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ABSTRACT 

 

 

VISUAL INTEGRATED MACHINE LEARNING 

 

 

DEVRĠM, Cihangir 

M.Sc., Department of Computer Engineering 

Supervisor          : Prof. Dr. Mehmet R. Tolun 

 

December 2009, 55 pages 

 
 

In this thesis, an artificial intelligence system is developed for creating rules from 

user data. Before developing the subject of machine learning is researched and AQ 

software of EMERALD (Experimental Machine Example – based Reasoning and 

Learning Disciple) is examined in detail to better understand discovering rules from 

user data. The developed system (ILA Weather) based on Inductive Learning 

Algorithm (Tolun and Abu Soud, 1998) provides examples for the user to choose 

through custom design graphical user interface and discovers general rules from 

selections of the user by using ILA algorithm.  

 

The examples belonging to the graphical user interface is prepared by using Weather 

Training Example (Quinlan, 1986) and by combining variety of picture sources. 

Java Swing technology provides wide set of GUI (Graphical User Interface) 

components for development of desktop applications that is used in the development 

of ILA Weather which is also built with NetBeans IDE (Integrated Development 

Environment), an open – source software development tool.  

 

Keywords: Machine Learning, Inductive Learning Algorithm (ILA), AQ Emerald. 
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ÖZ 

 

 

GÖRSELLĠK ENTEGRE EDĠLMĠġ MAKĠNE ÖĞRENĠMĠ 

 

 

DEVRĠM, Cihangir 

Yükseklisans, Bilgisayar Mühendisliği Anabilim Dalı 

Tez Yöneticisi               : Prof. Dr. Mehmet R. Tolun 

 

Aralık 2009, 55 sayfa 

 

 

Bu tez çalıĢmamda kullanıcı verilerinden kurallar oluĢturan bir yapay zeka sistemi 

geliĢtirilmiĢtir. GeliĢtirme öncesi makina öğrenimi konusu araĢtırılmıĢ ve kullanıcı 

verilerinden kurallar keĢfetmeyi daha iyi anlamak için EMERALD (Deneysel 

Makina Öğrenme Tabanlı Muhakeme ve Öğrenme Disiplini ) ‟ın AQ yazılımı 

detaylıca incelenmiĢtir. Endüktif Öğrenme Algoritması‟na (Tolun and Abu Soud, 

1998) dayalı olarak geliĢtirilmiĢ bu sistem ( ILA Weather) özel grafik kullanıcı 

arayüzü ile kullanıcıya seçmesi için örnekler sunar ve ILA algoritmasını kullanarak 

kullanıcının seçimlerinden kurallar keĢfeder. 

  

Grafik kullanıcı arayüzüne ait olan örnekler, Hava Durumu Eğitim Örnekleri‟ni 

(Quinlan, 1986) kullanarak ve çeĢitli resim kaynaklarının bir araya getirilmesiyle 

hazırlanmıĢtır. ILA Weather‟ın geliĢtirilmesinde bir masaüstü uygulaması 

geliĢtirmek için geniĢ grafiksel kullanıcı arayüzü bileĢenleri sağlayan Java Swing 

teknolojisi kullanılmıĢ ve aynı zamanda  açık kaynak kodlu yazılım geliĢtime aracı 

olan NetBeans IDE (Integrated Development Environment – Entegre EdilmiĢ 

GeliĢtirme Ortamı) ile yapılmıĢtır.  

 

Anahtar Kelimeler: Makina Öğrenimi, Endüktif Öğrenme Algoritması, AQ 

Emerald. 
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CHAPTER 1 
 

 

INTRODUCTION 

 

 

The ability to learn is one of the central features of intelligence, which makes it 

important for especially artificial intelligence (AI). The field of machine learning 

(ML) studies computational processes that underline learning in machines [1]. 

  

ML contains theories of many fields. These fields can be cognitive psychology, 

statistics, physiology, biology, some scientific theories (information theory, learning 

theory, etc.), computational complexities and AI is center of people interest today. 

Human encounters several problems in real life and waste time on the theories about 

problems then may be he/she can finds solutions of the problems or not. These 

efforts contribute evolution and growth of the ML, so we can summarize that to 

understand the ML we should study from different perspectives. 

 

In the next section learning subject and designing a learning system is explained in 

detail. 

 

 

1.1.  Learning Activity 

 

First of all, the meaning of "Learning" must be defined. Learning is to gain or 

understand something (knowledge, skill, behavior, etc.). Learning is everywhere in 

habitat and everybody (humans and animals) learns each other with some 

interactions (following, watching and applying). These interactions create 

experience reciprocally. ML may not reflect all of these interactions but absolutely 

many techniques of ML derive from these interactions via computational models. 

Helbert Simon defines the learning activity with the sentence: “Learning is any 

process by which a system improves performance from experience”. To understand 
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the learning systems in ML, an example of well-posed learning problem and 

designing a learning system [2] will be summarized and explained. Tom M. Mitchell 

makes a basic definition of ML with relationship of experience, task and 

performance [2]:  

 

“ Definition : A computer program is said to learn  from experience E 

with respect to some class of tasks T and performance measure P, if 

its performance at tasks in T, as measured by P, improves with 

experience E. ” 

 

According to the definition there is an assumption that a computer program learns to 

play checkers. Learning performance P of the program is measured by its ability to 

win at the class of task T including playing checkers games and the experience E 

obtained by playing chess games against itself. There are three points that must be 

determined to have a well-defined learning problem: the class of tasks, the measure 

of performance to be improved and the source of the experience. An example of the 

well – defined problem for checkers learning problem is shown below: 

 

A checkers learning problem: 

 Task T: playing checkers 

 Performance measure P: percent of games won against opponents 

 Training experience E: playing practice games against itself. 

 

Some questions may come in mind as there is a checker learning problem but how a 

computer program learns playing checkers? What type of a system can learns? What 

is under of a learning system? Answers of these questions will be explained how a 

learning system can be designed in ML with the given example. 
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 1.1.1.  Designing a Learning System 

 

Parts of designing a learning system are the following: 

 

1. Problem Description 

2. Choosing Training Experience  

3. Choosing Target Function 

4. Choosing Representation of the Target Function 

5. Choosing Function Approximation Algorithm 

6. Final Design 

 

 

1.1.1.1.  Problem Description 

 

Before designing a learning system, of course there should be a problem. The 

problem is, as previously mentioned, how a computer learns playing checkers. 

 

 

1.1.1.2.  Choosing Training Experience 

 

Choice of training experience impacts on success or failure of leaning system. There 

are three important parts of choosing type of the training experience.  

 

The first part is that the system learns via direct training or indirect training. The 

system learns from checkers board state and correct move of each checkers, called 

direct training. For another, the system learns from sequences of move and final 

outcome of several checkers games, called indirect training. In indirect training, the 

system has a problem called credit assignment, each move of the sequence has a risk 

when an early move of the opposite is optimal if a poor move is played. 

  

The second part, the system's learner controls sequence of moves, different board 

states and training examples. If any confusing when the controls are gone, the 

learner may trusts a teacher and ask it to find the correct move.  Otherwise, the 

learner may learn itself with complete control of board states and no teacher. 
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The third part, it is important that how well the training experience E represents 

training examples for measuring the final system performance P. Distribution of the 

training examples should be similar to future training examples (test examples). If 

the training experience E consists of only games that the learner plays against itself, 

it overcomes only playing ability of it. On the other hand, if the training experience 

E consists of only games that the learner plays against human checker champion 

(well in playing checkers), it may never encounter most crucial of board states. 

