. Moreover, a comparison between fractionalized and ordinary velocity �elds is also drawn and it is also observed that
fractional model with constant proportional derivative is of the more decaying nature as compare to the model contracted with
classical Caputo and Caputo fractional derivatives.

1. Introduction

 e non-Newtonian �uids posses the diverse nature from
Newtonian �uids due to their complex rheological prop-
erties. Now a days the study of non-Newtonian becomes a
popular research area due to its scienti�c and technological
applications in the processing industry, and biological sci-
ences, like making of plastic sheets, lubricant’s performance
and motion of biological �uid.  ere are several non-
Newtonian �uidmodels have been presented to demonstrate

the distinction between Newtonian and non-Newtonian
�uids but the Je�rey �uid model is more e�cient to dem-
onstrate attribute of stress relaxation for memory time scale
(the relaxation of time). Mohd-Zin et al. [1] studied the
porosity e�ect on unsteady MHD free convection �ow of
Je�rey �uid past an oscillating vertical plate with ramped
wall temperature. Bajwa et al. [2] solved a problem of
transient �ow of Je�rey �uid semi-analytically over per-
meable wall. Asgir et al. [3] discussed the heat transfer
analysis of channel �ow of MHD Je�rey �uid with porosity.
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)e model on Jeffrey fluid be simplest and most popular.
Some of the work on Jeffrey fluid are of Das [4] and Qasim
[5]. Ali et al. [6] discussed the magnetohydrodynamic
fluctuating free convection flow of incompressible electri-
cally conducting viscoelastic fluid in a porous medium in the
presence of a pressure gradient. Shah et al. [7] worked on the
new semi analytical technique for the solution of fractional
Order Navier Stokes equation.

)e fractional derivative is the generalization of ordinary
derivative by taking the non-integer order of differentiation.
Due its generalized property the fractional derivative be-
comes a potent tool to describe the heat and mass transfer
phenomenons and has attained the attention by researchers.
Chandra [8] present the MHD flow for Jeffrey fluid past an
inclined porous plate by applying Laplace transform
method. Jameel et al. [9] obtain the analytic solutions for the
incompressible unsteady flow of fractionalized MHD Jeffrey
fluid over an accelerating porous plate with linear slip effect
by using Caputo fractional derivative. Abro et al. [10] obtain
the solution of Jeffrey fluid flow acquired by non-singular
kernel (Caputo-Fabrizio) using integral transform tech-
nique. During the last decade, different generalized frac-
tional derivatives have appeared in the literature that are
derivatives of Caputo, Caputo-Fabrizio, Atangana-Baleanu
[11, 12]. Jawad et al. [13] observed the behavior of Caputo
time fractional model based on generalized Fourier’s and
Fick’s laws for Jeffrey Nano fluid. Siddique et al. [14] studied
the unsteady double convection flow of a magnetohydro-
dynamics (MHD) differential-type fluid flow in the presence
of Dufour effect, Newtonian heating, and heat source over an
infinite vertical plate with fractional mass diffusion and
thermal transports.

Sandeep et al. [15] discussed the behavior of momentum
and heat transfer on Jeffrey, Maxwell and Oldroyd-B
nanofluids over a stretching surface in the presence of
transverse magnetic field, non-uniform heat source/sink. A
magnetohydrodynamic Jeffrey fluid flow with thermal and
mass transfer on an infinitely rotating upright cone inves-
tigated by Saleem et al. [16]. Sulochana et al. [17] solved a
problem of a MHD radiative Casson fluid flow numerically
over a wedge to analyze the heat and molecular transfer. A
bio convective nanoliquid flow with the effect of second
order slip and chemical reaction between the parallel plates
studied by Acharya et al. [18]. )e radiative couple stress
fluid and chemically reactive nanofluid over a stretched
cylinder with magnetic effect analyzed by Acharya et al.
[19, 20]. Riaz et al. [21] obtained the solution of peristaltic
flow of Prandtl fluid by using homotopy perturbation
method. )e role of hybrid nanoparticles in thermal

performance of peristaltic flow of Eyring-Powell fluid model
have discussed by Riaz et al. [22].

