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Abstract: The purpose of this manuscript is to demonstrate the existence and uniqueness of triple
fixed-point results for Geraghty-type contractions in ordinary metric spaces with binary relations.
Moreover, the well-posedness of the tripled fixed point problem is investigated. Consequently,
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examples are derived, and the existence of the solution to a system of differential equations is obtained
as an application.
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1. Introduction

Fixed-point techniques in complete metric spaces (CMSs) became popular in 1922
after Banach presented their principle [1]. This technique has particular resonance in many
important disciplines, such as topology, dynamical systems, differential and integral equa-
tions, economics, game theory, biological sciences, computer science and chemistry [2,3].
As of the importance of this approach, it became the main controller in the study of the
existence and uniqueness of the solution to many differential and integral equations [4–6].

Bhaskar and Lakshmikantham [7] introduced the concept of mixed monotone maps
and coupled fixed points. Consequently, many authors established coupled fixed point
results for contractive mappings under suitable conditions in partially ordered metric
spaces (POMSs) with some important applications. For more details, see [8,9].

In 2011, Berinde and Borcut [10] initiated the notion of triple fixed points (TFPs)
and established some TFP results for contractive mappings in POMSs. Afterward, many
investigators established TFP theorems for contraction mappings in various spaces. For
more contributions in this regard, see [11–15].

In 1973, Geraghty [16] extended the Banach contraction principle [1] by replacing
a contraction coefficient with a function satisfying certain conditions. Later, the results
of [16] were extended by Hamini and Emami [5] in POMSs. In 2013, the idea of α-Geraghty
contraction type mappings and some nice fixed point consequences were established in a
CMS by Cho et al. [17]. As many scholars are interested in this regard, it is sufficient to
mention [18,19].

In 1989, Blassi and Myjak [20] defined another approach to fixed points, the so-
called well-posedness of a fixed point problem. The concept of well-posedness of a fixed
point problem for a single valued mapping has evoked much interest for several authors,
see [21,22].
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In this manuscript, the existence and uniqueness of a TFP are established for Geraghty-
type contraction mappings under appropriate conditions. Furthermore, an example is given
to support our results. Moreover, the well-posedness of a TFP problem and α−dominated
mappings are obtained. As an application, the existence solution to a system of differential
equations is derived.

2. Preliminaries

In this section, we present some notations and basic definitions that are useful in the
sequel. Assume that Ω and Ψ are two non-empty sets and < is a relation from Ω to Ψ, i.e.,
< ⊆ Ω×Ψ. Here, the pair (η,κ) ∈ < or η<κ means η is < related to κ, the domain of <
defined by the set D = {η ∈ Ω : (η,κ) ∈ < for some κ ∈ Ψ}, the range of < defined by
the set G = {κ ∈ Ψ : (η,κ) ∈ < for some η ∈ Ω} and the inverse of < is <−1, which is
defined by {(κ, η) : (η,κ) ∈ <}.

A relation < from Ω to Ω is said to be a relation on Ω. Suppose that < is a relation on
Ω. The relation < is called directed if for given η,κ ∈ Ω there is $ ∈ Ω so that (η, $) ∈ <
and (κ, $) ∈ <. If the relation < is reflexive, anti-symmetric and transitive, then it is called
a partial order relation on Ω.

Definition 1. Assume that (Ω,a) is a CMS with a binary relation < on it. We say that Ω has
<−regular property if for each sequence {ηv} ∈ Ω converging to η ∈ Ω with (ηv, ηv+1) ∈ <,
we have (ηv, η) ∈ <, for each v or if (ηv+1, ηv) ∈ <, then (η, ηv) ∈ <, for each v.

Definition 2 ([10]). Let Ω be a non-empty set. A trio (η,κ, $) ∈ Ω3 is said to be a TFP of the
mapping r : Ω3 → Ω if η = r(η,κ, $), κ = r(κ, $, η) and $ = r($, η,κ).

Example 1. Assume that Ω = [0, ∞) and r : Ω3 → Ω is a mapping described as

r(η,κ, $) =
η +κ + $

3
, for all η,κ, $ ∈ Ω.

Then, there is a unique TFP of r, whenever η = κ = $.

Now, in order to achieve the goal of this paper, we present the following auxiliary
functions.

Assume that Θ is a class of all functions ζ : [0, ∞)→ [0, 1) so that, for each sequence
{`v} ∈ [0, ∞), limv→+∞ ζ(`v) = 1 implies limv→+∞ `v = 0.

Let Θ∗ be a class of all functions = : [0, ∞)→ [0, 1) so that, for any sequence {`v} ∈
[0, ∞), lim supv→+∞ =(`v) = 1 implies limv→+∞ `v = 0.

Clearly, the class Θ∗ is more extended than Θ, that is Θ∗ contains Θ.
The example below illustrates this containment.

Example 2. Let = : [0, ∞)→ [0, 1) be a function defined by

=(`v) =

{(
1 + (−1)v + `v

) 1
v : `v =

(
1

2v

)
, for all v ∈ N

}
.

It is clear that `v ∈ [0, ∞) and limv→+∞ =(`v) does not exist (the value of the limit
is not unique). So = /∈ Θ. The sequence {=(`v)}v∈N is bounded and has two subsequences
{ 1

2} and {2 + 1
2v }

1
v . Thus, the limits are 1

2 and 1. Therefore, lim infv→+∞ =(`v) = 1
2 and

lim supv→+∞ =(`v) = 1, whenever limv→+∞ `v = 0. Hence, = ∈ Θ∗.

3. Main Results

In this part, we obtain some TFP results under certain conditions. Furthermore,
illustrative examples are given to support the theoretical results. Now, we begin with the
following definition:
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Definition 3. Suppose that Ω 6= ∅ with a binary relation < on it. A mapping r : Ω3 → Ω is
called an <−dominated mapping if for all (η,κ, $) ∈ Ω3,

(η, r(η,κ, $)) ∈ <, (r(κ, $, η),κ) ∈ < and ($, r($, η,κ)) ∈ <.

Example 3. Suppose that Ω = [0, 1] and the mapping r : Ω3 → Ω is defined by

r(η,κ, $) =
η +κ + $

9 + η +κ + $
, for all η,κ, $ ∈ Ω.