 

Most current theory of ML stands on crucial assumption which the distribution of 

the training experience is identical the distribution of training test examples. The 

assumption can be violated in practice. 

 

From the problem, the learner studies to learn the game – playing checkers via 

playing against itself that we previously mentioned in playing checkers problem as 

E. 

 

 

1.1.1.3.  Choosing a Target Function 

 

After choosing training experience, there are three main parts to complete the 

learning system design. These parts are the following: 

 

1. The exact knowledge type to be learned 

2. The representation of knowledge 

3. The learning mechanism 

 

An assumption when choosing target function that there is a program that generates 

legal moves on board states and another program – function needs to learn best 

move from these legal moves. This job can be called as learning task.  

 

The program or function, to choose among the legal moves is the most obvious 

choice for type of information to be learned. The function must also choose the best 

move from any board states. The function name is ChooseMove which is notated by 
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ChooseMove: B  M, B refers input from set of legal board states; M refers output 

of set of legal moves that is produced by the function. 

 

In ML one of aims is to raise improving performance P at task T. Improving 

performance is the problem of ML and solution is using function called target 

function such as ChooseMove: B  M. Therefore choosing target function is key 

design choice of learning system. 

 

The target function ChooseMove is shown suitable choice for now but if there is 

indirect training experience used in learning system, the function will not determine 

easier best legal move of the board state. An alternative target function is assigning 

any given board state with numerical scores – values. The new target function is V 

that maps any legal board states B with some real number R, it is donated by V: B 

 R. High scored board states is better board state from others. 

 

If the learning system can learn successfully from the target function, it can easily 

choose best move from any current board states. The system generates successor 

board state after every legal move then V chooses the best successor state from the 

board, so best successor state is the best legal move. Any target function can assign 

the better board state with higher score but it is important to define one target 

function V with a target value V(b) that is arbitrary board state of legal board states 

B and also produces optimal play on the board states. Rules of the target value V(b) 

are the following: 

  

1. If b is final board state that is won, then V(b)  = 100 

2. If b is final board state that is lost, then V(b)  = -100 

3. If b is final board state that is drawn, then V(b)  = 0 

4. If b is a not a final board state, then V(b) = V(b')  , where b' is the best board 

state that can be achieved starting from b and playing optimally until the end 

of the game 
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If above rule definition is not efficiently computable by the checker playing – 

learning program, it is called non-operational definition. The aim of learning task is 

to find an operational definition of V. The checkers playing programs with an 

operational definition evaluates the board state and can select the legal moves within 

realistic time bounds. To gain operational description - definition of an ideal target 

function, the learning task is reduced by using some approximation techniques 

called function approximation in ML. It is another saying that in order to learn 

perfectly with a target function, some approximation techniques called function 

approximation is used in the learning systems. 

 

 

1.1.1.4.  Choosing Representation of the Target Function 

 

When representing target function V, a large table (board states and scores) is used 

with distinct entry specifying the values for each distinct board state. On the other 

hand, a collection of rules or polynomial function or an artificial neural network can 

be also used for representing target function. New target function after function 

approximation is represented by ύ. The program actually learns playing checkers via 

the target function ύ. 

 

In checkers playing example a linear combination is used for representing the board 

features. The features are the following: 

 

 x1 : the number of black pieces on the board 

 x2 : the number of red pieces on the board 

 x3 : the number of black kings on the board 

 x4 : the number of red kings on the board 

 x5 : the number of black pieces threatened by red 

 x6 : the number of red pieces threatened by black 

 

The checkers playing ideal target function is represented by a linear function ύ(b) of 

the form:  

ύ(b) = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6            (1.1) 
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w0, w1,....., w6  are numerical coefficients - weights, w1, w2,........, w6   shows 

importance of various board states and w0 is initial constant board value.  

 

Summarization of design called partial design of a checkers learning program up to 

this time is the following: 

 

 Task T: playing checkers 

 Performance measure P: percent of games won against opponents 

 Training experience E: playing practice games against itself. 

 Target function: V: B  R 

 Target function representation:  

ύ(b) = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 

 

 

1.1.1.5.  Choosing Function Approximation Algorithm 

 

The target function ύ requires a set of training examples. The training example is 

represented in form of ύtrain(b) which is training value of specified board state b and 

ordered pair of the form {b, ύtrain(b)}. 

 

When direct training experience and rules of target value which previously 

mentioned in choosing target function part are considered that if b is final board 

state and number of remaining red pieces equals to zero ( 0 ), then black has won the 

game with the target value  ύtrain(b) = +100. The linear equation is like: 

 

ύtrain(b) = w0 + w1x1 + w20 + w3x3 + w40 + w5x5 + w60 = +100 

 

Otherwise, when indirect training experience is considered, then there is needed to 

be estimating training value of ύtrain(b)  and adjusting the weights wi . 

 

 Estimating Training Value 

There is an approach for estimating training value of ύtrain(b). The approach uses 

successor board which previously mentioned in choosing target function part. The 
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training value of ύtrain(b)  is assigned with ύtrain(Successor(b)) for any intermediate 

board state (b) before the checkers game‟s end. Successor(b) indicates next board 

state that follows board state (b). The rule for estimating training values is the 

following:  

ύtrain(b)   ύtrain(Successor(b))                                  (1.2) 

   

 Adjusting The Weights 

Aim of adjusting the weights is to find best set of weights of a linear function that 

minimize squared error E between training values ύtrain and the values predicated by 

hypothesis estimated ύ. The squared error E refers to measured training error that is 

used to derive a weight learning rule for linear units in gradient-descent search [1]. 

The squared error E can be determined as difference between actual and estimated 

values of training examples.      

 

E   ≡                    ∑             ( ύtrain(b) - ύ(b) ) 
2
                      (1.3) 

                       {b, ύtrain(b)}  training examples 

 

LMS (Least Mean Squares) algorithm is used to decrease E and defined in the 

following: 

 

For each training example {b, ύtrain(b)}. 

 Use the current weights to calculate ύ(b) 

 For each weight wi update is as 

                                       wi  wi +  ( ύtrain(b) - ύ(b) ) Xi                          (1.4) 

 

In algorithm,  is small constant (e.g. 0.1) that affects the size of the weight update. 

If the difference between training value and estimated value ύtrain(b) - ύ(b)  is zero, 

then there is no change about weight update. If the difference is greater than zero, 

then each weight increases from w1 to wi. This raises the estimated value of ύ(b) and 

reduces the training error. 
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1.1.1.6.  Final Design 

 

The final design of the learning system – checkers learning system has four distinct 

modules that are components of many learning systems. The modules [2] are shown 

in Figure 1.1. 

 

 

Figure 1.1. Final design of the checkers learning system. 

 

 Performance System 

The module solves the given performance task T – playing checkers by using 

learned target functions. It takes initial game board as input and produces game 

history as output. In checkers learning system, it selects the next move at each board 

state determined by learned target function ύ. 

 

 Critic 

It takes the game history produced by performance system as input and produces set 

of training example of the target function as output.  Training examples are 

produced by using estimating rule for training values in the choosing function 

approximation algorithm part. 

 

 Generalizer 

It takes the training examples produced by critic as input and produces hypothesis ύ 

which is estimation of target function as output. The hypothesis ύ is produced by 

Experiment Generator 

Performance System Generalizer 

Critic 

Hypothesis 

ύ 

Training Examples 

{<b1, ύtrain(b1)>, <b2, ύtrain(b2)>, …}   

Solution trace 

(game history) 

New problem 

(Initial game board) 
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adjusting the weights w0 to w6 in the choosing function approximation algorithm 

part. 

