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ABSTRACT

In this study, a new algorithm of fractional beta chaotic maps is proposed to generate chaotic sequences for image
encryption. The proposed technique generates multi random sequences by shuffling the image pixel position.
This technique is used to blur the pixels connecting the input and encrypted images and to increase the attack
resistance. The proposed algorithm makes the encryption process sophisticated by using fractional chaotic maps,
which hold the properties of pseudo-randomness. The fractional beta sequences are utilized to alter the image pixels
to decryption attacks. The experimental results proved that the proposed image encryption algorithm successfully
encrypted and decrypted the images with the same keys. The output findings indicate that our proposed algorithm
has good entropy and low correlation coefficients. This translates to enhanced security against different attacks. A
MATLAB programming tool was used to implement and assess the image quality measures. A comparison with
other image encryption techniques regarding the visual inspection and signal-to-noise ratio is provided.
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1 Introduction

The recent advancements in communications and computer technologies facilitate data transmis-
sion over the internet networks [1]. However, the major problems with data transmission over the
internet are the safety of the information from unauthorized users. In recent years, image encryption
has been an attractive area for research. It is extensively recognized as a useful technique for secure
transmission. Every image encryption algorithm is aimed to keep information secret [2,3]. Image
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cryptographic models are based on mathematical functions to generate a combination of different
keys to encrypt the input image. The encrypted images are dependent on two important features;
the compensation of generating the key and the strength of the encryption algorithm [4]. Many
encryption models have been proposed. The most known image encryption algorithms are based on
chaotic encryption [5]. Image encryptions and chaos provide a good combination for image encryp-
tions. The chaotic image encryption demonstrates the use of chaos theories to do various encryption
tasks. Many new chaotic maps have been developed to produce more security with better encryption
performances [4,6].

Fractional calculus plays a major role in many sciences and its applications [7–9]. It developed,
improved, and even created new rules, algorithms and proceedings in computer science and engineer
studies. Nowadays, the list of fractional calculus is very long to include many fractional operators
(differential and integral) [10–12]. Over the years, chaos theory has been applied in science and
engineering. It especially got much attention in the field of image encryption. Zhang et al. [13] proposed
a new chaotic logistic map called tent delay-sine cascade (TDSCL). The proposed TDSCL has better
initial value sensitivity with a larger chaotic parameter interval compared with the original chaotic
logistic map. The image encryption algorithm that is based on TDSCL achieved both the confusion
and diffusion at the same time. Zhang et al. [14] proposed a new fractional-order logistic map based
on S-boxes. The proposed fractional-order chaotic system provided a larger key space to make the
image encryption more efficient against cryptanalyst attacks. The proposed S-boxes are used for the
encryption confusion process.

Fractional calculus is utilized to generalize chaotic systems, chaotic maps, optimization, opera-
tion, and other theories of chaos and has been employed in an extensive choice of this field including
entropy concept [9,15–18]. Fractional calculus models are now widely used in image security due to
their infinite boundary property. Wang et al. [19] proposed a novel image encryption algorithm that
employs fractal geometry of colored images. This proposed image encryption algorithm has a large
key space with a complex behavior to produce the confusion behavior. The confusion behavior of the
proposed model helped to shuffle the pixel positions to avoid the correlation between image pixels.
Chaos theory focuses on describing the behavior of a nonlinear dynamic system, which sensitivity
to initial conditions is high. The common features between chaotic and encryption models have led
to developing different chaos-based image encryption modes. Recently, chaotic maps employed in
different ways in image encryption algorithms and related to security applications. Xu et al. [20]
presented a chaotic tablet code for image encryption using the concept of the matrix semi-tensor.
Yu et al. [21] proposed a method based on the compressive identifying and a hyperactive chaotic map.
Jithin et al. [22] formulated a chaotic map based on the phase-truncated short-time fractional Fourier
transform. The DNA sequence is utilized to define an encryption, image algorithm based on an Arnold
map by Ul Haq et al. [23]. Zhang et al. [24] formulated a chaotic map in RGB image encryption. Zig
Zag diffusion and RNA generated a Hyper-Chaotic Color Image Encryption transformed Operation
which is given by Jiao et al. [25]. Finally, Arnold map and RSA algorithm are used by Zahmoul et
al. [26]. Beta function is utilized in various types of applications in image processing and engineering,
especially in bio-medical signal and image compression, image detection [27–36]. Other works can be
located in [37–49].