Assume that a binary relation < on Ω is described by

< =

{
((η,κ, $), (µ, ν, ϑ)) :

[(
0 ≤ η ≤ 1; 0 ≤ µ ≤ 1

3

)
or
(

0 ≤ η ≤ 1
3

; 0 ≤ µ ≤ 1
)]

,[(
0 ≤ κ ≤ 1; 0 ≤ ν ≤ 1

3

)
or
(

0 ≤ κ ≤ 1
3

; 0 ≤ ν ≤ 1
)]

,[(
0 ≤ $ ≤ 1; 0 ≤ ϑ ≤ 1

3

)
or
(

0 ≤ $ ≤ 1
3

; 0 ≤ ϑ ≤ 1
)]}

.

Thus,

r(η,κ, $) = r(κ, $, η) = r($, η,κ) ∈
[

0,
1
3

]
, for all η,κ, $ ∈ Ω.

It follows that

(η, r(η,κ, $)) ∈ <, (r(κ, $, η),κ) ∈ < and ($, r($, η,κ)) ∈ <, for all (η,κ, $) ∈ Ω3.

Hence, r is an <−dominated mapping.

Problem (W) : Suppose that (Ω,a) is a metric space. We consider the problem of
finding a TFP (η,κ, $) ∈ Ω3 of the mapping r : Ω3 → Ω, so that

η = r(η,κ, $), κ = r(κ, $, η) and $ = r($, η,κ). (1)

Definition 4. The problem (W) is said to be well-posed if the following conditions hold:

(W1) the point (η∗,κ∗, $∗) is a TFP of r;
(W2) ηv → η∗, κv → κ∗ and $v → $∗ as v → ∞, whenever {(ηv,κv, $v)} is any sequence

in Ω3 such that lim supv→+∞[a(ηv, η∗) + a(κv,κ∗) + a($v, $∗)] is finite and

lim
v→+∞

a(ηv, r(ηv,κv, $v)) = lim
v→+∞

a(κv, r(κv, $v, ηv)) = lim
v→+∞

a($v, r($v, ηv,κv)) = 0.

Now, we establish our first main result as follows:

Theorem 1. Assume that (Ω,a) is a CMS with a transitive relation < on it so that Ω has
<−regular property. Let r : Ω3 → Ω be the <−dominated mapping and there is = ∈ Θ∗. If for
(η,κ, $), (µ, ν, ϑ), (a, b, c) ∈ Ω3 so that ((η, µ, a), (κ, ν, b), ($, ϑ, c) ∈ Ω3) or ((µ, a, η), (ν, b,κ),
(ϑ, c, $) ∈ Ω3) or ((a, η, µ), (b,κ, ν), (c, $, ϑ) ∈ Ω3), and the inequality below holds

a(r(η,κ, $), r(µ, ν, ϑ)) ≤ =(ℵ(η,κ, $, µ, ν, ϑ))ℵ(η,κ, $, µ, ν, ϑ), (2)

where

ℵ(η,κ, $, µ, ν, ϑ) =

(
a(η, µ) + a(κ, ν) + a($, ϑ)

3

)
.

Then, r has a TFP.
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Proof. Let (η0,κ0, $0) ∈ Ω3 be an arbitrary point. Define three sequences {ηv}, {κv} and
{$v} in Ω by

ηv+1 = r(ηv,κv, $v),

κv+1 = r(κv, $v, ηv)

and $v+1 = r($v, ηv,κv), for all v ≥ 0. (3)

As r is <−dominated, we find

(ηv, r(ηv,κv, $v)) = (ηv, ηv+1) ∈ <,

(κv, r(κv, $v, ηv)) = (κv,κv+1) ∈ <
and ($v, r($v, ηv,κv)) = ($v, $v+1) ∈ <, for all v ≥ 0. (4)

Let
δv = a(ηv, ηv+1) + a(κv,κv+1) + a($v, $v+1), for all v ≥ 0. (5)

From (2)–(5), we obtain

a(ηv+1, ηv+2) = a(r(ηv,κv, $v), r(ηv+1,κv+1, $v+1))

≤ =(ℵ(ηv,κv, $v, ηv+1,κv+1, $v+1))

×ℵ(ηv,κv, $v, ηv+1,κv+1, $v+1), (6)

where

ℵ(ηv,κv, $v, ηv+1,κv+1, $v+1) = =
(
a(ηv, ηv+1) + a(κv,κv+1) + a($v, $v+1)

3

)
= =

(
δv

3

)
. (7)

Applying (6) in (7), we have

a(ηv+1, ηv+2) ≤ =
(

δv

3

)
δv

3
. (8)

Analogously, we can write

a(κv+1,κv+2) ≤ =
(

δv

3

)
δv

3
(9)

and

a($v+1, $v+2) ≤ =
(

δv

3

)
δv

3
. (10)

By adding (8)–(10), we have

δv+1 = a(ηv+1, ηv+2) + a(κv+1,κv+2) + a($v+1, $v+2)

≤ =
(

δv

3

)
δv. (11)

Assume that 0 ≤ δv < δv+1. Thus, by (11), one obtains

δv+1 ≤ =
(

δv

3

)
δv ≤ δv < δv+1,
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a contradiction. Thus, δv+1 ≤ δv , for each v ≥ 0, which means that a sequence of positive
real numbers {δv} is decreasing. Hence, there is δ ≥ 0 so that limv→+∞ δv = δ. Based
on (11), we obtain

δv+1 ≤ =
(

δv

3

)
δv, for all v ≥ 0. (12)

If possible, suppose that δ > 0. Taking the limit supremum on both sides of (12), we
have

δ ≤ lim sup
v→+∞

=
(

δv

3

)
δv,

which leads to

1 ≤ lim sup
v→+∞

=
(

δv

3

)
≤ 1,

which implies that

lim sup
v→+∞

=
(

δv

3

)
= 1.

Using the property of =, we have

lim
v→+∞

δv

3
=

δ

3
= 0.

Hence, δ = 0, which is contrary to our assumption. Based on the foregoing, we can
write δ = 0 and

lim
v→+∞

[a(ηv, ηv+1) + a(κv,κv+1) + a($v, $v+1)]

= lim
v→+∞

a(ηv, ηv+1) = lim
v→+∞

a(κv,κv+1) = lim
v→+∞

a($v, $v+1)

= 0. (13)

Now, we shall show that {ηv}, {κv} and {$v} are Cauchy sequences. Assume on the
contrary that either {ηv} or {κv} or {$v} is not a Cauchy sequence. Then, either

lim
℘, v→+∞

a(η℘, ηv) 6= 0 or

lim
℘, v→+∞

a(κ℘,κv) 6= 0 or

lim
℘, v→+∞

a($℘, $v) 6= 0.