 

 Experiment Generator 

It takes generated current hypothesis ύ produced by generalizer as input and 

produces new problem for the performance system as output.  

 

Many ML systems may be generated from these four modules of the design choice 

for the checkers learning problem. Sequence of the design choice [2] is summarized 

in Figure 1.2. 

 

Figure 1.2. Summary of choices in designing the checker learning program. 
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1.2.  Types of Machine Learning 

 

There are many learning types in ML. Bu some types are more popular and known 

by people.   

 

Some of main types of ML are: 

 Supervised Learning 

 Unsupervised Learning 

 Reinforcement Learning 

 

One kind of learning called empirical learning or inductive learning that takes 

externally supplied examples to produce general rules. Many algorithms in this form 

of learning compares the training examples to find a similarity between them, so this 

learning is also sometimes called similarity – based learning (SBL) but not all 

inductive learning algorithms are similarity – based. The empirical learning is 

subdivided into two types: One is supervised learning, the other is unsupervised 

learning.  

 

 

1.2.1.  Supervised Learning 

 

Supervised learning is a ML technique for deducing a function from training data. 

The training data consist of pairs of input objects (typically vectors), and desired 

outputs. On the other hand, in supervised learning the aim is to learn a mapping 

from the input to an output whose correct values are provided by a supervisor [3]. 

 

Definition [4] of supervised learning that there is a given training set of N example 

for input and output pairs in the form of (x1, y1),  (x2, y2) … (xN, yN) where each yj 

was generated by an unknown function f(x) = y  and the learning task T discovers a 

function h that approximates the true function f. In the definition, x and y can be any 

value, they need not be numbers. The function h is a hypothesis, j stands for index 

of N examples and x always refers to input pairs; y always refers to output pairs of 

training set. In the learning a search is done through the space of possible hypothesis 

until one performs well. To measure the accuracy of a hypothesis test set of 

examples which are distinct from the training set is used. 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Training_set
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There are two learning problem in supervised learning. These are classification 

problem and regression problem. If there are only two possible values of y (e.g. 

positive or negative) the learning problem is called classification.  

 

An example [3] of classification problem that the bank calculates the risk given the 

amount of credit and information about customer is shown in Figure 1.3. 

  

 

Figure 1.3. Example of a training dataset where each circle corresponds   to  one 

                   data instance with input values in the corresponding axes and its sign 

                   indicates the class. 

 

Only two customer attributes, income and savings are taken as input and the two 

classes are low-risk ('+') and high-risk ('-'). An example discriminant that separates 

the two  types of examples is also shown in Figure 1.3. 

 

The bank has record of past loan of customer and there is a learner that determines 

risk value of customer from past record called prediction. There are only two 

possible value of risk to give credit: low-risk and high risk customer. The 

information about customer, savings and income are input pairs of the problem. The 
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possible values of the risk, low-risk and high risk are output pairs of the problem.  

The classification may be learned with a predicted rule like this: 

 

IF income > 1 AND savings > 2 THEN low – risk ELSE high – risk        (1.5) 

 

If there are possible values of y that has continuous number value for appropriate 

f(x) the learning problem is called regression. The output y is number that provides 

continues value. 

 

An example [3] of regression problem that the system tries to predict price of used 

car is shown in Figure 1.4. 

 

 

Figure 1.4. A training dataset of used car and function fitted. For simplicity,   

                   milage is taken as only input attribute and a linear model is used. 

 

Input pairs are attributes of car that are brand, year, capacity, milage etc. In this 

example the attribute milage is used for input pair. The output pair is the price of the 

used car. Using again prediction for past transaction and collecting training data, the 

learner (machine learning program) may learn the regression with fitted function of 
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the form y = wx + w0, x donates the car attribute, y donates the price of the car. w 

and w0 are suitable values that the parameters optimized for best fit the training data 

in linear model. 

 

 

1.2.2.  Unsupervised Learning 

 

The other empirical learning is unsupervised learning. There is no such supervisor in 

unsupervised learning and only input data exists in training set. On the other hand, 

unsupervised learning is a class of problems in which one seeks to determine how 

the data are organized. It is distinguished from supervised learning and 

reinforcement learning in that the learner is given only unlabeled examples. The aim 

of this type of learning is to find regularities in the input [3].   

 

Two classic examples of unsupervised learning are clustering and dimensionality 

reduction [5]. Clustering aims to find clusters of inputs. For example, an interesting 

application of clustering is in image compression. In this case, the input instances 

are image pixels represented as RGB values. A clustering program groups pixels 

with similar colors in the same group, and such groups correspond to the colors 

occurring frequently in the image [3]. The dimensionality reduction aims to decrease 

dimensionality of the inputs. 

 

 

1.2.3.  Reinforcement Learning 

 

In reinforcement learning [3] the output of the system is a sequence of some actions. 

In such a case, a single action is not important; what is important is the policy that is 

the sequence of correct actions to reach the goal. There is no such thing as the best 

action in any intermediate state; an action is good if it is part of a good policy. In 

such a case, the machine learning program should be able to assess the goodness of 

policies and learn from past good action sequences to be able to generate a policy. 

Such learning methods are called reinforcement learning algorithms. A good 

example is game playing where a single move by itself is not that important; it is the 

sequence of right moves that is good. A move is good if it is part of a good game 

playing policy. 
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1.3.  The Aim of the Thesis 

 

The aim of the thesis is to create an AI system for discovering rules from user data. 

The AI system will use ILA to discover rules from user data.  Weather domain is 

chosen for creating rules from user data. Custom graphical user interfaces prepared 

for chosen domain and is implemented with linking prepared graphical user 

interfaces using ILA algorithm. 
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CHAPTER 2 
 

 

EMERALD-AQ LEARNING SYSTEM 

 

 

EMERALD (Experimental Machine Example – based Reasoning and Learning 

Discipline) integrates several ML and discovery programs that have been developed 

on the basis of research conducted by Ryszard S. Michalski over the span of over 

twenty years, first at the University of Illinois at Urbana-Champaign, and then at the 

Machine Learning and Inference (MLI) Laboratory at George Mason University 

(GMU) [6].  In this section information about EMERALD system is given and 

EMERALD-AQ is focused on in detail. 

 

 

2.1.  Emerald 

  

EMERALD [6] is intended to support teaching and research in the area of ML and 

demonstrate ML capabilities. The capabilities of EMERALD system include the 

ability to learn general concepts or decision rules from example, to create 

meaningful classification of observations, to predict sequence of objects and 

discover mathematical laws. In the demonstration, the examples consist of very 

simple objects – pictures of robots, geometric figures, cards, etc. The EMERALD 

includes also capabilities of natural language processing, voice communication and 

highly user-oriented graphical interface.   

 

First version of EMERALD, called EMERALD – ILLIAN (SUN - An Integrated 

Large-Scale Learning and Discovery System for Education and Research in 

Machine Learning) is initial – short version specifically for demonstrating ML 

capabilities. This version was developed by MLI Laboratory under the direction of 

Ryszard.S. Michalski for national exhibition “Robot and Beyond: The Age of 

Intelligent Machines”, organized by a consortium of eight United State (U.S.) 
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Museum of Science (Boston, Charlotte, Fort Worth, Los Angeles, Seattle, Chicago, 

Philadelphia and Columbus) during the years 1987 – 1989. Two version of the 

system have been implemented at this time, one for DEC VaxStation 

(EMERALD/M) and the other for Sun workstation (EMERALD/S). Both version 

are extension of EMERALD-ILLIAN and was developed under direction of R.S. 