Therefore, looking for a new chaotic mapping technique, which produces better security per-
formances compared with other methods of image encryption, is very important and superior
performance with respect to the trade-offs between the security and efficiency. To further increase, the
security performances of the image encryption based on chaos, a new chaotic map based on fractional
beta function has been proposed to achieve strong chaotic key generations. The structure of the paper
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is as follows: Section 2 deals with the fractional beta map; Section 3 includes the experimental results;
Section 4 involves the conclusion and future works.

2 Fractional Beta Chaotic (FBC) Maps

Chaos theory focuses on describing the behavior of a nonlinear dynamic system, which sensitivity
to initial conditions is high. The common features between chaotic and encryption models have
led to developing different chaos-based image encryption modes. Recently, chaotic map approaches
have been used in different ways in image encryption algorithms and related to security applications.
Zahmoul et al. [26] proposed the beta map for the first time using the formula

β (χ ; ρ, �, χ1, χ2) =
(

χ − χ1

χγ − χ1

)ρ(
χ2 − χ

χ2 − χγ

)�

, (1)

where χ ; ρ, �, χ1, χ2 ∈ R (the set of real numbers) and

χγ = ρχ2 + �χ1

ρ + �
, ρ �= −�, χ ∈ (χ1, χ2), where γ is a fixed constant.

Hence, the β− map is defined by: χn+1 = κβ (χn; ρ, �, χ1, χ2) ,

where κ is a parameter of chaotic map, which is used to adjust the value of β-map and indicate the
bifurcation parameter. Beta function is utilized in various types of applications in image processing
and engineering, especially in bio-medical signal and image compression, image detection [27–31].

The motivation for this study is to employ the concept of the fractional calculus to generalize
and improve the β-map. We call the consequence of this generalization the fractional β-map. Then
we employ the new look of this function to design a hybrid model for image encryption based on
fractional-chaotic maps. Our contribution is to develop a new chaotic map based on fractional-chaotic
map is proposed. The proposed fractional-chaos have a large range of bifurcation parameter with the
strong chaotic behavior which increases the protection of the image encryption schemes.

2.1 Proposed Fractional Chaos-Based (FBC)Model
In this section, a new mathematical fractional-chaotic maps model has proposed to as a new image

encryption algorithm. Consider the polynomial function φ (χ) taking the form

φ (χ) = χ n . (2)

The first derivative is known by the formula

[φ (χ)]′ = d
dχ

φ (χ) = n χ n−1 . (3)

Accumulating this yields the general formula

dℵ

dχℵ χ n = n!
(n − ℵ) !

χ n−ℵ . (4)

Now, generalize the factorial by the gamma function, we have the generalized calculus

dℵ

dχℵ χ n = 	 (n + 1)

	 (n − ℵ + 1)
χ n−ℵ, n > 0. (5)
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For negative integer power n, we obtain the following relation:

dℵ

dχℵ χ−n = (−1)
ℵ 	 (n + ℵ)

	 (n)
χ−(n+ℵ) for n ≥ 0. (6)

By using the above conclusion,
dℵ

dχℵ χ n := χ(ℵ)

n , κ ∈ R, we present the FBM, as follows:
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2.2 β–Algorithm
The encryption dynamic of the suggested system recognized by the following steps:

• Suppose that a picture of size M∗N. Replace the selected image by a square dimension picture;

• Produce two dissimilar quasi-random arrangements subsequently constructing numerous
recipes of FBM. Via the understanding of the chaotic purpose of the considerable difference in
the initial condition, numerous random arrangements might be made;

• At this stage, the produced arrangements of the FBM are utilized to waddle the plaintext
copy’s rows and columns. Organizing elements of Q_pro and Q1_pro whose elements are M
∗ N in matrix system and find Q and Q1 matrices with M ∗ N dimension. The variation
procedure affects the original feature pixels by variation them inside columns, utilizing Q1
matrices coefficient’s locations. The coefficients of the consequential matrix are formulated,
using Q2 within rows;

• Share the consequential matrix into four blocks of equivalent dimension. Transform every block
to a quasi-random matrix W , where every matrix additional transformed by the utilities;

UN (δ) = � (δ) mod I

UR (δ) = �
⌊(√

δ
)⌋

mod I

US (δ) = � (
δ2

)
mod I

UD (δ) = � (2δ) mod I

W =

⎛
⎜⎜⎝

UN (βℵ (1, 1)) UR (βℵ (1, 2)) US (βℵ (1, 3)) UD (βℵ (1, 4))

UR (βℵ (2, 1)) US (βℵ (2, 2)) UD (βℵ (2, 3)) UN (βℵ (2, 4))