Different types of fractional operators has discussed by
Yuri-Luchko [23]. Baleanu et al. [24] presented a new
fractional operator combining proportional Caputo and
solve different kind of example with CPC derivative. Chu
et al. [25] worked on fractional model of Second grade fluid
induced by generalized thermal and molecular fluxes with
constant proportional Caputo. Siddique et al. [26] analyzed
the blood liquor model fractionalized with constant pro-
portional Caputo fractional derivative and Dolat et al. [27]
investigate a fractional model of MHD viscous fluid with
heat transfer by using the constant proportional Caputo
fractional derivative.

)e purpose of this article is to utilized the Constant
proportional Caputo fractional derivative for the investi-
gation of diffusion-thermo effect on MHD flow of Jeffrey
fluid past an exponentially accelerated vertical plate in the
presence of chemical reaction, and heat generation through a
porous medium with generalized heat and mass fluxes.
Constant proportional Caputo fractional derivative is con-
sidered for the generalization of constitutive equations for
heat and mass fluxes. Initially, the proposed governing
equations are reduced to non-dimensional form then solved
semi analytically via Laplace transform. )e physical aspects
of flow regarding involved parameters are also discussed by
sketching some graphs for velocity field of Jeffrey fluid.
Moreover the obtained result for velocity with CPC will
compare with ordinary result by sketching the graphs.

2. Mathematical Model

)e flow of Jeffrey fluid is studied in the presence ofMHD by
considering the diffusion-thermo effect through a porous
media. )e rectangular coordinates system is oriented in
such a way that the x∗-axis is pointing along the plate in the
vertical direction and y∗2 -axis is pointing normal to the plate
as shown in Figure 1. At the time t∗2 � 0+ the system with the
plate and fluid is suppose to be at rest, at the temperature T∗∞
with concentration C∗∞. However, for the time t∗2 > 0, the
plate suppose to be moves with exponential velocity Ueat∗2 in
its own plane. )e plate’s temperature as well as concen-
tration of the fluid raised to T∗w and C∗w respectively.
Magnetic field effect is also considered normally with a
constant strength β0. Energy flux due to concentration
gradient is also considered. In view of above assumptions,
the Jeffrey fluid flowmodel with Boussinesq’s approximation
appears in the following form [3, 13, 28]
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Fourier’s Law states that [29]
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Diffusion Eq. is
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Fick’s Law states that, J∗1(y∗2 , t∗2 ) is written as [30]
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)e initial as well as boundary conditions of the flow
problem are [20]
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)e dimensionless form of the flow parameters are
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Using non-dimensional variables of equation (9) into
equations (1-8), we have
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where Pr, λ, K, Sc, R, and M represent the Prandtl
number, Jeffrey parameter, non-dimensional permeability,
Schmidt number, chemical reaction, and magnetic param-
eter respectively.

3. Generalization of Model

Eq. (10) can be written as
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Fractional form of Fourier’s law [25, 31] is used to
generalize Eq. (3) in dimensionless form
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Fractional form of Fick’s Law [25] is used to generalize
Eq. (5) in dimensionless form
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Equations (14) and (15) can be written as
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where CPCDα
t f(y, t) indicates the CPC fractional derivative

of f(y, t) [24] as
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4. Solution of Problem

)e formulated initial and boundary value value problem
can be solved by means of the Laplace transform method.

4.1. Concentration Field. (17) be solved via Laplace trans-
form for concentration species as
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)is is complicated to solve analytically. Algorithm
[32, 33] is used to derive the numerical result of (21).

4.2. Sherwood Number. )e local coefficient of the rate of
mass transfer is define in term of Sherwood number, and
define by the following relation
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4.3. Temperature Field. (16) be solved via Laplace transform
for temperature profile as
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Put (24) into (23), and result is
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)is is complicated to solve analytically. Algorithm
[32, 33] is used to derive the numerical result of (25).

4.4. Nusselt Number. )e local coefficient of the rate of heat
transfer is define in term of Nusselt number as
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4.5. Velocity field. (11) be solved via Laplace transform for
velocity field as
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)is is complicated to solve analytically. Algorithm
[32, 33] is used to derive the numerical result of (29).