Michalski and in collaboration with K. DeJong,    K. Kaufman, A. Schulrz, P. 

Stefanski and J. Zhang [6]. Welcome screen of EMERALD-ILLIAN is shown in 

Figure 2.1. 

 

 

Figure 2.1. Welcome screen of EMERALD-ILLIAN. 

 

The EMERALD system integrates five modules – robots that each is displayed a 

capability for some form of learning and discovery [7]. EMERALD-ILLIAN 

version will be used to introduce the robots of EMERALD system with an example 

of screen shot.  The EMERALD system has a menu page that represents robots and 

informs user about their capabilities. The menu page is shown in Figure 2.2. 

 

 

Figure 2.2. Menu page of EMERALD-ILLIAN. 
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The user first encounters standard set of choice squares that located at the bottom of 

the menu page screen. The set of standard choice differs when a robot is selected.  

 

Each robot consists of at least three common sub-programs [6]: 

 Robot Challenges You: It introduces abilities of robots to user. 

 You Challenge Robot: It allows user to experiment with robot. 

 Find out How Robot Works: It explains briefly the theory behinds its 

operation. 

 

The integrated five modules-robots [6] with an example screen shot of EMERALD 

system are the following: 

 

 AQ: The module AQ learns decision rules from examples of correct or 

incorrect decision made by an expert. An example of “AQ Challenges You” 

screen is shown in Figure 2.3. 

 

 

Figure 2.3. AQ Challenges you screen of EMERALD-ILLIAN 
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  INDUCE: The module INDUCE learns description of groups of objects and 

determines important distinction between groups. An example of “INDUCE 

Challenges You” is shown in Figure 2.4. 

 

 

Figure 2.4. INDUCE Challenges you screen of EMERALD-ILLIAN 

 

  CLUSTOR: The module CLUSTOR creates meaningful categories and 

classifications from objects. An example of “CLUSTOR Challenges You” is 

shown in Figure 2.5. 

 

 

Figure 2.5. CLUSTER Challenges you screen of EMERALD-ILLIAN. 
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 SPARC: The module SPARC predicts possible feature objects in a sequence 

by discovering rule characterizing the sequence of objects. An example of 

“SPARC Challenges You” is shown in Figure 2.6. 

 

 

Figure 2.6. SPARC challenges you screen of EMERALD-ILLIAN. 

 

 ABACUS: The module ABACUS conducts experiments, collects data, 

discovers mathematical and logical description of data, and then uses these 

descriptions for predicting behavior of an event. An example of “ABACUS 

DISCOVERS STOKE‟S LAW” is shown in Figure 2.7. 

 

 

Figure 2.7. ABACUS Discovers Stoke‟s Law screen of EMERALD-ILLIAN. 



 

21 

 

In 1999, Java version of EMERALD system developed in the MLI Laboratory [8]. 

The new version has more user friendly graphical user interface and some extra 

learning capabilities. The robots AQ, INDUCE, CLUSTOR, SPARC and ABACUS 

has more colorful.  The new Java version opening screen of the EMERALD is 

shown in Figure 2.8.  

 

 

Figure 2.8. The opening screen of the 1999 Java version of the EMERALD. 

 

 

2.2.  Emerald-AQ 

 

EMERALD-AQ (A System for Demonstrating Natural Induction for Education and 

Research in Machine Learning) is a Java-based re-implementation of AQ robot of 

EMERALD-ILLIAN version. An AI system and knowledge discovery capabilities 

developed to demonstrate ML. The implementation of the system was completed by 

Guido Cervone. After re- implementation EMERALD-AQ has new graphical user 

interface, newly-drawn robots, added animations and software based voice 

synthesizer. EMERAL-AQ is also previous version of iAQ which demonstrates 

natural induction to people and last version of AQ learning of the EMERALD 

system.  The other modules-robots (INDUCE, CLUSTOR, SPARC, ABACUS) of 

new EMERALD system are in the process of re-implementation under Windows OS 

at MLI Laboratory of GMU. 

 

EMERALD-AQ illustrates natural induction that is a process of creating inductive 

hypothesis from data in the forms of natural to people. The natural is such as natural 

language – like expressions or graphical representations. The user creates positive 
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and negative examples concepts, then EMERALD-AQ tires to discover concepts of 

the user and describe them in natural language, also verbally in a written form.  

 

There can be said that EMERALD-AQ uses a sub-program - AQ21. It [9] aims to 

perform natural induction that is a process of generating inductive hypothesis in 

human-oriented forms which are easy and understand. The human-oriented forms 

provided by using highly expressive language and Attributional Calculus (AC) 

whose statements resemble natural language description. AQ21 has property of 

Pattern Discovery (PD) which produces attributional rules that capture strong 

regularities in data. The natural induction which seeks patterns represented as rule in 

AC and it is more expressive than rules typically used in ML. Another important 

AQ21 features are that it can discover different types of regularities in data, such as 

conjunctive patterns, general rules with exceptions, gives a choice to the user to 

include rule-set for parallel or sequential execution and can generate an optimized 

collection of alternative hypothesis from same data. 

 

There two important parts of EMERALD-AQ. First one is AQ learning system that 

what inductive hypothesis is used when learning, the other is how the property of 

PD is provided. 

 

 

2.2.1.  AQ Learning System 

 

Ryszard S. Michalski was the creator of Algorithm Quasi-Optimal or better known 

as AQ or A
q
 algorithm. It was originally created in 1969. Mihai stated that AQ 

algorithm was designed to solve general covering problems of high complexity. In 

other words, the algorithm was designed to generate generalization or induction 

from very complex problems [10].  

 

AQ learning system - algorithm generates general hypotheses H1,..,Hk about classes 

C1,…,Ck, respectively, on the basis of a set of training examples, e1,…, en,  drawn 

from these classes. The AQ learning methodology generates hypotheses in the form 

of attributional rule-sets that optimize a given multi-criterion measure of hypothesis 
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utility. An attributional rule-set is a set of attributional rules describing the same 

class [9]. 

 

The basic form of an attributional rule [9] is shown like;  

CONSEQUENT <= PREMISE                                   (2.1) 

where both CONSEQUENT and PREMISE are conjunctions of attributional 

conditions in the form:  

[L rel R: A]                                                      (2.2) 

where L is an attribute, an internal conjunction or disjunction of attributes, a 

compound attribute, or a counting attribute; rel is one of =, :, >, <, ≤, ≥, or ≠, and R 

is an attribute value, an internal disjunction of attribute values, an attribute, or an 

internal conjunction of values of attributes that are constituents of a compound 

attribute, and A is an optional annotation that lists statistical information about the 

condition (e.g. pc and nc condition coverage, defined as the numbers of positive and 

negative examples, respectively, that satisfy the condition).  

 

An example [9] of a simple attributional rule:  

[activity=running_experiments]<= 

[day = weekend] & [clock_speed >= 2GHz] & 

[location = lab1 v lab3] & [weather: quiet & warm] 

 

which can be paraphrased: the activity is “running experiments” if it is weekend (a 

higher-level value of the structured attribute “day”), the computer clock_speed is at 

least 2 GHz, the experiment takes place in lab1 or lab3, and the weather is quiet & 

warm. The attribute “weather” is an example of a compound attribute, a new type of 

attribute introduced in AQ learning that takes a conjunction of values.  