Therefore,

lim
℘, v→+∞

[a(η℘, ηv) + a(κ℘,κv) + a($℘, $v)] 6= 0,

which implies that, for each ε > 0, we can find subsequences
{

v(β)

}
and

{
℘(β)

}
of positive

integer with v(β) > ℘(β) > β so that, for every β > 0,

a
(

η℘(β)
, ηv(β)

)
+ a

(
κ℘(β)

,κv(β)

)
+ a

(
$℘(β)

, $v(β)

)
≥ ε (14)

and
a
(

η℘(β)
, ηv(β)−1

)
+ a

(
κ℘(β)

,κv(β)−1

)
+ a

(
$℘(β)

, $v(β)−1

)
< ε. (15)
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Consider

ε ≤ a
(

ηv(β)
, η℘(β)

)
+ a

(
κv(β)

,κ℘(β)

)
+ a

(
$v(β)

, $℘(β)

)
≤

[
a
(

ηv(β)
, ηv(β)−1

)
+ a

(
κv(β)

,κv(β)−1

)
+ a

(
$v(β)

, $v(β)−1

)]
+
[
a
(

ηv(β)−1, η℘(β)

)
+ a

(
κv(β)−1,κ℘(β)

)
+ a

(
$v(β)−1, $℘(β)

)]
< a

(
ηv(β)

, ηv(β)−1

)
+ a

(
κv(β)

,κv(β)−1

)
+ a

(
$v(β)

, $v(β)−1

)
+ ε.

As β→ +∞ in the above inequality and by (13), we find

lim
β→+∞

[
a
(

η℘(β)
, ηv(β)

)
+ a

(
κ℘(β)

,κv(β)

)
+ a

(
$℘(β)

, $v(β)

)]
= ε. (16)

In addition,

a
(

ηv(β)−1, η℘(β)−1

)
+ a

(
κv(β)−1,κ℘(β)−1

)
+ a

(
$v(β)−1, $℘(β)−1

)
≤

[
a
(

ηv(β)−1, η℘(β)

)
+ a

(
κv(β)−1,κ℘(β)

)
+ a

(
$v(β)−1, $℘(β)

)]
+
[
a
(

η℘(β)
, η℘(β)−1

)
+ a

(
κ℘(β)

,κ℘(β)−1

)
+ a

(
$℘(β)

, $℘(β)−1

)]
< a

(
η℘(β)

, η℘(β)−1

)
+ a

(
κ℘(β)

,κ℘(β)−1

)
+ a

(
$℘(β)

, $℘(β)−1

)
+ ε. (17)

Again,

a
(

ηv(β)
, η℘(β)

)
+ a

(
κv(β)

,κ℘(β)

)
+ a

(
$v(β)

, $℘(β)

)
≤

[
a
(

ηv(β)
, ηv(β)−1

)
+ a

(
κv(β)

,κv(β)−1

)
+ a

(
$v(β)

, $v(β)−1

)]
+
[
a
(

ηv(β)−1, η℘(β)−1

)
+ a

(
κv(β)−1,κ℘(β)−1

)
+ a

(
$v(β)−1, $℘(β)−1

)]
+
[
a
(

η℘(β)
, η℘(β)−1

)
+ a

(
κ℘(β)

,κ℘(β)−1

)
+ a

(
$℘(β)

, $℘(β)−1

)]
,

which leads to

a
(

ηv(β)
, η℘(β)

)
+ a

(
κv(β)

,κ℘(β)

)
+ a

(
$v(β)

, $℘(β)

)
−
[
a
(

ηv(β)
, ηv(β)−1

)
+ a

(
κv(β)

,κv(β)−1

)
+ a

(
$v(β)

, $v(β)−1

)]
−
[
a
(

η℘(β)
, η℘(β)−1

)
+ a

(
κ℘(β)

,κ℘(β)−1

)
+ a

(
$℘(β)

, $℘(β)−1

)]
≤

[
a
(

ηv(β)−1, η℘(β)−1

)
+ a

(
κv(β)−1,κ℘(β)−1

)
+ a

(
$v(β)−1, $℘(β)−1

)]
< a

(
η℘(β)

, η℘(β)−1

)
+ a

(
κ℘(β)

,κ℘(β)−1

)
+ a

(
$℘(β)

, $℘(β)−1

)
+ ε. (18)

Taking the limit as β→ +∞ in (17) and (18) and by (13) and (16), we obtain

lim
β→+∞

[
a
(

η℘(β)−1, ηv(β)−1

)
+ a

(
κ℘(β)−1,κv(β)−1

)
+ a

(
$℘(β)−1, $v(β)−1

)]
= ε. (19)
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Hence,

a
(

ηv(β)
, η℘(β)

)
+ a

(
κv(β)

,κ℘(β)

)
+ a

(
$v(β)

, $℘(β)

)
≤

[
a
(

ηv(β)
, ηv(β)−1

)
+ a

(
κv(β)

,κv(β)−1

)
+ a

(
$v(β)

, $v(β)−1

)]
+
[
a
(

ηv(β)−1, η℘(β)−1

)
+ a

(
κv(β)−1,κ℘(β)−1

)
+ a

(
$v(β)−1, $℘(β)−1

)]
≤

[
a
(

ηv(β)−1, η℘(β)−1

)
+ a

(
κv(β)−1,κ℘(β)−1

)
+ a

(
$v(β)−1, $℘(β)−1

)]
+
[
a
(

η℘(β)−1, η℘(β)

)
+ a

(
κ℘(β)−1,κ℘(β)

)
+ a

(
$℘(β)−1, $℘(β)

)]
.

Once again, letting β→ +∞ in the above inequality and using (13), (16) and (19), we
conclude that

lim
β→+∞

[
a
(

ηv(β)−1, η℘(β)

)
+ a

(
κv(β)−1,κ℘(β)

)
+ a

(
$v(β)−1, $℘(β)

)]
= ε. (20)

From (4) and the transitivity hypothesis of <, one finds(
ηv(β)−1, η℘(β)−1

)
∈ <,

(
κv(β)−1,κ℘(β)−1

)
∈ < and

(
$v(β)−1, $℘(β)−1

)
∈ <.

