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A B S T R A C T   

The general time fractional Burger- Fisher (TF-BF) and the space–time regularized long-wave (STF-RLW) 
equations are considered as examples of gravitational water waves in cold plasma as well as so many areas. The 
above equations are used in nonlinear science and engineering to study long waves in seas and harbors that travel 
in just one direction. First, the two equations are transformed to ODEs by applying a fractional complex trans-
form along with characteristics of confirmable fractional derivative (CFD). Then, the extended tanh-function (ET- 
F) approach is investigated to find a variety of analytical solutions with different geometrical wave structures the 
mentioned models. The results are in the form of kink, one-, two-, multiple-solitons solutions, and other types 
sketched in 2D, 3D, and contour patterns.   

Introduction 

Fractional derivatives, including the issue of sense of extension, 
made their debut in 1695. Fractional calculus offers realistic discussions 
of real-world phenomena better than classical one [1–3]. Throughout 
the twentieth centenary, several pioneers conducted a vast quantity of 
experiments on fractional calculus. A lot of beginners such as Caputo, 
M., Fabrizio, M. [4], Bin, Z. [5], Cermak, Jan, and Tomas Kisela [6], 
Ahmed, E., A. S. Elgazzar [7], and others conducted a considerable 
amount of research on fractional calculus. Problems have recently been 
solved using nonlinear fractional differential equations (NLFDEs) in 
many different fields of applied sciences. Magnetism, acoustic wave 
transmission in rigid porous materials, cardiac tissue electrode interface, 
the theory of viscoelasticity, aerodynamics, ultrasonic wave wave 
propagation in human malignant bone, RLC electric circuit, heat trans-
fer, and other applications can all benefit from NLFDEs. As a result, 

numerous processes for determining the exact resolution of NLFDEs 
have been established. Among these process: Adomian’s decomposition 
algorithm [8–10], differential transformation method [11,12], varia-
tional iteration technique [13–15], homotopy analysis scheme [16,17], 
the finite element method [18], the (G′/G) expansion method [19–20], 
the sine-Gordon expansion method [21], the generalized unified method 
[22], the exp-function method [23], An efficient variable stepsize 
rational method [24], the reproducing kernel algorithm [25], the 
modified kudrayshov approach [26], the fractional sub-equation 
method [27–30], the first integral method [31], the modified repro-
ducing kernel discretization technique [32], the double (G′/G, 1/G)) 
-expansion method [33–35], and several others [36–44]. 

Burgers-Fisher equation is a nonlinear equation combining reaction, 
convection, and diffusion mechanisms. Johannes Martinus Burgers 
(1895–1981) [45–47] established the mathematical framework of Bur-
gers’ equation. lately in the discipline of fractional calculus, tremendous 
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progress has been accomplished. The origin and distinctiveness of so-
lutions to a class of stochastic differential equations generalized Burgers’ 
equations powered by multi-parameter fractional noises are demon-
strated in [48]. In the context of nonlinear wave propagation in porous 
media, Garra [49] defined an application of the time-fractional Burgers’ 
equation (TF-BE). The variational iteration method (VIM) [50] and the 
homotopy perturbation method (HPM) [51] be accustomed to solving 
the Burgers’ equation with time and space time fractional derivatives, 
respectively. Chemical kinetics [52], nonlinear heat conduction [53], 
branching Brownian motion [54], epidemics, and bacteria [55] are some 
of the other applications of this model. The TF-BF equation is useful in a 
variety of situations such as financial mathematics, gas dynamics, and 
traffic flow, applied number theory, and elasticity. The general TF-BF 
equation can be formed as [56], 

∂αu
∂tα + ρu

∂u
∂x

−
∂2u
∂x2 = βu(1 − u), (1.1) 

where ρ and β are real parameters and 0 < α ≤ 1. This equation is 
also used in fluid dynamics, heat conduction, elasticity, and capillary- 
gravity waves. 