The attributional rule in AQ learning uses a richer representation language than in 

typical rule learning programs, in which conditions are usually limited to a simple 

form:  

[<attribute>  <relation> <attribute_value>]                        (2.3) 
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There is another saying [10] that summarizes definition of AQ algorithm: AQ 

algorithm used „separate and conquer‟ approach, where the data would be separated 

and general rules would be created from the separation. According to Mihai, the 

central concept of the algorithm is the „STAR‟ defined as a set of general 

descriptions of a particular event (a „seed‟) that satisfies given constraints. In finding 

the rules, the AQ algorithm used the „beam search‟ method to explore the data. AQ 

algorithm is described as follows: 

 

1. The data set would be divided into two parts, according to the conclusion. 

These parts are known as positive data set and negative data set. 

2. One data would be selected randomly from the positive data set. Then this 

data would be extended against the negative data set by using the STAR 

method as described above. 

3. All the positive data that satisfy the STAR would be removed and one of the 

remaining positive data would be selected. The STAR method would be 

applied again. 

4. The process stopped when there are no more data in the positive data set. 

 

 

2.2.2.  Pattern Discovery Methodology 

 

The AQ21 program searches for strong patterns that maximize an assumed pattern 

quality measure. The method takes as input a set of positive example (Pos), a set of 

negative examples (Neg), and multi-criterion pattern quality measure, defined by the 

user using Lexicographic Evaluation Functional (LEF) [9]. It follows general 

algorithm [9] that is shown in Figure 2.9. 

 

 

Figure 2.9. The Simple form of PD Mode in AQ21. 
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The algorithm starts by focusing attention on one positive example of a concept, 

called the seed, and then generates a star, defined as set of alternative patterns 

(generalizations) of the seed that maximize LEF [9]. In PD, the default LEF is to 

maximize the pattern quality, then its coverage, and then to minimize the pattern 

length (number of conditions) [9]. The pattern quality [9] is defined as: 

 

Q(w) = cov
w
 * config

1-w
                                          (2.4) 

 

where cov = p/P is the relative coverage of the pattern, P and N are number of 

positive and negative examples in Pos and Neg. The config, confidence gain is   ((p / 

(p + n)) – (P / (P + N))) * (P +N) /N, and w is a parameter controlling the relative 

importance of relative coverage and confidence gain. The method for generating 

star has been described in various past publications. 

 

   

2.2.3.  Demonstration of Emerald-AQ 

 

The Java source code of EMERALD-AQ is obtained with the aim of research about 

generating rules from user data. An application with name AQ-JPC was developed 

by MLI Laboratory of GMU represents EMERALD-AQ capabilities with animated 

demonstration.  The demonstration of EMERALD-AQ is presented with example of 

screen shots. Starting screen of EMERALD-AQ is shown in Figure 2.10. 

 

 

Figure 2.10. Starting screen of AQ-JPC. 
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There are two buttons in initial screen of AQ-JPC. “Start” button shows the 

capabilities of AQ, the other “About” button gives information about AQ-JPC and 

EMERALD system.  

 

After pressing “Start” button in Figure 2.10, the user encounters a menu screen that 

contains five choices about AQ robot. These are “AQ challenges you with a simple 

problem”, “Challenge AQ with a simple problem”, “Challenge AQ with a complex 

problem”, “Find out how AQ works”, and “Run AQ with your own data”. The “Run 

AQ with your own data” choice is not researched, so this part will not be mentioned. 

This menu screen of AQ is shown in Figure 2.11. 

 

 

Figure 2.11. Menu screen of AQ capabilities. 

 

Training examples of AQ are robots. AQ separate the robots into two types of 

“Friendly” and “Unfriendly” robots and challenge the user to determine a simple 

rule about robots. A robot has many properties of jacket color, head, body shape, 

holding balloon-flag-sword, color of antennas etc. The introduction of scenario and 

robots screen is shown in Figure 2.12. 
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Figure 2.12. Introduction scenario about robots. 

 

After next button AQ gives a simple rule that differ two types of robots. This rule is 

that “A robot is friendly if it is smiling; A robot is unfriendly if it is not smiling”. 

Simple rule of AQ about robots is shown in Figure 2.13. 

 

 

Figure 2.13. Simple rule of AQ about robots. 

 

After next button, AQ adds new robots into the training examples to raise degree of 

the challenge. There are some robots that are smiling but unfriendly. New robots of 

AQ are shown in Figure 2.14. 

 



 

28 

 

 

Figure 2.14. New robots of AQ. 

 

After next button, AQ gives new the rule (complex rule) that differ two types of 

robots after adding new robots. This rule is “A robot is friendly if it is smiling and 

not holding sword, A robot is unfriendly if it is holding a sword or not smiling”. The 

new rule is shown in Figure 2.15. 

 

 

Figure 2.15. The new rule after adding new robots. 

 

After next button, AQ gives training example of 16 robots that each one has 

different property previously mentioned in Figure 2.12. AQ ask the user to invite the 

robots that can join your club or not. 16 robots (training examples) of AQ are shown 
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in Figure 2.16 and this screen also belongs to “Challenge AQ with simple problem” 

choice of menu screen in Figure 2.11. 

 

 

Figure 2.16. 16 robots – training examples of AQ. 

 

After next button, the user gives some robots that can join your club and some 

robots cannot join your club. An example of given robots to AQ is shown in Figure 

2.17. 

 

 

Figure 2.17. Given robots to AQ that some of the robots can join the club, some  

                     of the robots cannot join the club. 
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After giving some robots to AQ, there is “Discover Rule” button that AQ finds rule 

using AQ algorithm, “A robot can join the club its head is round or square and its 

height is short or medium” and continues to find rules when each “Discover 

Alternative Rule” button is clicked. First discovered rule is shown in Figure 2.18. 

 

 

Figure 2.18. Discovered rule by AQ. 

 

The button “Add/Remove Example” turns back the screen in Figure 2.17. The 

discovered rules by AQ that robots can join the club are shown in Table 2.1. 

 

        Table 2.1. All Discovered rules by AQ that robots can join the club. 
 

NO RULE 

RULE 1 A robot can join the club its head is round or square and its 

height is short or medium. 

RULE 2 A robot can join the club if it is wearing a tie. 

RULE 3 A robot can join the club if its head is round or square and its 

antennas are red or green. 

RULE 4 
A robot can join the club if its head is round or square and it is 

holding a balloon or a flag. 

RULE 5 
A robot can join the club if its body is round or square, or if its 

antennas are green. 

RULE 6 
A robot can join the club if its head is round or square and its 

jacket is green, or if its antennas are green. 
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After next button, the user gives group of robots to AQ by selecting how many 

groups is used, and then AQ discovers rules for each group. Figure 2.19 shows 

selection of groups screen that user gives example of robots in those groups and this 

screen also belongs to “Challenge AQ with a complex problem” choice of menu 

screen in Figure 2.11. 

 

 

Figure 2.19. Selection of groups that user gives examples of robots to AQ. 

 

After selecting number of groups 3, the user gives example of robots which are the 

same robots in Figure 2.17 and AQ discovers rule from each group at the same time. 

This group selection provides to increase number of property of robots in discovered 

rule because any property of a robot can be observed as rule for each group. 