Applying (2), we find

a
(

η℘(β)
, ηv(β)

)
= a

(
r
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1

)
, r
(

ηv(β)−1,κv(β)−1, $v(β)−1

))
≤ =

(
ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

))
×ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

)
, (21)

where

ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

)
=

a
(

η℘(β)−1, ηv(β)−1

)
+ a

(
κ℘(β)−1,κv(β)−1

)
+ a

(
$℘(β)−1, $v(β)−1

)
3

. (22)

Similarly, one can write

a
(
κ℘(β)

,κv(β)

)
= a

(
r
(
κ℘(β)−1, $℘(β)−1, η℘(β)−1

)
, r
(
κv(β)−1, $v(β)−1, ηv(β)−1

))
≤ =

(
ℵ
(
κ℘(β)−1, $℘(β)−1, η℘(β)−1,κv(β)−1, $v(β)−1, ηv(β)−1

))
×ℵ
(
κ℘(β)−1, $℘(β)−1, η℘(β)−1,κv(β)−1, $v(β)−1, ηv(β)−1

)
= =

(
ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

))
×ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

)
(23)

and

a
(

$℘(β)
, $v(β)

)
= a

(
r
(

$℘(β)−1, η℘(β)−1,κ℘(β)−1

)
, r
(

$v(β)−1, ηv(β)−1,κv(β)−1

))
≤ =

(
ℵ
(

$℘(β)−1, η℘(β)−1,κ℘(β)−1, $v(β)−1, ηv(β)−1,κv(β)−1

))
×ℵ
(

$℘(β)−1, η℘(β)−1,κ℘(β)−1, $v(β)−1, ηv(β)−1,κv(β)−1

)
= =

(
ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

))
×ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

)
. (24)
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Combining (21), (23) and (24), we can write

a
(

η℘(β)
, ηv(β)

)
+ a

(
κ℘(β)

,κv(β)

)
+ a

(
$℘(β)

, $v(β)

)
≤ 3=

(
ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

))
×ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

)
. (25)

When β→ +∞ in (22) and by (13), (19) and (20), we have

lim
β→+∞

ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

)
=

ε

3
. (26)

Taking the limit supremum in (25) and applying (14) and (26), we find

ε ≤ 3 lim sup
β→+∞

=
(
ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

))
× ε

3

= ε lim sup
β→+∞

=
(
ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

))
.

Based on the property of =, we can write

1 ≤ lim sup
β→+∞

=
(
ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

))
≤ 1,

which leads to

lim sup
β→+∞

=
(
ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

))
= 1.

Again, the property of = implies that

lim
β→+∞

ℵ
(

η℘(β)−1,κ℘(β)−1, $℘(β)−1, ηv(β)−1,κv(β)−1, $v(β)−1

)
=

ε

3
= 0,

that is, ε = 0. This contradicts our assumption. Therefore, {ηv}, {κv} and {$v} are Cauchy
sequences in Ω. As Ω is complete, there are η, κ, $ ∈ Ω so that

ηv → η, κv → κ and $v → $, as v → +∞.

Hence, we can write

lim
v→+∞

a(ηv, η) = lim
v→+∞

a(ηv, η℘) = lim
v→+∞

a(η, η) = 0. (27)

Similarly,

lim
v→+∞

a(κv,κ) = lim
v→+∞

a(κv,κ℘) = lim
v→+∞

a(κ,κ) = 0, (28)

and
lim

v→+∞
a($v, $) = lim

v→+∞
a($v, $℘) = lim

v→+∞
a($, $) = 0. (29)

It follows from (27)–(29) and (2) that

a(ηv+1, r(η,κ, $))

≤ =
(
a(ηv, η) + a(κv,κ) + a($v, $)

3

)
×
(
a(ηv, η) + a(κv,κ) + a($v, $)

3

)
. (30)
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Taking the limit as v → +∞, in (30), we have

a(η, r(η,κ, $)) ≤ 0.

Analogously, we obtain

a(κ, r(κ, $, η)) ≤ 0 and a($, r($, η,κ)) ≤ 0,

since
a(η, r(η,κ, $)) ≮ 0, a(κ, r(κ, $, η)) ≮ 0 and a($, r($, η,κ)) ≮ 0.

Then, we find

a(η, r(η,κ, $)) = 0, a(κ, r(κ, $, η)) = 0 and a(κ, r(κ, $, η)) = 0,

which implies that

η = r(η,κ, $), κ = r(κ, $, η) and $ = r($, η,κ).

Therefore, a trio (η,κ, $) is a TFP of r. This finishes the proof.

The following result is released, if we take < as a partially ordered relation:

Corollary 1. Assume that (Ω,a) is a CMS with a partial order � on it so that a has regular
property (means if {ηv} is a monotone convergent sequence with limit η, then ηv � η or η � ηv

according to the sequence is increasing or decreasing). Let r : Ω3 → Ω be a dominated map (means
for each (η,κ, $) ∈ Ω3, η � r(η,κ, $), κ � r(κ, $, η) and κ � r(κ, $, η)) and there is = ∈ Θ∗

so that the condition (2) of Theorem 1 is fulfilled for all (η,κ, $), (µ, ν, ϑ) ∈ Ω3 with (η � µ,
κ � ν and $ � ϑ ) or (η � µ, κ � ν and $ � ϑ). Then, r has a TFP.

If we take < is the universal relation, that is, < = Ω3 in Theorem 1, then we obtain the
result below:

Corollary 2. Suppose that r : Ω3 → Ω is a mapping defined on a CMS (Ω,a). Suppose also there
is = ∈ Θ∗ so that (2) of Theorem 1 is verified for all (η,κ, $), (µ, ν, ϑ) ∈ Ω3. Then, r has a TFP.

In order to obtain the uniqueness of a TFP of r, we present the following theorem:

Theorem 2. In addition to the stipulations of Theorem 1, assume that both < and <−1 are directed.
Then, r has a unique TFP.

Proof. Based on Theorem 1, the set of TFPs of r is non-empty. Suppose that (η,κ, $) and
(η∗,κ∗, $∗) are two TFPs of r, i.e.,

η = r(η,κ, $); κ = r(κ, $, η); $ = r($, η,κ)
and η∗ = r(η∗,κ∗, $∗); κ∗ = r(κ∗, $∗, η∗); $∗ = r($∗, η∗,κ∗).