In mathematical sciences and technologies, the regularized long 
wave (RLW) equation is used to interpret the one-way track of long 
waves in seas and harbors. Many physical occurrences, such as ion sound 
waves in plasma and moving waves with space-charge, are studied using 
the RLW equation. Peregrine was the first to implement this approach in 
[57], and it has since been successfully used to solve a variety of ill- 
posed problems, parabolic equation [58], inverse time-dependent heat 
source problem [59], determining the heat source [60], regularization 
of exponentially ill-posed problems [61], the basis of a reproducing 
kernel space [62]. The STF-RLW equation has the following structure 
[63], 

Dα
t u(x, t) +Dα

x u(x, t)+ εDα
x u2(x, t) − μD3α

xxtu(x, t) = 0. (1.2) 

Here, Dα
t is the fractional derivative of order 0 < α ≤ 1 and ε, μ are 

real parameters. Eq. (1.2) arises in different physical fields including ion 
sound waves in plasma. For α = 1, this equation refers to weakly 
nonlinear ion acoustic and space-charge waves. 

The next portion of the article is organized as follows: the confirm-
able fractional derivative is discussed in segment 2. The proposed 
adapted extended tanh-function (ET-F) method is used in segment 3. 
Applications of our mentioned method are investigated in segment 4. 
Some graphical plots and discussion are presented in segment 5. The 
conclusions are presented in the final segment. 

Definitions and prefaces 

Let f : R≥0→R. The α-order “conformable derivative’’ for f can be 
stated as [64]: 

Mα(f )(t) = lim
ε→0

f (t + εt1− α) − f (t)
ε . (2.1) 

for all positive t,0 < α ≤ 1. 
If f be α-differentiable in some (0,a),a > 0 and lim

t→0+
f (α)(t) exists, then 

f (α)(0) = lim
t→0+

f (α)(t). 

Proposition 1. Assume α ∈ (0, 1] and suppose f , g be α-differentiable 
at a point t > 0. Hence  

• Mα(xf +yg) = xMα(f) + yMα(g), for all x,y ∈ R.  
• Mα(tz) = ztp− α, for all z ∈ R.  
• Mα(u) = 0, for all constant function f(t) = u.  
• Mα(fg) = fMα(g) + gMα(f).  

• Mα

(
f
g

)

=
gMα(f)− fMα(g)

g2 .  

• In addition, if f is differentiable, then MTα(f)(t) = t1− αdf
dt. 

Khalilet al. [64] discusses some additional properties related to the 
CFD, such as the Laplace transform, Tailor series expansion, chain rule, 
Gronwall’s inequality, and integration methods. 

Proposition 2. Assume f is an α-differentiable function in conformable 
differentiable sense and suppose that g is differentiable and lies in the 
range of f , then 

Mα(f ◦g)(t) = t1− αg′

(t)fg(t) (2.2)  

Fundamental facts and the implementation of the method 

The ET-F method [65] for obtaining exact solutions for the NLFDEs is 
described here. To start with, we apprehend the following NLFDE R 
associated with a function U = U(x, t): 

R
(
u,Dα

t u,Dβ
x u,Dα

t Dα
t u,Dα

t Dβ
xu,Dβ

x Dβ
x ,⋯⋯⋯

)
= 0, 0 < α ≤ 1, 0 < β ≤ 1

(3.1) 

u is an arbitrary function in its arguments. Consider the trans-
formation of waves: 

ξ = k
xβ

β
+ c

tα

α, u(x, t) = u(ξ) (3.2) 

here c and k are nonzero constants. 
Applying Eq. (3.2) on (3.1), we get the following ODE: 

R(u, u
′

, u′′, u′′′ ,⋯⋯⋯) = 0 (3.3) 

where the superscripts indicate the ordinary derivative of u. 
Phase 1: The general solution of Eq. (3.3) is assumed to be in the 

following type: 

u(ξ) =
∑n

i=0
aiYi +

∑n

i=1
biY − i (3.4)  

Y = tanh(μξ) (3.5) 

where μ is an arbitrary value. 
Phase 2: The positive constant η can be identified by applying the 

homogeneous balance condition between the maximum order and the 
highest degree of nonlinear terms in Eq. (3.3). 