Discovered rules from each group of robots are shown in Figure 2.20. 
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Figure 2.20. Discovered rules from each group by AQ. 

 

The discovered rules from each groups by AQ is shown in Table 2.2. 

 

        Table 2.2. Discovered rules from each group by AQ. 
  

NO RULE 

RULE 1 

A robot can join group 1, if its jacket is yellow and its height is 

medium 

A robot can join group 2, if its head is round or square, its jacket is 

green 

A robot can join group 3, if its body is triangular and its height is 

medium or tall 

RULE 2 

A robot can join group 1, if its antennas are green and its height is 

medium 

A robot can join group 2, if its jacket is green, it is wearing a tie 

A robot can join group 3, if it is not wearing a tie 

RULE 3 

A robot can join group 1, if its antennas are green and its height is 

medium 

A robot can join group 2, if its head is round or square, its body is 

square or triangular and its height is short or medium 

A robot can join group 3, if its body is triangular, its antennas are red 

or yellow 
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        Table 2.2. Discovered rules from each group by AQ (continued). 
 

NO RULE 

RULE 4 

A robot can join group 1, if it is holding a flag and its height is 

medium 

A robot can join group 2, if its head is round or square, it is not 

smiling 

A robot can join group 3, if its body is triangular and it is holding a 

sword or a balloon 

RULE 5 

A robot can join group 1, if it is holding a flag and its height is 

medium 

A robot can join group 2, if its body is square or triangular, it is 

wearing a tie 

A robot can join group 3, if its head is square or triangular and its 

body is triangular 
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CHAPTER 3 
 

 

ILA: INDUCTIVE LEARNING ALGORITHM & ILA WEATHER 

 

 

ILA (Inductive Learning Algorithm) invented by Mehmet R. Tolun and Saleh M. 

Abu-Soud produces IF-THEN rules directly from a set of training examples in 

general-to-specific way (i.e. starting off with most general rule possible and 

producing specific rules whenever it is deemed necessary) [11]. ILA also eliminates 

all unnecessary and irrelevant conditions from extracted and its rules are more 

simple and general than other algorithms. The generality [11] of rules increases the 

classification capability of ILA. If a rule becomes more general, IF-part of the rule 

becomes fewer [11]. In this section information and algorithm steps about ILA is 

given, and then the developed AI system, ILA Weather is explained. 

 

 

3.1.  Inductive Learning Algorithm 

 

ILA is a new inductive algorithm for generating a set of classification rules from a 

collection of training examples [11]. The algorithm works in an iterative fashion, 

each iteration searches a rule that covers a large number of training examples of a 

single class [11]. When ILA founds a rule, removes those examples it covers from 

the training set (examples) by marking them and appends a rule at the end of its rule 

set [11].  In the other words, the algorithm works on a rule-per-class basis. For each 

class, rules are induced to separate examples in that class from examples in all 

remaining classes therefore this separation process produces an ordered list of rules 

[11]. The important parts of ILA are general requirements and steps of the algorithm 

[11].  
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3.1.1.  General Requirements  

 

1. The examples are to be listed in a table where each row corresponds to an 

example each column contains attribute values. 

2. A set of m training examples, each example composed of k attributes and a 

class attribute with n possible decisions. 

3. A rule set, R with an initial value of  . 

4. All rows in the table are initially unmarked. 

 

 

3.1.2.  Algorithm Steps 

 

 Step 1: Partition the table which contains m examples into n sub-tables. One 

table for each possible value of the class attributes. 

( Steps 2 through 8 are repeated for each sub-table ) 

 

 Step 2: Initialize attributes combination count j as j = 1. 

 Step 3:   For the sub-table under consideration, divide the attribute list into 

distinct combinations, each combination with j distinct attributes. 

 Step 4: For each combination of attributes, count the number of occurrence 

of attribute values that appear under the same combination of attributes in 

unmarked rows of sub-table under consideration but at the same time that 

should not appear under the same combination of attributes of other sub-

tables. Call the first combination with maximum number of occurrence as 

max-combination. 

 Step 5: If max-combination = , increase j by 1 and go to Step 3. 

 Step 6: Mark all rows of the sub-table under consideration, in which the 

values of max-combination appear, as classified. 

 Step 7: Add a rule to R whose left hand side comprise attribute names of 

max-combination with their values separated by AND operator(s) and its 

right hand side contains the decision attribute value associated with the sub-

table. 
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 Step 8: If all rows are marked as classified, then move on to process another 

sub-table and go to Step 2. Otherwise (i.e. if there are still unmarked rows) 

go to Step 4. If no sub-table available, exit with set of rules obtained so far. 

 

 

3.2.  ILA Weather 

 

The developed application with name ILA Weather takes its name from Weather 

Training Examples (Quinlan, 1986) and uses ILA algorithm to discover rules from 

user data. Weather training examples are shown in Table 3.1. 

   

  Table 3.1. Weather Training Examples. 
    

   where P = Positive and N = Negative. 

Example Outlook Temperature Humidity Windy Like 
1 Sunny Hot High Not Exist N  

2 Sunny Hot High Exist N  

3 Overcast Hot High Not Exist P  

4 Rain Mild High Not Exist P   

5 Rain Cool Normal Not Exist P  

6 Rain Cool Normal Exist N  

7 Overcast Cool Normal Exist P  

8 Sunny Mild High Not Exist N  

9 Sunny Cool Normal Not Exist P  

10 Rain Mild Normal Not Exist P  

11 Sunny Mild Normal Exist P  

12 Overcast Mild High Exist P  

13 Overcast Hot Normal Not Exist P   

14 Rain Mild High Exist N 

 

The training examples (or training set, data set) shown above describes the weather 

conditions for some unspecified games (i.e. playing tennis, playing ball, etc.) but 

here a little meaningful change is made in class (or decision attribute) such as “You 

like the weather if outlook is sunny” or “You don’t like the weather if outlook is 

rain”. If the decision attribute “Like” is N: negative means “You do not like the 

weather”, otherwise “You like the weather”. 

 

 

3.2.1.  General Requirements of ILA Weather 

 

In remembering the general requirements of ILA that previously mentioned, there 

are fourteen training examples so m = 14, each example is composed of attributes  
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“Outlook”, “Temperature”, “Humidity” and “Windy” so k = 4, the class attribute 

“Like” with two possible of decision of “Negative” and “Positive” so n = 2. There is 

no rule yet so R with an initial value of . First third general requirements of ILA 

are accomplished and to accomplish all general requirement of ILA, all rows of 

training examples is set as unmarked and is shown in Table 3.2.  

 

 Table 3.2. Initially all rows set unmarked. 
 

Example Outlook Temperature Humidity Windy Like Marked 
1 Sunny Hot High Not Exist N  No 

2 Sunny Hot High Exist N  No 

3 Overcast Hot High Not Exist P  No 

4 Rain Mild High Not Exist P   No 

5 Rain Cool Normal Not Exist P  No 

6 Rain Cool Normal Exist N  No 

7 Overcast Cool Normal Exist P  No 

8 Sunny Mild High Not Exist N  No 

9 Sunny Cool Normal Not Exist P  No 

10 Rain Mild Normal Not Exist P  No 

11 Sunny Mild Normal Exist P  No 

12 Overcast Mild High Exist P  No 

13 Overcast Hot Normal Not Exist P   No 

14 Rain Mild High Exist N No 

 

The attributes of training example with possible values is shown in Table 3.3. 

 

      Table 3.3. Attributes with possible values. 
 