4.6. Skin Friction. )e expression of skin friction is define by
using (29) as
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(R + s)/ K1(α)/s + K0(α)( 􏼁s
α

− Sc− 1
(s − Q)/ K1(c)/s + K0(c)( 􏼁s

c
􏼐 􏼑 k1(c) + sk0(c)( 􏼁s

c

Sc(R + s)(1 + λs)/ K1(α)/s + K0(α)( 􏼁s
α 1 + λ1( 􏼁 − (s + M + 1/K)

×

�������������������

(s + M + 1/K) 1 + λ1( 􏼁

1 + λs

􏽳

−

���������������������
(R + s)

Sc− 1
K1(α)/s + K0(α)( 􏼁s

α

􏽳

⎛⎝ ⎞⎠⎤⎥⎥⎥⎦.

(30)

5. Results and Discussion

In this article the diffusion-thermo effect is investigated for
the magnetohydrodynamics (MHD) flow of Jeffrey’s

fractional fluid past an exponentially accelerated vertical
plate with generalized thermal and mass transports through
a porous medium. )e semi-analytical results for the con-
centration, temperature, and velocity fields are obtained.

u

x

g

y

B0

Tw T∞

C∞Cw

0

Porous medium

Momentum boundary layer
�ermal boundary layer

Concentration boundary layer

Figure 1: Physical model.
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Figure 2: (a) Velocity profile v(y, t) for parameter M at R� 3.2, Q� 4, Gr� 14, Gm� 8, Du� 0.4, Sc� 2.5, Pr� 6, and K� 2. (b) Velocity
profile v(y, t) for parameter K at R� 3.2, Q� 4, Gr� 14, Gm� 8, M� 4, Sc� 2.5, Pr� 6, and Du� 0.4.
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Moreover to see the physical effect of involved parameters,
the concentration, temperature, and velocity fields are
postured by some graphs.

Velocity profile is sketched in the Figure 2(a) to
twilight the influence magnetic field over the fluid ve-
locity and it is observed that fluid slows down for greater
values of M. In the presence of magnetic field a retarding
force is created which oppose the fluid motion as depicted
in Figure 2(a). )e effect of porosity parameter K on fluid
flow is defected in Figure 2(b) and it is noted that the fluid
motion enhance with increasing value of K. )e larger
value of K refers to the less Darcy resistance to the flow

that is why flow speeds up with increasing value of K. )e
influence of mass Gm on fluid velocity v(y, t) is illustrate
in Figures 3(a) and 3(b). It is noted that fluid motion
increases as values of Gm increasing. Physically higher
values of Gm refers the higher concentration gradients
and greater the buoyancy force and more current in flow
domain so velocity increases. Figure 4(a) represent the
result of Gr on fluid velocity v(y, t). )e fluid motion rises
up with maximizing the values of Gr, and it represents the
more impact of thermal buoyancy force as compare to the
viscous effect. )erefore maximizing the values of Gr
refers the higher temperature gradient due to which
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Figure 3: (a) Velocity profile v(y, t) for parameter Gm at R� 3.2, Q� 4, Gr� 14, Du� 0.4, M� 4, Sc� 2.5, Pr� 6, and K� 2. (b) Velocity
profile v(y, t) for parameter Gm at R� 3.2, Q� 4, Gr� 14, Du� 0.4, M� 4, Sc� 2.5, Pr� 6, and K� 2.
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velocity field rises. )e impact of Pr for velocity field is
presented in Figure 4(b).

)e diffusion-thermo or Dufour effect (Du) over the
velocity field are discussed in the Figures 5(a) and 5(b).
An enhancing flow pattern is observed due to the in-
creasing variations of the Du. )e concentration gradient
give a contribute to the temperature gradient which
creates an additional energy flux in the flow domain.
)erefore an increasing value of the Du refer to the more
energy flux which generates the more flow current that is
why the flow speeds up with increasing value of Du.
Moreover the negative values refer to the opposite

direction of the additional energy flux therefore more
negativity of Du generates the more opposite flow current
in the flow domain.