Phase 3: Embedding (3.4) and (3.5) into Eq. (3.3) leads to a poly-
nomial in Y. Setting its coefficients equal zero yields a system of alge-
braic equations in a′

is and b′

is which can be solved using any package of 
symbolic computation software. 

Phase 4: Different closed form solutions for Eq. (3.3) can be estab-
lished by inserting the obtained in Phase 3 in Eq. (3.4) in the presence of 
Eq. (3.5). 

Analysis of the solutions 

Using the ET-F process, we develop abundant wave solutions to the 
TF-BF and STF-RLW equations. 

The general TF-BF equation 

The above-mentioned method is used in this part to investigate more 
detailed about exact analytic wave solutions for the TF-BF equation. The 
recommended equation recounts the physical methods of one-way 
stretch of dimly nonlinear phonetic waves through a gas-filled pipe. 
The memory effect of the wall friction through the boundary layer 
causes the fractional derivative. Waves in bubbly liquids and shallow- 
water waves are two examples of structures of the same form. For the 
Eq. (1.1), we advise the following transformation. 

M. Adel et al.                                                                                                                                                                                                                                    



Results in Physics 38 (2022) 105661

3

δ = kx+ η tα

α , u(x, t) = u(δ) (4.1) 

where η be the velocity of traveling wave. Applying Eq. (4.2) into Eq. 
(1.1) diminishes to the next ODE: 

ηu′

+ kpuu′

− k2u′′ − βu+ βu2 = 0 (4.2) 

The homogeneous equilibrium transforms Eq. (3.4) into: 

u(δ) = a0 + a1Y + a2Y2 + b1Y − 1 + b2Y − 2 (4.3) 

Substituting (4.3) into (4.2) in the presence of (3.5), in Y, the left side 
transforms into a polynomial that gives a system of algebraic equations 
when setting its coefficients equal zero. The following results are ob-
tained by using computer algebra, such as Maple, to solve this over-
determined series of equations: 

Cluster 1: 

η =
1
2

β
μ, k = 0, a0 =

1
2
, a1 =

1
2
, a2 = 0, and b1 = 0, b2 = 0 

In terms of tanh functions, the values in cluster 1 yields an explicit 
solution in the following form: 

u1(x, t) =
1
2
+

1
2

tanh
( ̅̅

t
√ )

. (4.4) 

Cluster 2: 

η =
1
4

β
μ, k = 0, a0 =

1
2
, a1 =

1
4
, a2 = 0and b1 =

1
4
, b2 = 0 

Cluster 2 gives another explicit solution as: 

u2(x, t) =
1
2
+

1
4

tanh
( ̅̅

t
√

2

)

+
1
4

coth
( ̅̅

t
√

2

)

. (4.5) 

Cluster 3: 
η = − 1

8
4β2+ρ2

μ , k = 1
4

ρ
μ, a0 = 1

2, a1 = 0, a2 = 0 and b1 = − 1
2,b2 = 0. 

In terms of sech function the values of the parameters presented in 
cluster 3 formulate an explicit solution: 

u3(x, t) =
1
2
−

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − sech(
x
4
−

5
̅̅
t

√

4
)

2

√

. (4.6) 

Cluster 4: 
η = 1

8
4β2+ρ2

μ , k = − 1
4

ρ
μ, a0 = 1

2, a1 = 0, a2 = 0 and b1 = 1
2,b2 = 0. 

Cluster 4 presents the following solution: 

u4(x, t) =
1
2
−

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − csch
(

−
x
4
+

5
̅̅
t

√

4

)2
√

. (4.7) 

Cluster 5: 
η = 1

8
4β2+ρ2

μ , k = 1
4

ρ
μ, a0 = 1

2, a1 = − 1
2, a2 = 0 and b1 = 0,b2 = 0. 

The norm of the parameters submitted in cluster 5 which shows an 
explicit solution in terms of coth function: 

u5(x, t) =
1
2
−

1
2

coth
(

x
4
−

5
̅̅
t

√

4

)

. (4.8) 

Cluster 6: 
η = 1

8
4β2+ρ2

μ , k = − 1
4

ρ
μ, a0 = 1

2, a1 = 1
2, a2 = 0 and b1 = 0,b2 = 0. 