Attribute 
Number of 

Possible Values 
Possible Values 

Outlook 3 {Overcast, Sunny, Rain} 

Temperature 3 {Hot, Mild, Cool} 

Humidity 2 {High, Normal} 

Windy 2 {Exist, Not Exist} 

Like 2 {Negative, Positive} 

 

 

3.2.2.  Algorithm Steps for ILA Weather 

 

The possible values of the decision attribute n = 2 so there are two sub-tables that 

first one contains “Positive” decisions; the other contains “Negative” decisions. The 
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training examples into two sub-tables (Sub-Table 1 and Sub-Table 2) are shown in 

Table 3.4. 

 

   Table 3.4. Separation of training examples into Sub-Table 1 and Sub-Table 2 
 

Sub-Table 1 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 3    Overcast Hot High Not Exist P No 

2 4     Rain Mild High Not Exist P No 

3 5     Rain Cool Normal Not Exist P No 

4 7     Overcast Cool Normal Exist P No 

5 9     Sunny Cool Normal Not Exist P No 

6 10   Rain Mild Normal Not Exist P No 

7 11   Sunny Mild Normal Exist P No 

8 12   Overcast Mild High Exist P No 

9 13   Overcast Hot Normal Not Exist P No 

Sub-Table 2 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 1     Sunny Hot High Not Exist N No 

2 2     Sunny Hot High Exist N No 

3 6     Rain Cool Normal Exist N No 

4 8     Sunny Mild High Not Exist N No 

5 14   Rain Mild High Exist N No 

 

 

In remembering Step 2 and 3, first Sub-Table 1 is under consideration and initial 

value of combination count j = 1. The important point is to divide the attribute list 

into distinct combinations and each combination with j distinct attributes so we can 

understand that if combination count j = 1, that means there is one-attribute 

combinations, if the combination count j = 2, , that means there is two-attribute 

combinations so far. List of the combinations according to combination count j is 

shown in Table 3.5. 
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    Table 3.5. List of combinations according to combination count j  
 

j Combinations 
Distinct 

Combination 

1 
(Outlook, Outlook), (Temperature, Temperature), 

(Humidity,  Humidity),(Windy, Windy) 

One – Attribute 

Combination 

2 

(Outlook, Temperature), (Outlook, Humidity), 

(Outlook, Windy), (Temperature, Humidity), 

(Temperature, Windy), (Humidity, Windy) 

Two – Attribute 

Combination 

3 

(Outlook, Temperature, Humidity),  

(Outlook, Temperature, Windy), 

(Temperature, Humidity, Windy) 

Three – Attribute 

Combination 

4 (Outlook, Temperature, Humidity, Windy) 
Four – Attribute 

Combination 

 

In remembering Step 4, 5, 6 and 7 with the initial combination count j = 1; Sub-

Table 1 is under consideration and the one – attribute combinations list of Sub-Table 

1 are the following: 

 

(Outlook, Outlook) Combinations 

 Overcast : Not in Sub-Table 2 

For row = 1, number of occurrence = 1, 

For row = 4, number of occurrence = 2, 

 For row = 8, number of occurrence = 3, 

 For row = 9, number of occurrence = 4 

 Sub-Table 2 contains {Rain}, {Sunny},  so they are not considered  

There is max-combination = {Overcast} with number of occurrence 4. 

 

(Temperature, Temperature)  Combinations 

 Sub-Table 2 contains {Hot}, {Mild}, {Cool}, so they are not considered 

There is no max-combination of (Temperature, Temperature). 

 

(Humidity, Humidity)  Combinations 

 Sub-Table contains {High}, {Normal}, so they are not considered 

There is no max-combination of (Humidity, Humidity).  
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(Windy, Windy) Combinations 

 Sub-Table 2 contains {Exist}, {Not Exist}, so they are not considered 

There is no max-combination of (Windy, Windy). 

 

End of the one – attributes combinations when j = 1, {Overcast} is max-

combination and we marked all rows of Sub-Table 1 which contains {Overcast}. 

Then we add new rule and set max-combination = , the sub tables after adding first 

rule is shown in Table 3.6. 

 

RRRUUULLLEEE   111:::   YYYooouuu   llliiikkkeee   ttthhheee   wwweeeaaattthhheeerrr   iiifff   OOOuuutttlllooooookkk   iiisss   {{{OOOvvveeerrrcccaaasssttt}}}...   
 

   Table 3.6. Sub tables state after adding first rule. 
 

Sub-Table 1 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 3    Overcast Hot High Not Exist P Yes 

2 4     Rain Mild High Not Exist P No 

3 5     Rain Cool Normal Not Exist P No 

4 7     Overcast Cool Normal Exist P Yes 

5 9     Sunny Cool Normal Not Exist P No 

6 10   Rain Mild Normal Not Exist P No 

7 11   Sunny Mild Normal Exist P No 

8 12   Overcast Mild High Exist P Yes 

9 13   Overcast Hot Normal Not Exist P Yes 

Sub-Table 2 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 1     Sunny Hot High Not Exist N No 

2 2     Sunny Hot High Exist N No 

3 6     Rain Cool Normal Exist N No 

4 8     Sunny Mild High Not Exist N No 

5 14   Rain Mild High Exist N No 

 

All max-combination of one- attribute combinations is   , and then increase j to 2, 

and now j = 2, we are applying ILA for unmarked rows of Sub-Table 1. Two – 

attribute combination list of Sub-Table 1 are the following: 

 

(Outlook, Temperature) Combinations 

 Sunny, Cool: Not in Sub-Table 2 

For row =5, number of occurrence = 1 
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 Sub-Table 2 contains {Rain, Mild}, {Rain, Cool}, {Sunny, Mild}, so they 

are not considered  

There is max-combination = {Sunny, Cool} with number of occurrence 1. 

 

(Outlook, Humidity) Combinations 

 Sunny, Normal: Not in Sub-Table 2 

For row = 5, number of occurrence = 1 

For row = 7, number of occurrence = 2 

 Sub-Table 2 contains {Rain, High}, {Rain, Normal}, so they are not 

considered 

There is max-combination = {Sunny, Normal} with number of occurrence 2. 

 

(Outlook, Windy) Combinations 

 Rain, Not Exist: Not in Sub-Table 2 

For row = 2, number of occurrence 1 

For row = 3, number of occurrence 2 

For row = 6, number of occurrence 3 

 Sub-Table 2 contains {Sunny, Not Exist}, {Sunny, Exist}, so they are not 

considered 

There is max-combination = {Rain, Not Exist} with number of occurrence 3. 

 

(Temperature, Humidity) Combinations 

 Mild, Normal: Not in Sub-Table 2  

For row = 6, number of occurrence 1 

For row = 7, number of occurrence 2 

 Sub-Table 2 contains {Mild, High}, {Cool, Normal}, so they are not 

considered. 

There is max-combination = {Mild, Normal} with number of occurrence 2. 

 

(Temperature, Windy) Combinations 

 Cool, Not Exist: Not in Sub-Table 2  

For row = 3, number of occurrence 1 
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For row = 5, number of occurrence 2 

 Sub-Table 2 contains {Mild, Not Exist}, {Mild, Exist}, so they are not 

considered 

There is max-combination = {Cool, Not Exist} with number of occurrence 2. 