Our goal is to prove η = η∗, κ = κ∗ and $ = $∗. Using the directed property of
< and <−1, there are µ ∈ Ω, ν ∈ Ω and ϑ ∈ Ω so that (η, µ) ∈ <; (η∗, µ) ∈ <, (κ, ν) ∈
<−1; (κ∗, ν) ∈ <−1 and ($, ϑ) ∈ <; ($∗, ϑ) ∈ <, this implies that (η, µ) ∈ <; (η∗, µ) ∈ <,
(ν,κ) ∈ <; (ν,κ∗) ∈ < and ($, ϑ) ∈ <; ($∗, ϑ) ∈ <. Take µ0 = µ, ν0 = ν and ϑ0 = ϑ.
Therefore, (η, µ0) ∈ <, (ν0,κ) ∈ < and ($, ϑ0) ∈ <. Assume that

µ1 = r(µ0, ν0, ϑ0), ν1 = r(ν0, ϑ0, µ0) and ϑ1 = r(ϑ0, µ0, ν0).
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In the same way as the proof of Theorem 1, we built three sequences {µv}, {νv} and
{ϑv} as follows:

µv+1 = r(µv, νv, ϑv), νv+1 = r(νv, ϑv, µv) and ϑv+1 = r(ϑv, µv, νv), (31)

for all v ≥ 0. As r is <−dominated, we have

(µv, µv+1) ∈ <, (νv+1, νv) ∈ < and (ϑv, ϑv+1) ∈ <, for all v ≥ 0. (32)

Again, following the same mechanism used in Theorem 1, the sequences {µv}, {νv}
and {ϑv} are Cauchy sequences in Ω and there are µ̂, ν̂, ϑ̂ ∈ Ω so that

lim
v→+∞

µv = µ̂, lim
v→+∞

νv = ν̂ and lim
v→+∞

ϑv = ϑ̂. (33)

Now, we show that η = µ̂, κ = ν̂ and $ = ϑ̂, which implies that

a(η, µ̂) + a(κ, ν̂) + a
(

$, ϑ̂
)
= 0.

Suppose, on the contrary, that a(η, µ̂) + a(κ, ν̂) + a
(

$, ϑ̂
)
6= 0. We claim that

(η, µv) ∈ <, (νv,κ) ∈ < and ($, ϑv) ∈ <, for all v ≥ 0. (34)

Since ((η, µ0), (µ0, µ1) ∈ <), ((ν1, ν0), (ν0,κ) ∈ <) and (($, ϑ0), (ϑ0, ϑ1) ∈ <), by the
transitivity property of <, we find (η, µ1) ∈ <, (ν1,κ) ∈ < and ($, ϑ1) ∈ <. Hence, our
assumption holds for v = 1. Suppose that (34) is true for some ℘ > 1, which implies that
(η, µ℘) ∈ <, (ν℘,κ) ∈ < and ($, ϑ℘) ∈ <. By (32),

(
µ℘, µ℘+1

)
∈ <,

(
ν℘+1, ν℘

)
∈ < and(

ϑ℘, ϑ℘+1
)
∈ <. The transitivity property of < implies that

(
η, µ℘+1

)
∈ <,

(
ν℘+1,κ

)
∈ <

and
(
$, ϑ℘+1

)
∈ <. Hence, our claim is proved. Using (2) and (34), we find

a(η, µv+1) = a(r(η,κ, $), r(µv, νv, ϑv))

≤ =(ℵ(η,κ, $, µv, νv, ϑv))

×ℵ(η,κ, $, µv, νv, ϑv), (35)

where

ℵ(η,κ, $, µv, νv, ϑv) = =
(
a(η, µv) + a(κ, νv) + a($, ϑv)

3

)
. (36)

Analogously,

a(κ, νv+1) = a(r(κ, $, η), r(νv, ϑv, µv))

≤ =(ℵ(κ, $, η, νv, ϑv, µv))

×ℵ(κ, $, η, νv, ϑv, µv)

= =(ℵ(η,κ, $, µv, νv, ϑv))

×ℵ(η,κ, $, µv, νv, ϑv), (37)

and

a($, ϑv+1) = a(r($, η,κ), r(ϑv, µv, νv))

≤ =(ℵ($, η,κ, ϑv, µv, νv))

×ℵ($, η,κ, ϑv, µv, νv)

= =(ℵ(η,κ, $, µv, νv, ϑv))

×ℵ(η,κ, $, µv, νv, ϑv). (38)
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Adding (35), (37) and (38), we find

a(η, µv+1) + a(κ, νv+1) + a($, ϑv+1)

≤ 3=(ℵ(η,κ, $, µv, νv, ϑv))

×ℵ(η,κ, $, µv, νv, ϑv), (39)

Passing limit in (36) as v → +∞ and applying (33), we obtain

lim
v→+∞

ℵ(η,κ, $, µv, νv, ϑv) =
a(η, µ̂) + a(κ, ν̂) + a

(
$, ϑ̂
)

3
. (40)

Taking the limit supremum in (39) as v → +∞, using (33) and (40), one can write

a(η, µ̂) + a(κ, ν̂) + a
(

$, ϑ̂
)

≤
[
a(η, µ̂) + a(κ, ν̂) + a

(
$, ϑ̂
)]

× lim sup
v→+∞

=(ℵ(η,κ, $, µv, νv, ϑv)), (41)

that is
1 ≤ lim sup

v→+∞
=(ℵ(η,κ, $, µv, νv, ϑv)) ≤ 1, (42)

which implies that lim supv→+∞ =(ℵ(η,κ, $, µv, νv, ϑv)) = 1. From the property of =, we
can write

lim
v→+∞

ℵ(η,κ, $, µv, νv, ϑv) =
a(η, µ̂) + a(κ, ν̂) + a

(
$, ϑ̂
)

3
= 0,

which contradicts with our assumption that a(η, µ̂) + a(κ, ν̂) + a
(

$, ϑ̂
)
6= 0. Hence,

a(η, µ̂) + a(κ, ν̂) + a
(

$, ϑ̂
)
= 0 implies a(η, µ̂) = a(κ, ν̂) = a

(
$, ϑ̂
)
= 0,

that is
η = µ̂, κ = ν̂ and $ = ϑ̂. (43)

With the same manner, we can show that

η∗ = µ̂, κ∗ = ν̂ and $∗ = ϑ̂. (44)

By (43) and (44), we find η = η∗, κ = κ∗ and $ = $∗. Therefore, the TFP is unique.