These principles of the parameters presented in cluster 6 originate an 
explicit solution in terms of csch function: 

u6(x, t) =
1
2
−

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − csch
(

x
4
−

5
̅̅
t

√

4

)2
√

.

(4.9) 

Cluster 7: 
η = − 1

16
4β2+ρ2

μ , k = 1
8

ρ
μ, , a0 = 1

2, a1 = 1
4, a2 = 0 and.b1 = − 1

4,b2 = 0 

Cluster 7 gives: 

u8(x, t) =
1
2
−

1
4

tanh
(

x
8
−

5
̅̅
t

√

8

)

−
1
4

coth
(

x
8
−

5
̅̅
t

√

8

)

. (4.10) 

Cluster 8: 
η = 1

16
4β2+ρ2

μ , k = − 1
8

ρ
μ, a0 = 1

2, a1 = 1
4, a2 = 0 and.b1 = 1

4,b2 = 0 
Cluster 8 is gained from those values of the parameters which create 

an explicit solution in terms of tanh and coth function. 

u8(x, t) =
1
2
+

1
4

tanh
(

−
x
8
+

5
̅̅
t

√

8

)

+
1
4

coth
(

−
x
8
+

5
̅̅
t

√

8

)

. (4.11) 

Cluster 9: 
η = − 1

2
β
μ, k = 0, a0 = 1

2, a1 = 1
4, a2 = 0 and.b1 = 1

4,b2 = 0 
In conditions of the tanh equation, Cluster 9 forms an explicit solu-

tion: 

u9(x, t) =
1
2
−

1
2

tanh
( ̅̅̅̅̅̅

− t
√ )

. (4.12) 

Cluster 10: 
η = − 1

4
β
μ, k = 0, a0 = 1

2, a1 = − 1
4, a2 = 0 and.b1 = − 1

4,b2 = 0 
The principles of the parameters to be had in cluster 10 make an 

explicit solution in expressions of tanh and coth functions. 

u10(x, t) =
1
2
−

1
4

tanh
(

−

̅̅
t

√

2

)

+
1
4

coth
(

−

̅̅
t

√

2

)

. (4.13) 

Cluster 11: 
η = 1

2
β
μ, k = 0, a0 = 1

2, a1 = 1
2, a2 = 0 and.b1 = 1

2,b2 = 0 
The values of the parameters presented in cluster 11 formulate an 

explicit solution in terms of tanh function. 

u11(x, t) =
1
2
+

1
2tanh(

̅̅̅̅̅̅
− t

√
)
. (4.14) 

Cluster 12: 
η = − 1

2
β
μ, k = 0, a0 = 1

2, a1 = 1
2, a2 = 0 and.b1 = − 1

2,b2 = 0 
Cluster 12 which is obtained from the given values of the parameters 

and gives: 

u12(x, t) =
1
2
−

1
2tanh

( ̅̅̅̅̅̅
− t

√ ). (4.15) 

The above results were obtained using the ET-F, which are novel and 
more general. These results have never been published before, as far as 
we know. The relativistic electron and the physical procedure of one- 
way stretch of weakly non-linear acoustic waves through a gas-filled 
pipe can both be defined using these solutions. 

The STF-RLW equation 

In this part, we look for more rigorous exact analytic wave solutions 
for the STF-RLW equation. For Eq. (1.2), we introduce the next 
transformation: 

ξ = k
xα

α − c
tα

α , u(x, t) = u(ξ) (4.16) 

where c is the traveling wave velocity. When Eq. (4.16) is applied to 
Eq. (1.2), the next integral ODE emerges: 

(k − c)u
′

+ εkuu
′

− μck2u′′′ = 0 (4.17) 

Integrating Eq. (4.17) with zero constant we obtain. 

