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Abstract

In this short manuscript, we revisit the renowned contraction’s of Meir-Keeler by involving the interpolation
theory in the context of complete metric space. We provide a simple example to illustrate the validity of the
observed result.
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1. Introduction

There is no need to emphasize it again, as it is very well known how effectively fixed point theory is used in
nonlinear functional analysis, topology, and applied mathematics. Instead, it makes more sense to emphasize
the effective use of fixed point theory in all branches of qualitative science. In this paper, we combine three
exciting ideas and trends in the metric fixed point theory. After the famous fixed point theorem of Banach
[1], one of the most significant advances in metric fixed point theory was given by Kannan [3, 4]. It was
later understood that the Banach contraction and Kannan contractions are independent [1]. On the other
hand, in another aspect, Meir-Keeler [6] proposed an interesting contraction inequality that can be called
a uniform contraction. Another interesting contraction concept that was recently published is interpolative
contraction [5].

This paper aims to revisit the slightly modified version of the Meir-Keeler type contraction that is
observed by combining the Kannan type contraction and interpolative contraction. We first recall the basic
definitions and results.
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Definition 1.1. Let (X, d ) be a complete metric space. A mapping T : X → X is said to be a Meir-Keeler
contraction on X (on short, MK-contraction), if for every ε > 0, there exists δ > 0 such that

ε ≤ d (x, y) < ε+ δ ⇒ d (Tx,Ty) < ε, (1.1)

for every x, y ∈ X.

Theorem 1.2. [6] On a complete metric space (X, d ), any MK-contraction T : X → X has a unique fixed
point.

Definition 1.3. Let (X, d ) be a complete metric space. A mapping T : X→ X is said to be an interpolative
Kannan type contraction on X (on short, MK-contraction), if there exist κ ∈ [0, 1) and γ ∈ (0, 1) such that

d (Tx,Ty) ≤ κ[d (x,Tx)]γ [d (y,Ty)]1−γ , (1.2)

for every x, y ∈ X\Fix(T), where Fix(T) = {x ∈ X|Tx = x} .

Theorem 1.4. [5] On a complete metric space (X, d ), any interpolative Kannan-contraction T : X→ X has
a fixed point.

2. Main Results

We start this section with the definition of interpolative Kannan-Meir-Keeler type contraction.

Definition 2.1. Let (X, d ) be a complete metric space. A mapping T : X→ X is said to be an interpolative
Kannan-Meir-Keeler type contraction on X (on short, KMK-contraction), if there exists γ ∈ (0, 1) such that
for every x, y ∈ X\Fix(T) we have

(1) given ε > 0, there exists δ > 0 so that

ε < [d (x,Tx)]γ [d (y,Ty)]1−γ < ε+ δ =⇒ d (Tx,Ty) ≤ ε, (2.1)

(2)
d (Tx,Ty) < d (x,Tx)]γ [d (y,Ty)]1−γ . (2.2)

Theorem 2.2. On a complete metric space (X, d ), any interpolative KMK-contraction T : X→ X has a fixed
point.

Proof. Starting with a point x0 ∈ X, we build the sequence {xm}, by the following rule:

xm = Txm−1 = Tmx0,

for all m ∈ N. Thus, by the assumption (2), we have

d (xm, xm+1) = d (Txm−1,Txm) < [d (xm−1,Txm−1)]γ [d (xm,Txm)]1−γ

= [d (xm−1, xm)]γ [d (xm, xm+1)]
1−γ ,

and then, equivalent,
[d (xm, xm+1)]

γ < [d (xm−1, xm)]γ .

Then, the sequence {d (xm, xm+1)} is strictly decreasing and since d (xm, xm+1) > 0, for every m ∈ N∪{0}, it
follows that the sequence {d (xm, xm+1)} tends to a point ω ≥ 0. We claim that ω = 0. Indeed, if we suppose
that ω > 0, we can find N ∈ N, such that

ω < d (xm, xm+1) < ω + δ(ω),
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for any m ≥ N . Then, since ω < d (xm, xm+1) < [d (xm−1, xm)]γ [d (xm, xm+1)]
1−γ , keeping in mind (2.1), it

follows that d (xm, xm+1) ≤ ω, for any m ≥ N . This is a contradiction, and that’s why we get ω = 0.
In order to show that {xm} is a Cauchy sequence, let ε > 0 be fixed and we can consider that δ(ε) can be
choose such that δ(ε) < ε. Since lim

m→∞
d (xm, xm+1) = 0, we can find l ∈ N such that d (xm, xm+1) <

ε
2 , for

m ≥ l, and we claim that
d (xm, xm+p) < ε, (2.3)

, for any p ∈ N. Of course, the above inequality holds for p = 1. Supposing that for some p, (2.3) holds, we
will prove it for p+ 1. Indeed, using the triangle inequality, together with (2.2) we have

d (xm, xm+p+1) ≤ d (xm, xm + 1) + d (xm+1, xm+p+1)
= d (xm, xm+1) + d (Txm,Txm+p)
< d (xm, xm+1) + [d (xm, xm+1)]

γ [d (xm+p, xm+p+1)]
1−γ

< ε
2 + ε

2 = ε.

Therefore, the sequence {xm} is Cauchy and by the completeness of the space X it follows that there exists
x∗ ∈ X such that

lim
m→∞

xm = x∗. (2.4)

We shall show that x∗ = Tx∗. Supposing on the contrary, that x∗ 6= Tx∗, by (2.2) we have

0 < d (x∗,Tx∗) ≤ d (x∗, xm+1) + d (xm+1,Tx∗) = d (x∗, xm+1) + d (Txm,Tx∗)
< [d (xm,Txm)]γ [d (x∗,Tx∗)]1−γ

= [d (xm, xm+1)]
γ [d (x∗,Tx∗)]1−γ → 0 as m→∞.

Therefore, d (x∗,Tx∗) = 0, that is, x∗ is a fixed point of the mapping T.

Example 2.3. Let X = R2 and A = {A,B,C,D}, where A = (1,−1), B = (−1, 0), C = (2,−1), D = (2, 0).
Let d : X × X → [0,∞) be defined as d (P,Q) =

√
(x1 − y1)2 + (x2 − y2)2 for any P,Q ∈ X, P = (x1, x2),

Q = (y1, y2), with x1, x2, y1, y2 ∈ R. Define the mapping T : X→ X as follows

TA = TC = TD = C,TB = D, and TP = P for any P ∈ X\A.

We choose γ = 1
2 .

Thus, we claim that T satisfies the conditions of Theorem 2.2.
Indeed, for ε < 1, with δ =

√
2− ε,

ε < 1 =
√

d (A,TA)d (D,TD) =
√

d (A,C)d (D,C) <
√
2 = ε+ δ ⇒

d (TA,TD) = d (C,C) = 0 < ε,

and also
d (TA,TD) <

√
d (A,C)d (D,C).

For ε ≥ 1, choosing δ = 1, we get

ε <
√

d (A,TA)d (B,TB) =
√

d (A,C)d (B,D) =
√
3 < ε+ δ ⇒

d (TA,TB) = d (C,D) = 1 < ε,

and
d (TA,TB) = 1 <

√
3 =

√
d (A,C)d (B,D).

Similar,
ε <

√
d (D,TD)d (B,TB) =

√
d (D,C)d (B,D) =

√
3 < ε+ δ ⇒

d (TD,TB) = d (C,D) = 1 < ε,
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and
d (TD,TB) = 1 <

√
3 =

√
d (A,C)d (B,D).

Consequently, by Theorem 2.2, the mappings T has fixed points; these are C = (2,−1) and all P ∈ X\A.
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