We support our study by the example below.

Example 4. Let Ω = [0, 1] and a(η,κ) = |η −κ| be a usual metric. Define a function = :
[0, ∞) → [0, 1) by =(`) = ln(1+`)

` , if ` > 0 and =(`) = 0, if ` = 0. Define the mapping
r : Ω3 → Ω by

r(η,κ, $) = ln
(

1 +
η +κ + $

3

)
, for all (η,κ, $) ∈ Ω3,
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and a binary relation < on Ω as follows:

< = {((η,κ, $), (µ, ν, ϑ)) :

[(0 ≤ η ≤ 1; 0 ≤ µ ≤ ln 2) or (0 ≤ η ≤ ln 2; 0 ≤ µ ≤ 1)],

[(0 ≤ κ ≤ 1; 0 ≤ ν ≤ ln 2) or (0 ≤ κ ≤ ln 2; 0 ≤ ν ≤ 1)],

[(0 ≤ $ ≤ 1; 0 ≤ ϑ ≤ ln 2) or (0 ≤ $ ≤ ln 2; 0 ≤ ϑ ≤ 1)]}.

It is easy to see that Ω is regular with respect to < and the mapping is an <−dominated.
Suppose that (η,κ, $), (µ, ν, ϑ), (a, b, c) ∈ Ω3 so that ((η, µ, a), (κ, ν, b), ($, ϑ, c) ∈ Ω3)
or ((µ, a, η), (ν, b,κ), (ϑ, c, $) ∈ Ω3) or ((a, η, µ), (b,κ, ν), (c, $, ϑ) ∈ Ω3). Therefore,
(η ∈ [0, 1] or η ∈ [0, ln 2]); (µ ∈ [0, 1] or µ ∈ [0, ln 2]); (κ ∈ [0, 1] or κ ∈ [0, ln 2]);
(ν ∈ [0, 1] or ν ∈ [0, ln 2]); ($ ∈ [0, 1] or $ ∈ [0, ln 2]) and (ϑ ∈ [0, 1] or ϑ ∈ [0, ln 2]). Hence,
we have

a(r(η,κ, $), r(µ, ν, ϑ))

= a
(

ln
(

1 +
η +κ + $

3

)
, ln
(

1 +
µ + ν + ϑ

3

))
=

∣∣∣∣ln(1 +
η +κ + $

3

)
− ln

(
1 +

µ + ν + ϑ

3

)∣∣∣∣
=

∣∣∣∣∣∣ln

(

1 + η+κ+$
3

)
(

1 + µ+ν+ϑ
3

)
∣∣∣∣∣∣ =

∣∣∣∣∣ln
(

1 +
η+κ+$

3 − µ+ν+ϑ
3

1 + µ+ν+ϑ
3

)∣∣∣∣∣
≤

∣∣∣∣∣∣ln
1 +

∣∣∣ η+κ+$
3 − µ+ν+ϑ

3

∣∣∣
1 + µ+ν+ϑ

3

∣∣∣∣∣∣ ≤
∣∣∣∣ln(1 +

∣∣∣∣η +κ + $

3
− µ + ν + ϑ

3

∣∣∣∣)∣∣∣∣
≤

∣∣∣∣ln(1 +
|µ− η|+ |ν−κ|+ |ϑ− $|

3

)∣∣∣∣ = ln
(

1 +
|µ− η|+ |ν−κ|+ |ϑ− $|

3

)
≤ ln(1 + ℵ(η,κ, $, µ, ν, ϑ)) =

ln(1 + ℵ(η,κ, $, µ, ν, ϑ))

ℵ(η,κ, $, µ, ν, ϑ)
ℵ(η,κ, $, µ, ν, ϑ)

= =(ℵ(η,κ, $, µ, ν, ϑ))ℵ(η,κ, $, µ, ν, ϑ).

Therefore, all requirements of Theorem 1 are satisfied and (0,0,0) is a TFP of r.

4. Well-Posedness

We begin this part with the following assumption:
(Q) If r(η∗,κ∗, $∗) is any solution of the problem (W)—that is, by (1) and {(ηv,κv, $v)}

is any sequence in Ω3 for which

lim
v→+∞

a(ηv, r(ηv,κv, $v)) = lim
v→+∞

a(κv, r(κv, $v, ηv))

= lim
v→+∞

a($v, r($v, ηv,κv)) = 0,

then (η∗, ηv) ∈ <, (κv,κ∗) ∈ < and ($∗, $v) ∈ <, for all v.

Theorem 3. In addition to the assumption of Theorem 2, the TFP problem (W) is well-posed,
provided that the hypothesis (Q) is satisfied.

Proof. Theorem 2 says that the point (η∗,κ∗, $∗) is a TFP of r. This means the point
(η∗,κ∗, $∗) is a solution of (1), that is η∗ = r(η∗,κ∗, $∗), κ∗ = r(κ∗, $∗, η∗) and
$∗ = r($∗, η∗,κ∗). Let {(ηv,κv, $v)} be any sequence in Ω3 such that

lim sup
v→+∞

[a(ηv, η∗) + a(κv,κ∗) + a($v, $∗)]
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is finite, and

lim
v→+∞

a(ηv, r(ηv,κv, $v)) = lim
v→+∞

a(κv, r(κv, $v, ηv)) = lim
v→+∞

a($v, r($v, ηv,κv)) = 0.

Then, there is ℵ > 0 so that

lim sup
v→+∞

[a(ηv, η∗) + a(κv,κ∗) + a($v, $∗)] = ℵ,

and also by the hypothesis (Q), (η∗, ηv) ∈ <, (κv,κ∗) ∈ < and ($∗, $v) ∈ <, for all v.
By (2), we find

a(ηv, η∗) = a(ηv, r(η∗,κ∗, $∗))

≤ a(ηv, r(ηv,κv, $v)) + a(r(η∗,κ∗, $∗), r(ηv,κv, $v))

≤ =(ℵ(η∗,κ∗, $∗, ηv,κv, $v))ℵ(η∗,κ∗, $∗, ηv,κv, $v)

+a(ηv, r(ηv,κv, $v)), (45)

where

ℵ(η∗,κ∗, $∗, ηv,κv, $v) = =
(
a(η∗, ηv) + a(κ∗,κv) + a($∗, $v)

3

)
. (46)

Similarly, we can obtain

a(κv,κ∗) ≤ =(ℵ(κ∗, $∗, η∗,κv, $v, ηv))ℵ(κ∗, $∗, η∗,κv, $v, ηv)