US (βℵ (3, 1)) UD (βℵ (3, 2)) UN (βℵ (3, 3)) UR (βℵ (3, 4))

UD (βℵ (4, 1)) UN (βℵ (4, 2)) UR (βℵ (4, 3)) US (βℵ (4, 4))

⎞
⎟⎟⎠

• The operator � means a truncation of a decimal to form an integer for every digit of the
consequential matrix W , while I designates the feature category, for (I = 256) it is an 8-bit
gray image, and for (I = 2) it is a binary feature. Thus, we obtain an original accidental integer
matrix J. Formerly, we get a code text picture I with the next equality (for encryption):

Gencr = (P + J) mod I , P = (Gencr − J) mod I ;

• Diffusion imitates the assets that the termination in the data and figures of the plain text is
dissolute in the cipher text;
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• Finally, the encryption procedure upgrades the security of pictures critically. The decryption
structure of the process can be investigated as the converse of the encryption scheme utilizing
the matching key.

2.3 Image Processing by β–Algorithm
The proposed image encryption algorithm consisted of the following steps:

1-Resize the input image in square equal dimension.

2-Produce different random sequences by using different combinations of beta chaotic maps.

3-The generated sequences are used for shuffling the rows and columns of input image.

4-The substitution process of input image pixels by: f(r) = T(r) mod I. Where I is the input image

and T is the truncation function.

5-The decryption process is the reverse of the encrypted using the same key.

The fractional β map βℵ (X) diagram is used to illustrate in Fig. 1, to show the behavior of the
proposed fractional β map through different value of �. Essentially, the FBC maps can be governed
by two parameters (ρ and �).

Figure 1: The plot of the fractional β map βℵ (χ) when ρ= � = 2, ρ = 2, and � = 3 respectively
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3 Experimental Results

In this section, the performance of the proposed image encryption model is demonstrated using
standard test images, commonly known as Lena, Pepper, and Baboon. We employed statistical analyses
to assess the model’s performance.

3.1 The Histogram Analysis
The image histogram represents the relationship between the pixel gray level and the frequency

of occurrence. In this study, the histograms of different original and encrypted images are illustrated
in Fig. 2. The histogram of the plain picture has large spikes as shown in Fig. 2b. In comparison, the
histogram of the encrypted image is more uniformed as shown in Fig. 2d. We can conclude that there
is a important alteration in the shape of histograms of the plain and of the encrypted images.

Figure 2: (Continued)
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Figure 2: Histograms analysis (a) Input images, (b) Input images histograms, (c) Encrypted images, (d)
Encrypted images histograms

3.2 Information Entropy Analysis
The entropy measures the degree of unpredictability of information. The information entropy is

calculated for encrypted images to measure the degree of uncertainties; however, any certain degree of
predictability will threaten the encryption security [31]. Table 1 is a test of the information entropy of
the plaintext and the encrypted image of the proposed FBC maps model.

Table 1: Comparison of information entropy between plain and encrypted images

Images Plain image Decrypted image

Lena 7.7534 7.9985
Peppers 7.7145 7.9980
Baboon 7.7759 7.9982
Average 7.7479 7.9982

The results of Table 1 illustrated that the calculated entropies of the mentioned encrypted images
are almost close to number 8. Therefore, we can conclude that our suggested FBC map process has an
entropy average of 7.9982. Therefore, the proposed FBC maps are robust against any types of entropy
attacks. Moreover, Table 2 illustrates the comparison of information entropy of several algorithms
using Lena as a test image. From Table 2, it is clear that the values of entropy of the decrypted image
achieved by the proposed FBC map algorithm are almost close to the number 8, which shows that the
encrypted Lena image is near to a random source.

Table 2: Comparison of entropy regards different encryption algorithms using Lena

Encryption algorithm Entropy

Wang et al. [32] 7.9977
Zhang et al. [33] 7.9994
Liu et al. [34] 7.9995
Li et al. [31] 7.9894
Proposed FBC maps model 7.9985
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3.3 Correlation Analysis
The aim of the image encryption algorithm is to decrease the correlation among the image pixels

in order to make the prediction of any given pixel from its neighbors more difficult. The next formula
indicates the correlation coefficient between each pair:

Cor (x, y) =

N∑
i=1

(xi − 1
N

N∑
j=1

xj ) (yi − 1
N

N∑
j=1

yj)√
N∑

i=1

(xi − 1
N

N∑
j=1

xj )

2
√

N∑
i=1

(yi − 1
N

N∑
j=1

yj ) 2

,

where xi and yi from i-th couple of horizontal (H), vertical (V) and diagonal (D) adjacent pixels, N
signifies the entire number of couples of the contiguous pixels. The correlation constants in the three
directions of neighboring pixels for two couples of the basic pictures cited above and their associated
encrypted pictures are indicated in Tables 3 and 4.