Figures 6(a) and 6(b) are drawn to see impact of Jeffrey
parameters λ and λ1 over velocity field v(y, t) respectively.
As parameter λ refer to the viscosity of the fluid therefore
fluid velocity falls due to the increasing value of λ and the
parameter λ1 refers to the elasticity of the fluid material so
fluid speed up with increasing value λ1. )e influence of heat
generation on v(y, t) is reported in Figure 7(a). An in-
creasing value of R decreases the fluid velocity as shown in
Figure 7(b). )e impact of Sc on v(y, t) is illustrate in Figure
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Figure 5: (a) Velocity profile v(y, t) for parameter Du at R� 3.2,Q� 4, Gr� 14, Gm� 8,M� 4, Sc� 2.5, Pr� 6, andK� 2. (b) Velocity profile
v(y, t) for parameter Du at R� 3.2, Q� 4, Gr� 14, Gm� 8, M� 4, Sc� 2.5, Pr� 6, and K� 2.

3.8

3.167

2.533

1.9

1.267

0.633

0

v 
(y

, t
)

0 0.7 1.4
y

2.1 2.8 3.5

λ=0.2
λ=0.5

λ=0.8
λ=1.1

(a)

v 
(y

, t
)

3.2

2.667

2.133

1.6

1.067

0.533

0
0 0.7 1.4

y
2.1 2.8 3.5

λ1=0.7
λ1=1.1

λ1=1.5
λ1=1.9

(b)
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8(a). Here, maximizing the values of Sc slow down the fluid
motion due to decay of molecular diffusion. It is analyzed
that motion of fluid increases with raising values of α � c as
depicted in Figure 8(b). )e graphical behavior of Du, Pr, Q,
and t on T(y, t) are shown in Figures 9(a), 9(b), 10(a) as well
as 10(b) respectively. Figures illustrate that temperature
reduces by exceeding the values of Du, and Pr, and tem-
perature increases by exceeding the values of Q and t. )e
impacts of Schmidt number Sc as well as chemical reaction R

on C(y, t) are present in Figures 11(a) as well as 11(b)
respectively. Figures 12(a) and 12(b) represent the com-
parison of velocity and temperature distribution of present

work with Naseem [20] respectively. If we take fractional
parameters α � c⟶ 1, � λ � λ1 � M � Gm � Du � Q � 0,
1/K⟶ 0, 1/c⟶ 0 and f(t) � eat∗2 in Naseem [28], the
velocity fields are identical that shows the validity of this
present work. Moreover the comparison of present work
with other fractional derivatives Caputo and Caputo Fab-
rizio used in Nazar et al. [34] and Nadeem et al. [35] re-
spectively in the absence of K, Q, Gm, R, Du are shown in
Figure 12(c). If we put α � 1 the fluid curves are identical as
shown in Figure 12(d). From the figures, it is concluded that
Jeffrey fluid with CPC fractional derivative is the best choice
to enhance the fluid motion. Figures 13(a) and 13(b)
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Figure 7: (a) Velocity profile v(y, t) for heat generation parameter Q at R� 3.2, Du� 0.4, Gr� 14, Gm� 8,M� 4, Sc� 2.5, Pr� 6, and K� 2.
(b) Velocity profile v(y, t) for chemical reaction parameter R at Q� 4, Du� 0.4, Gr� 14, Gm� 8, M� 4, Sc� 2.5, Pr� 6, and K� 2.

v 
(y

, t
)

3.2

2.667

2.133

1.6

1.067

0.533

0
0 0.4 0.8

y
1.2 1.6 2

Sc=0.4
Sc=1.0

Sc=1.6
Sc=2.2

(a)

v 
(y

, t
)

5.2

4.333

3.467

2.6

1.733

0.867

0
0 0.4 0.8 1.2 1.6 2

α = γ = 0.3
α = γ = 0.5

α = γ = 0.7
α = γ = 0.9

(b)

Figure 8: Velocity profile v(y, t) for parameter Sc at R� 3.2, Q� 4, Gr� 14, Gm� 8, M� 4, Du� 0.4, Pr� 6, and K� 2. (b) Velocity profile
v(y, t) for fractional parameters at Q� 4, Du� 0.4, Gr� 14, Gm� 8, M� 4, R� 3.2, Du� 0.4, Pr� 6, and K� 2.