+a(κv, r(κv, $v, ηv))

≤ =(ℵ(η∗,κ∗, $∗, ηv,κv, $v))ℵ(η∗,κ∗, $∗, ηv,κv, $v)

+a(κv, r(κv, $v, ηv)), (47)

and

a($v, $∗) ≤ =(ℵ($∗, η∗,κ∗, $v, ηv,κv))ℵ($∗, η∗,κ∗, $v, ηv,κv)

+a($v, r($v, ηv,κv))

≤ =(ℵ(η∗,κ∗, $∗, ηv,κv, $v))ℵ(η∗,κ∗, $∗, ηv,κv, $v)

+a($v, r($v, ηv,κv)). (48)

Adding (45), (47) and (48), we have

a(ηv, η∗) + a(κv,κ∗) + a($v, $∗)

≤ 3=(ℵ(η∗,κ∗, $∗, ηv,κv, $v))ℵ(η∗,κ∗, $∗, ηv,κv, $v)

+a(ηv, r(ηv,κv, $v)) + a(κv, r(κv, $v, ηv))

+a($v, r($v, ηv,κv)). (49)

Taking the limit supremum as v → +∞ in (46), we have

lim sup
v→+∞

ℵ(η∗,κ∗, $∗, ηv,κv, $v) =
ℵ
3

. (50)

Assume that

lim sup
v→+∞

[a(ηv, η∗) + a(κv,κ∗) + a($v, $∗)] = ℵ 6= 0.

Hence, ℵ > 0. Taking the limit supremum as v → +∞ in (49) and using (50), we
can write

ℵ ≤ ℵ lim sup
v→+∞

=(ℵ(η∗,κ∗, $∗, ηv,κv, $v)),
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which implies that

1 ≤ lim sup
v→+∞

=(ℵ(η∗,κ∗, $∗, ηv,κv, $v)) ≤ 1.

Therefore, lim supv→+∞ =(ℵ(η∗,κ∗, $∗, ηv,κv, $v)) = 1. Using the property of =,
we obtain that

lim sup
v→+∞

ℵ(η∗,κ∗, $∗, ηv,κv, $v) = 0,

that is
lim

v→+∞
[a(ηv, η∗) + a(κv,κ∗) + a($v, $∗)] = 0,

which is a contradiction. Hence, we find

lim sup
v→+∞

[a(η∗, ηv) + a(κ∗,κv) + a($∗, $v)] = 0.

Then, we have

0 ≤ lim inf
v→+∞

[a(η∗, ηv) + a(κ∗,κv) + a($∗, $v)]

≤ lim sup
v→+∞

[a(η∗, ηv) + a(κ∗,κv) + a($∗, $v)] = 0,

which implies that

lim
v→+∞

[a(η∗, ηv) + a(κ∗,κv) + a($∗, $v)] = 0.

It follows that

lim
v→+∞

a(ηv, η∗) = lim
v→+∞

a(κv,κ∗) = lim
v→+∞

a($v, $∗) = 0,

which leads to ηv → η∗, κv → κ∗ and $v → $∗ as v → +∞. Hence, the TFP problem (W)
is well-posed.

5. Some Results for α-Dominated Mappings

In this section, we introduce α-dominated mappings and discuss the extension of
mappings equipped with admissibility conditions in the TFP theory.

Definition 5. Let Ω be a non-empty set and α : Ω2 → R be a given mapping. A mapping
r : Ω3 → Ω is called an α−dominated mapping if for all (η,κ, $) ∈ Ω3, we have

α(η, r(η,κ, $)) ≥ 1, α(κ, r(κ, $, η)) ≥ 1 and α($, r($, η,κ)) ≥ 1.

Definition 6. Let Ω be a non-empty set and α : Ω2 → R be a given mapping. We say that α has
triangular property if for each η,κ, $ ∈ Ω,

α(η,κ) ≥ 1, α(κ, $) ≥ 1 implies α(η, $) ≥ 1.

Definition 7. Let (Ω,a) be a metric space and α : Ω2 → R be a mapping. We say that Ω has
α−regular property if for each convergent sequence {ηv} with limit η ∈ Ω, α(ηv, ηv+1) ≥ 1, for
all v implies α(ηv, η) ≥ 1, for all v.

Theorem 4. Suppose that (Ω,a) is a CMS and α : Ω2 → R is a mapping so that Ω fulfills
α−regular property and α has triangular property. Let r : Ω3 → Ω be an α−dominated mapping
and there is = ∈ Θ∗ so that (2) of Theorem 1 is fulfilled for all (η,κ, $), (µ, ν, ϑ) ∈ Ω3 with
α(η, µ) ≥ 1, α(κ, ν) ≥ 1 and α($, ϑ) ≥ 1. Then, r has a TFP.
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Proof. Define a binary relation < on Ω by

(η,κ) ∈ < iff α(η,κ) ≥ 1 or α(κ, η) ≥ 1.

Then

(i) α(η, µ) ≥ 1, α(κ, ν) ≥ 1 and α($, ϑ) ≥ 1, leads to (η, µ) ∈ <, (ν,κ) ∈ < and
($, ϑ) ∈ <;

(ii) α(η, r(η,κ, $)) ≥ 1, α(κ, r(κ, $, η)) ≥ 1 and α($, r($, η,κ)) ≥ 1, leads to (η, r(η,κ, $)) ∈
<, (r(κ, $, η),κ) ∈ < and ($, r($, η,κ)) ∈ <, for all (η,κ, $) ∈ Ω3;

(iii) α(ηv, ηv+1) ≥ 1 and α(ηv, η) ≥ 1, leads to (ηv, ηv+1) ∈ < and (ηv, η) ∈ <, whenever
{ηv} is a convergent sequence with ηv → η and α(ηv, ηv+1) ≥ 1.

Therefore, all assumptions boil down to the hypotheses of Theorem 1. Hence, accord-
ing to Theorem 1, the map r has a TFP in Ω3.