Table 3: The correlation analysis

Image H V D

Lena 0.0020 0.0019 −0.0025
Pepper −0.0040 −0.0045 −0.0005
Baboon 0.0045 0.0061 0.0018

Table 4: A comparison of the correlation is indicated using Lena image

Algorithm H V D

Rhouma et al. [35] 0.1257 0.0581 0.0504
Tong et al. [36] 0.0038 0.0058 0.0133
Liu et al. [34] 0.0021 0.0046 0.0033
Li et al. [31] 0.0044 0.0015 0.00019
Zhang et al. [33] 0.0066 0.0059 0.0008
Proposed FBC maps model 0.0020 0.0019 −0.0025

Table 3 illustrates the correlation coefficients of input images and encrypted images. The calcu-
lated correlation coefficients illustrate that the correlation coefficients of encrypted images are close
to zero, which proves that the proposed FBC maps of the proposed model can efficiently reduce the
correlations among the adjacent image pixels of the input images in three directions: The horizontal
(H); the vertical (V) and diagonal (D). The low record values in all the three directions (H, V and D)
indicated that the pixel pattern of decrypted images is unbreakable by the attackers.

Taking the Lena (256 × 256) image as an experimental object, the comparison of correlation
between different encryption algorithms in the horizontal (H), vertical (V) and diagonal (D) directions
is illustrated in Table 4. The correlation values in the three directions obtained from the proposed FBC
map algorithm for Lena images are smaller than the values of study in the shown in Table 4, which
indicated that the proposed FBC map method is secure against statistical attacks.
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3.4 The Structural Similarity (SSIM)
The SSIM measure is used to measure the similarity between the input image and the decrypted

image. The close pixels have strong SSIM when they are close. The range of SSIM is between −1 and
1. Table 5 shows the SSIM value of three testing images. The best value of SSIM is close to 1.

Table 5: The SSIM results

Images SSIM

Lena 0.9305
Peppers 0.9225
Baboon 0.9128

Table 6: The NPCR and UACI of the proposed model for the given testing images

Image NPRC UACI

Lena 0.9960 0.3336
Peppers 0.9964 0.3348
Baboon 0.9963 0.3342

3.5 Key Sensitivity Analysis
The image encryption algorithm primarily depends on the key sensitivity. Even one bit change

to the key combinations can produce a different encrypted image. The two measures used for the
key sensitivity analysis are the “Number of Changing Pixel Rate (NPCR) and the Unified Averaged
Changed Intensity (UACI)”. The NPCR measures the total distinct pixels between two given images,
while UACI represents the average of the intensity. These parameters are defined as follows:

NPRC =
[∑N

i,j A (i, j)

H

]
× 100, (8)

UACI = 1
H

[
N∑
i,j

|G1 (i, j) − G2 (i, j)|
255

]
× 100, (9)

where

A (j, j) =
{

1, (G1 (i, j) �= G2 (i, j))
0, otherwise , (10)

where, G1 and G2 are two pixels with the same coordinates, and H represents the image size.

Generally, the NPCR value of a ‘good’ chaotic image encryption model needs to be more than
90% and UACI value more than 33%. Table 6 shows the NPRC and UACI for the proposed FBC
maps encryption algorithm. Furthermore, the comparison of NPCR and UACI for the “Lena” image
with other algorithms is presented in Table 7. The values of NPCR and UACI for the proposed FBC
map method are achieved 0.9960 and 0.3336, respectively, and these values show how closeness to the
theoretical values.
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Table 7: Comparison of the NPCR and UACI for the testing image “Lena”

Algorithm NPRC UACI

Liu et al. [34] 0.9949 0.3156
Li et al. [31] 0.9949 0.3156
Zhang et al. [33] 0.9960 0.3347
Proposed FBC maps model 0.9960 0.3336

4 Conclusion

In this study, a new algorithm of image encryption based on new fractional beta chaotic maps is
proposed. All of the experimental results demonstrated that the FBC map algorithm offers a large key
space with high sensitivity to all the secret keys. The comparison with other image encryption works
indicates that the proposed FBC map model provided the best performance. The proposed FBL map
model is preferment and thus valuable for image encryption applications. For future work, further
improvements on the encryption system can be assumed including a new fractional chaotic model for
image encryption application.
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