10 Mathematical Problems in Engineering



represent the authenticity of inversion algorithms for
temperature and concentration distributions. )e velocity
distributions overlap which shows the authenticity of in-
version algorithms as presented in Figure 14. Skin friction,
rate of heat and mass transfer can be enhanced by increasing
the values of fractional parameter and presented in table 1.

• With decreasing fractional parameter values, the
velocity distribution slows down.

• )ermal buoyancy forces accelerate the fluid
velocity.
• Fluid velocity reduces as Schmidt number Sc,
chemical reaction R, and magnetic parameter M rises.
• )e fluid velocity increased for larger values of Jeffrey
parameter as well as fractional parameter.
• )e temperature distribution increases by the smaller
values of Prandtl number Pr.
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•)e concentration distribution decreases for greater
values of Schmidt number Sc.
• )e concentration distribution decreases by ex-
ceeding the values of chemical reaction R.

6. Conclusions

)e Magnetohydrodynamics flow model of Jeffrey’s frac-
tional fluid model has been considered with the effect of
magnetic field in the porous regime. Heat generation, and
radiation are also consider with effect of chemical reaction
in the flow domain. )is flow model is solved analytically
and results for velocity, temperature, and concentration
fields are constructed by using Laplace transform. Further
different graphs of optimising fields are plotted to highlight
the influence parameters. )e key outcomes of this flow
model are:

Nomenclature

v: : fluid velocity, [ms− 1]Sr: Soret number
Gr: : )ermal Grashof number, [βTw]Gm: Mass Grashof

number, [βTw]Nu: Nusselt number
Sc: : Schmidt number
λ: : Jeffrey parameter
g: acceleration due to gravity, [ms− 2]Cp: Specific heat at a

constant pressure, [jkg− 1K− 1]T: Temperature of fluid,
[K]Tw: Fluid temperature at plate, [K]T∞: Fluid
temperature far away from the plate, [K]C:
Concentration of fluid, [kgm− 3]Cw: Concentration
level at plate, [kgm− 3]C∞: Concentration of the fluid
far away from the plate, [kgm− 3]s: Laplace transform
parameter

ρ: Fluid density, [kgm− 3]α: Fractional parameter
]: Kinematic viscosity, [m2s− 1]βT : Volumetric Coefficient

of thermal expansion, [K− 1]βC : Volumetric Coefficient
of mass expansion, [m3kg− 1].

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Additional Points

With decreasing fractional parameter values, the velocity
distribution slows down. )ermal buoyancy forces accel-
erate the fluid velocity. Fluid velocity reduces as Schmidt
number Sc, chemical reaction R, and magnetic parameter M
rise. )e fluid velocity increased for larger values of Jeffrey
parameter as well as fractional parameter. )e temperature
distribution increases by the smaller values of Prandtl

Table 1: Effect of α on skin friction, Nusselt number, and Sherwood
number.

Fractional
Parameter skin friction Nusselt

number
Sherwood
number

0.1 1.458 939 71 1.363 328 25 1.293 234 41
0.2 1.469 733 54 1.376 590 53 1.306 809 85
0.3 1.480 812 22 1.389 919 45 1.320 272 42
0.4 1.492 212 41 1.403 398 90 1.333 69919
0.5 1.503 987 04 1.417120 90 1.347160 76
0.6 1.516 206 97 1.431 188 59 1.360 720 51
0.7 1.528 970 61 1.445 719 09 1.374 431 12
0.8 1.542 413 61 1.460 842 28 1.388 325 48
0.9 1.556 732 82 1.476 693 47 1.402 406 85
0.99 1.572 22017 1.493 394 87 1.416 634 77
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Figure 14: Velocity obtained by Stehfest’s and Tzou’s algorithms.
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number Pr. )e concentration distribution decreases for
greater values of Schmidt number Sc. )e concentration
distribution decreases by exceeding the values of the
chemical reaction R.
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