6. Solving a System of Differential Equations

In this section, we apply Theorems 1 and 2 to discuss the existence and uniqueness
solution for the following differential equation:

η
′′
(`) = ψ(`, η(`),κ(`), $(`)),

κ′′(`) = ψ(`,κ(`), $(`), η(`)),
$
′′
(`) = ψ(`, $(`), η(`),κ(`)),

η(0) = η
′
(1) = κ(0) = κ′(1) = $(0) = $

′
(1),

(51)

for each ` ∈ [0, 1]. Problem (51) is equivalent to the following integral system:

η(`) =
1∫

0
f(`, ζ)ψ(ζ, η(ζ),κ(ζ), $(ζ))dζ,

κ(`) =
1∫

0
f(ζ, `)ψ(ζ,κ(ζ), $(ζ), η(ζ))dζ,

$(`) =
1∫

0
f(`, ζ)ψ(ζ, $(ζ), η(ζ),κ(ζ))dζ,

(52)

for all `, ζ ∈ [0, 1], where f is the Green’s function defined by

f(`, ζ) =

{
`, ` ≤ ζ,
ζ, ` > ζ.

Suppose that Ω = C([0, 1],R) is the space of all real valued continuous functions
defined on [0, 1]. Define a metric a by

a(η,κ) = max
`∈[0,1]

|η(`)−κ(`)|, for all ` ∈ [0, 1].

Clearly, (Ω,a) is a CMS. Let Ω be equipped with the universal relation U, that is,
(η,κ) ∈ U, for all η,κ ∈ Ω. Define a mapping r : Ω3 → Ω by

r(η,κ, $)(`) =

1∫
0

f(`, ζ)ψ(`, ζ, η(ζ),κ(ζ), $(ζ))dζ, for all `, ζ ∈ [0, 1]. (53)

Solving system (51) is equivalent to finding a unique solution to the mapping (53).
Now, system (51) will be considered under the following postulates:

(H1) The function ψ : [0, 1]× [0, 1]×R3 → R is continuous;
(H2) |f(`, ζ)| ≤ ρ, where ρ > 0 is a fixed number;
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(H3) For all (η,κ, $), (µ, ν, ϑ) ∈ Ω3, we have

|ψ(`, ζ, η,κ, $)− ψ(`, ζ, µ, ν, ϑ)| ≤ Λ(`, ζ, η,κ, $, µ, ν, ϑ), for all `, ζ ∈ [0, 1],

where

Λ(`, ζ, η,κ, $, µ, ν, ϑ) =
1
ρ

ln
(

1 +
|η − µ|+ |κ − ν|+ |$− ϑ|

3

)
.

Our main theorem in this part is as follows:

Theorem 5. Under assumptions (H1)–(H3), system (51) has a unique solution in Ω.

Proof. Since U is the universal relation on Ω, from the definition of r, we have

(η, r(η,κ, $)) ∈ <, (r(κ, $, η),κ) ∈ < and ($, r($, η,κ)) ∈ <.

for all η,κ, $ ∈ Ω. This means that r is U−dominated mapping. Furthermore, every
universal relation is a binary relation, so Ω has U−regular property.

Now, from our hypotheses (H1) and (H2), for each (η,κ, $), (µ, ν, ϑ) ∈ Ω3, we have

|r(η,κ, $)(`)− r(µ, ν, ϑ)(`)|

=

∣∣∣∣∣∣
1∫

0

f(`, ζ)[ψ(`, ζ, η(ζ),κ(ζ), $(ζ))− ψ(`, ζ, µ(ζ), ν(ζ), ϑ(ζ))]dζ

∣∣∣∣∣∣
≤

1∫
0

|f(`, ζ)||[ψ(`, ζ, η(ζ),κ(ζ), $(ζ))− ψ(`, ζ, µ(ζ), ν(ζ), ϑ(ζ))]|dζ

≤ ρ

1∫
0

|[ψ(`, ζ, η(ζ),κ(ζ), $(ζ))− ψ(`, ζ, µ(ζ), ν(ζ), ϑ(ζ))]|dζ.

Applying the condition (H3), we find

|r(η,κ, $)(`)− r(µ, ν, ϑ)(`)| ≤ ρ

1∫
0

Λ(`, ζ, η,κ, $, µ, ν, ϑ)dζ

= ρ

1∫
0

1
ρ

ln
(

1 +
|η − µ|+ |κ − ν|+ |$− ϑ|

3

)
dζ

=

1∫
0

ln
(

1 +
|η − µ|+ |κ − ν|+ |$− ϑ|

3

)
dζ

≤
1∫

0

ln
(

1 +
a(η, µ) + a(κ, ν) + a($, ϑ)

3

)
dζ

= ln
(

1 +
a(η, µ) + a(κ, ν) + a($, ϑ)

3

) 1∫
0

dζ,
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It follows that

|r(η,κ, $)(`)− r(µ, ν, ϑ)(`)| ≤ ln
(

1 +
a(η, µ) + a(κ, ν) + a($, ϑ)

3

)
≤ ln(1 + ℵ(η,κ, $, µ, ν, ϑ))

=
ln(1 + ℵ(η,κ, $, µ, ν, ϑ))

ℵ(η,κ, $, µ, ν, ϑ)
ℵ(η,κ, $, µ, ν, ϑ)

= =(ℵ(η,κ, $, µ, ν, ϑ))ℵ(η,κ, $, µ, ν, ϑ),

where

=(`) = ln(1 + `)

`
, ` > 0 and =(`) = 0 if ` = 0,

and

ℵ(η,κ, $, µ, ν, ϑ) =

(
a(η, µ) + a(κ, ν) + a($, ϑ)

3

)
.

Thus,

a(r(η,κ, $)− r(µ, ν, ϑ)) ≤ =(ℵ(η,κ, $, µ, ν, ϑ))ℵ(η,κ, $, µ, ν, ϑ).

Therefore, all hypotheses of Theorems 1 and 2 are fulfilled. Hence, the problem (51)
has a unique solution on Ω.

7. Conclusions

Fixed-point techniques are considered the backbone of mathematical analysis because
of their many applications. Hence, this method has attracted many authors who are
interested in this direction. Amongst the interesting applications is the study of algorithms
and what they mean by convergence and divergence in the field of optimization, game
theory, ordinary and fractional differential equations, differential and integral equations,
and many other applications.

In our manuscript, we investigate the existence and uniqueness of TFPs for Geraghty-
type contraction maps under appropriate assumptions. Furthermore, the main results are
supported by an example. In addition, well-posed and α-dominated mappings for the TFP
problem are presented. Finally, the existence solution to a system of differential equations
is derived. As future work, motivated by the work of [23,24], the main results of this article
can be generalized to n−tuple fixed point theorems.
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