− cu+
kpu2

2
− k2vu′

= 0. (4.18) 

Eq. (3.4) is reduced to the form by the homogeneous balance: 

u(ξ) = a0 + a1Y + a2Y2 + b1Y − 1 + b2Y − 2 (4.19) 
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Substituting (4.19) into (4.18) along with (3.5) and repeating the 
same steps in the previous section, we get a series of algebraic equations 
(for simplicity, we omit them to display) for a0, a1,a2b1, b2, k and η. The 
following results are obtained by solving this over determined series of 
equations: 

Cluster 1: 

c = k
16βk2μ2+1, k = k, a0 = −

4βk2μ2

ε(16βk2μ2+1), a1 = 0, a2 = −
6βk2μ2

ε(16βk2μ2+1), and 

b1 = 0,b2 = −
4βk2μ2

ε(16βk2μ2+1)
.

Cluster 1 which is obtained from the given values of the parameters 
and gives an explicit resolution: 

u13(x, t) = −
4
17

−
6
17

tanh2
(

2
̅̅̅
x

√
−

2
̅̅
t

√

17

)

−
6
17

coth2
(

2
̅̅̅
x

√
−

2
̅̅
t

√

17

)

.

(4.20) 

The hyperbolic formula, as well as space and time coordinates, can 
be used to reconstruct it. 

u14(x, t) = −
4
17

−
6
17

+
6
17

sech2
(

2
̅̅̅
x

√
−

2
̅̅
t

√

17

)

−
6
17

−
6
17

csch2
(

2
̅̅̅
x

√
−

2
̅̅
t

√

17

)

.

(4.21)  

Cluster 2: 

c = k
4βk2μ2+1, k = k, a0 =

2βk2μ2

ε(4βk2μ2+1), a1 = 0, a2 = −
6βk2μ2

ε(16βk2μ2+1) and b1 =

0,b2 = 0. 
In terms of coth function, the values of the parameters given in cluster 

2 form an explicit solution: 

u15(x, t) =
2
5
−

6
5
tanh2

(

2
̅̅̅
x

√
−

2
̅̅
t

√

5

)

. (4.22) 

The hyperbolic formula and space, time coordinates can be used to 
reconstruct it. 

u16(x, t) =
2
5
−

6
5
+

6
5

sech2
(

2
̅̅̅
x

√
−

2
̅̅
t

√

5

)

. (4.23)  

Cluster 3: 

c = − k
4βk2μ2 − 1, k = k, a0 = −

6βk2μ2

ε(4βk2μ2 − 1), a1 = 0, a2 =
6βk2μ2

ε(4βk2μ2 − 1) and 
b1 = 0,b2 = 0. 

The values of the parameters presented in cluster 3 formulate an 
explicit solution in terms of tanh function: 

u17(x, t) = − 2+ 2tanh2
(

2
̅̅̅
x

√
+

2
̅̅
t

√

3

)

. (4.24) 

The hyperbolic formula and space, time coordinates can then be used 
to reconstruct it. 

u18(x, t) = − 2+ 2
(
1 − sech2)

(

2
̅̅̅
x

√
+

2
̅̅
t

√

3

)

. (4.25)  

Cluster 4: 

c = k
4βk2μ2+1, k = k,a0 = 1

2, a1 =
2βk2μ2

ε(4βk2μ2+1), a2 = 0 and b1 = 0, b2 =

−
6βk2μ2

ε(16βk2μ2+1). 
In terms of coth functions, the values of the parameters given in 

cluster 4 form an explicit solution: 

u19(x, t) =
2
5
−

6
5
coth2

(

2
̅̅̅
x

√
−

2
̅̅
t

√

5

)

. (4.26) 

The hyperbolic formula and space, time coordinates can be used to 
reconstruct it. 

u20(x, t) =
2
5
−

6
5
(
1 − csch2)

(

2
̅̅̅
x

√
−

2
̅̅
t

√

5

)

. (4.27)  

Cluster 5: 

c = k
4βk2μ2+1, kk, a0 = −

6βk2μ2

ε(4βk2μ2 − 1), a1 = 1
2, a2 = 0 and b1 = 0, b2 =

6βk2μ2

ε(4βk2μ2 − 1). 
Principles of the parameters offered in cluster 5 originate an explicit 

solution in expressions of coth functions: 

u21(x, t) = − 2+ 2coth2
(

2
̅̅̅
x

√
+

2
̅̅
t

√

3

)

. (4.28) 

Which can be renovated by dint of the hyperbolic formula and space, 
time coordinates. 

u22(x, t) = − 2+ 2
(
1 − csch2)

(

2
̅̅̅
x

√
+

2
̅̅
t

√

3

)

. (4.29)  

Cluster 6: 

c = − k
16βk2μ2 − 1, k = k, a0 = −

12βk2μ2

ε(16βk2μ2 − 1), a1 = 0, a2 =
6βk2μ2

ε(16βk2μ2 − 1), and 

b1 = 0,b2 =
6βk2μ2

ε(16βk2μ2 − 1). 
Cluster 6 is gained from those values of the parameters which 

Fig. 1. The kink type wave solution u1(x, t) within the intervals 0 < x < 10 and 0 < t < 10.  
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construct an explicit result in terms of tanh as well as coth functions: 

u23(x, t) = −
12
15

+
6
15

tanh2
(

2
̅̅̅
x

√
+

2
̅̅
t

√

15

)

+
6
15

coth2
(

2
̅̅̅
x

√
+

2
̅̅
t

√

15

)

.

(4.30) 

The hyperbolic formula and space, time coordinates can be used to 
rebuild it. 

u24(x, t) = −
12
15

+
6
15

−
6
15

sech2
(

2
̅̅̅
x

√
+

2
̅̅
t

√

15

)

+
6
15

coth2
(

2
̅̅̅
x

√
+

2
̅̅
t

√

15

)

.

(4.31) 

The extended tanh method yielded novel and more general solutions, 

as shown above. So far as we’re aware, these findings haven’t been 
released. This solution can be used to explain the relativistic electron 
and the physical process of one-way stretching of weakly non-linear 
acoustic waves through a gas-filled pipe. 

Graphical representations and physical discussion 

Graphical representations of the solutions 

In this section, for different values of the free parameter in the ob-
tained solutions, we discuss portrayal illustration for expressed resolu-
tions of the mentioned equations. These solutions give the highly stable 

Fig. 2. The kink type wave solution u2(x, t) within the intervals 0 < x < 10 and 0 < t < 10.  

Fig. 3. The bell shape wave solution u3(x, t) within the intervals 0 < x < 10 and 0 < t < 10.  

Fig. 4. The multiple singular soliton wave solution u4(x, t) within the intervals − 500 < x < 500 and 0 < t < 500.  
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various types of solutions. They are depicted for the values μ = 1, β = 1,
α = 1

2 surrounded by different intermission for x and t. 3D, contour and 
2D graphs of the solutions are investigated. 

Physical interpretation of the solution 

Herein sub-sector, the portrayal delegation in addition to description 
to the acquired resolutions of NLFDE over expressed equations are 
delimitating. Solutions u1(x, t), u2(x, t), u15(x, t) illustrate kink type so-
lutions. Asymptotic waves that travel from one state to the next are 
known as kink waves. Fig. 1 and Fig. 2 which are represents TF-BF 
equation and Fig. 10 represents STF-RLW equation narrates the nature 
of the kink type resolution of u9(x, t), u10(x, t), u11(x, t), u12(x, t)

equation. The behavior of the shape of solution u1(x, t), u2(x, t), u10(x, t)
is corresponding to the figure of solution u9(x, t), u10(x, t), u11(x, t),
u12(x, t) hence for straightforwardness the quality of these accomplish-
ment solutions are cropped here. The solutions of u3(x, t), u16(x, t)
represent the type of bell shape solution for the values μ = 1, β = 1,α = 1

2 
and 0 ≤ x ≤ 10, 0 ≤ t ≤ 10 is denoted by Figs. 3 and 14which are rep-
resented TF-BF and STF-RLW equations, gradually. Fig. 4,5,6, and 13 
earned this recitation are the multiple solitons solutions. 

u4(x, t) for μ = 1, β = 1, α = 1
2 and − 500 ≤ x ≤ 500,

− 500 ≤ t ≤ 500, u5(x, t) for μ = 1, β = 1,α = 1
2 and 0 ≤ x ≤ 1000,

0 ≤ t ≤ 1000, u6(x, t) for μ = 1, β = 1, α = 1
2 and 

− 10 ≤ x ≤ 1000, − 10 ≤ t ≤ 1000 solutions of TF-BF equation and 

Fig. 5. The multiple singular soliton wave solution u5(x, t) within the intervals 0 < x < 1000 and 0 < t < 1000.  

Fig. 6. The multiple singular soliton wave solution u6(x, t) inside the intervals − 10 < x < 1000 and − 10 < t < 1000.  

Fig. 7. The periodic kink wave solution u7(x, t) within the intervals − 100 < x < 1000 and − 10 < t < 100.  
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u23(x, t) for μ = 1, β = 1, α = 1
2 and − 10 ≤ x ≤ − 100, − 10 ≤ t ≤ − 100 

narrates STF-RLW equation which all are multiple solitons solutions. 
u7(x, t) for μ = 1, β = 1,α = 1

2 and − 10 ≤ x ≤ 1000, − 10 ≤ t ≤ 1000 
obtained in this study for TF-BF equation is a periodic kink wave solu-
tion which is indicated in Fig. 7 and singular king wave solution in Fig. 8 
is obtained from u8(x, t) for μ = 1, β = 1, α = 1

2 and − 10 ≤ x ≤ 100,
− 10 ≤ t ≤ 100. Also for TF-BF equation.u13(x,t), u17(x,t), for μ = 1, β =

1, α = 1
2 and 0 ≤ x ≤ 10,0 ≤ t ≤, for Figs. 9 and 11 (STF-RLW equation) 

gained in this study are the single soliton solution.u13(x, t) and u17(x, t)
are resembling to the ardor of solution u14(x, t) for μ = 1, β = 1, α = 1

2 and 
2 ≤ x ≤ 360, 2 ≤ t ≤ 360u20(x, t), u24(x, t) for μ = 1, β = 1, α = 1

2 and 

10 ≤ x ≤ 100,10 ≤ t ≤ 100, u22(x, t) for μ = 1, β = 1, α = 1
2 and 0 ≤ x ≤

100,0 ≤ t ≤ 100 consequently for convenience these solutions are 
excluded here. 

u19(x, t),u21(x, t) for μ = 1, β = 1,α = 1
2 and 

0 ≤ x ≤ − 1000,0 ≤ t ≤ − 1000 (STF-RLW equation) recites double sol-
itons solutions shown in Fig. 12. u18(x, t) for μ = 1, β = 1,α = 1

2 and 0 ≤

x ≤ .2,0 ≤ t ≤ 2.5 (STF- RLW equation) recites V-kink shape solution in 
Fig. 15. 

Fig. 8. The singular kink wave solution u8(x, t) within the intervals − 10 < x < 100 and 0 < t < 100.  

Fig. 9. The singular kink wave solution u13(x, t) within the intervals 0 < x < 10 and 0 < t < 10.  

Fig. 10. The kink wave solution u15(x, t) within the intervals 0 < x < 10 and 0 < t < 10.  
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Conclusion 

In this article, the ET-F method has been dispensed from finding 
several accurate answers. We have acquired abundant traveling wave 
solutions to the TF-BF equation along with the STF-RLW equation. It is 
constructed for these two equations, by the proposed method, different 
well-informed solitons, for the definite values of the free parameters like 
kink type, single soliton, double soliton, multiple solitons, and bell shape 
wave solutions. The results can be used to investigate gravitational 
water waves in long-wave occupancy, shallow water waves in coastal 
seas, hydro-magnetic waves in a cold plasma, phonetic waves in a cold 

plasma, hydrodynamics, and electromagnetic interactions, among many 
other things. To provide a more thorough study, 3D, 2D, and contour 
charts are used to better understand the two models’ physical phe-
nomena. Finally, the ET-F method gives a powerful mathematical tool 
for obtaining more precise traveling wave solutions to other nonlinear 
fractional evolution problems in several disciplines of applied sciences. 
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