 

(Humidity, Windy) Combinations 

 Normal, Not Exist: Not in Sub-Table 2  

For row = 3, number of occurrence 1 

For row = 5, number of occurrence 2 

For row = 6, number of occurrence 3 

 Sub-Table 2 contains { High, Not Exist }, { Normal, Exist }, so they are not 

considered 

There is max-combination = {Normal, Not Exist} with number of occurrence 3. 

 

End of the tow – attributes combinations when j = 2, (Outlook, Windy) 

Combinations and (Humidity, Windy) Combinations has max combination with 

number of occurrence 3 but ILA select first max number of occurrence, so {Rain, 

Not Exist} is max-combination. We marked all rows of Sub-Table 1 which contains 

{Rain, Not Exist}. Then we add new rule and set max-combination = , the sub 

tables after adding second rule is shown in Table 3.7. 

 

RRRUUULLLEEE   222:::   YYYooouuu   llliiikkkeee   ttthhheee   wwweeeaaattthhheeerrr   iiifff   OOOuuutttlllooooookkk   iiisss   {{{RRRaaaiiinnn}}}   AAANNNDDD   WWWiiinnndddyyy   iiisss   

{{{NNNooottt   EEExxxiiisssttt}}}...   
 

   Table 3.7. Sub table state after adding second rule. 
 

Sub-Table 1 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 3    Overcast Hot High Not Exist P Yes 

2 4     Rain Mild High Not Exist P Yes 

3 5     Rain Cool Normal Not Exist P Yes 

4 7     Overcast Cool Normal Exist P Yes 

5 9     Sunny Cool Normal Not Exist P No 

6 10   Rain Mild Normal Not Exist P Yes 

7 11   Sunny Mild Normal Exist P No 

8 12   Overcast Mild High Exist P Yes 

9 13   Overcast Hot Normal Not Exist P Yes 
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   Table 3.7. Sub table state after adding second rule (continued). 
 

Sub-Table 2 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 1     Sunny Hot High Not Exist N No 

2 2     Sunny Hot High Exist N No 

3 6     Rain Cool Normal Exist N No 

4 8     Sunny Mild High Not Exist N No 

5 14   Rain Mild High Exist N No 

 

After adding second rule, combination count j is still 2, j = 2. We are applying ILA 

for unmarked rows of Sub-Table 1. Two – attribute combination list of Sub-Table 1 

are the following: 

  

(Outlook, Temperature) Combinations 

 Sunny, Cool: Not in Sub-Table 2 

For row =5, number of occurrence = 1 

 Sub-Table 2 contains {Sunny, Mild}, so it is not considered 

There is max-combination = {Sunny, Cool} with number of occurrence 1. 

 

(Outlook, Humidity) Combinations 

 Sunny, Normal: Not in Sub-Table 2 

For row = 5, number of occurrence = 1 

For row = 7, number of occurrence = 2  

There is max-combination = {Sunny, Normal} with number of occurrence 2. 

 

(Outlook, Windy) Combinations 

 Sub-Table 2 contains {Sunny, Not Exist}, { Sunny, Exist},  so they are not 

considered 

There is no max-combination of (Outlook, Windy). 

 

(Temperature, Humidity) Combinations 

 Mild, Normal: Not in Sub-Table 2  

For row = 7, number of occurrence 1 

 Sub-Table 2 contains {Cool, Normal}, so it is not considered 

There is max-combination = {Mild, Normal} with number of occurrence 1. 
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(Temperature, Windy) Combinations 

 Cool, Not Exist: Not in Sub-Table 2  

For row = 5, number of occurrence 1 

 Sub-Table 2 contains {Mild, Exist}, so it is not considered 

There is max-combination = {Cool, Not Exist} with number of occurrence 1. 

 

(Humidity, Windy) Combinations 

 Normal, Not Exist: Not in Sub-Table 2  

For row = 5, number of occurrence 1 

 Sub-Table 2 contains {Normal, Exist}, so it is not considered 

There is max-combination = {Normal, Not Exist} with number of occurrence 1. 

 

End of the two – attributes combinations when j = 2, (Outlook, Humidity) 

Combinations has max combination with max number of occurrence 2, so {Sunny, 

Normal} is max combination. We marked all rows of Sub-Table 1 which contains 

{Sunny, Normal}.Then we add new rule and set max-combination = , the sub tables 

after adding third rule is shown in Table 3.8. 

  

RRRUUULLLEEE   333:::   YYYooouuu   llliiikkkeee   ttthhheee   wwweeeaaattthhheeerrr   iiifff   OOOuuutttlllooooookkk   iiisss   {{{SSSuuunnnnnnyyy}}}   AAANNNDDD   HHHuuummmiiidddiiitttyyy   

iiisss   {{{NNNooorrrmmmaaalll}}}...   

   Table 3.8. Sub table state after adding third rule. 
 

Sub-Table 1 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 3    Overcast Hot High Not Exist P Yes 

2 4     Rain Mild High Not Exist P Yes 

3 5     Rain Cool Normal Not Exist P Yes 

4 7     Overcast Cool Normal Exist P Yes 

5 9     Sunny Cool Normal Not Exist P Yes 

6 10   Rain Mild Normal Not Exist P Yes 

7 11   Sunny Mild Normal Exist P Yes 

8 12   Overcast Mild High Exist P Yes 

9 13   Overcast Hot Normal Not Exist P Yes 
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 Table 3.8. Sub table state after adding third rule (continued). 
 

Sub-Table 2 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 1     Sunny Hot High Not Exist N No 

2 2     Sunny Hot High Exist N No 

3 6     Rain Cool Normal Exist N No 

4 8     Sunny Mild High Not Exist N No 

5 14   Rain Mild High Exist N No 

 

All rows of Sub-Table 1 are marked, so Sub-Table 2 is under consideration for 

applying ILA. The combination count j = 1 again and one – attribute combination 

list of Sub-Table 1 are the following:  

 

(Outlook, Outlook) Combinations 

 Sub-Table 1 contains {Sunny},{Rain}, so they are not considered 

There is no max-combination of (Outlook, Outlook).  

 

(Temperature, Temperature)  Combinations 

 Sub-Table 1 contains {Hot},{Mild},{Cool} so they are not considered 

There is no max-combination of (Temperature, Temperature). 

 

(Humidity, Humidity)  Combinations 

 Sub-Table 1 contains {High},{Normal} so they are not considered 

There is no max-combination of (Humidity, Humidity).  

 

(Windy, Windy) Combinations 

 Sub-Table 1 contains {Exist}, {Not Exist}, so they are not considered 

There is no max-combination of (Windy, Windy). 

There is no max-combination in one – attribute combination list of Sub-Table 2, 

increase j to 2,  j = 2  and tow – attributes combination list of Sub-Table 2 are the 

following: 

 

(Outlook Temperature) Combinations  

 Sunny, Hot: Not in Sub-Table 1  

For row = 1, number of occurrence 1 
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For row = 2, number of occurrence 2 

 Sub-Table 1 contains {Rain, Cool}, {Sunny, Mild}, {Rain, Mild}, so they 

are not considered 

There is max-combination = {Sunny, Hot} with number of occurrence 2. 

 

(Outlook, Humidity) Combinations 

 Sunny, High: Not in Sub-Table 1  

For row = 1, number of occurrence 1 

For row = 2, number of occurrence 2 

For row = 3, number of occurrence 3 

 Sub-Table 1 contains {Rain, Normal},{Rain, High}, so they are not 

considered 

There is max-combination = {Sunny, High} with number of occurrence 3. 

 

(Outlook, Windy) Combinations 

 Rain, Exist: Not in Sub-Table 1  

For row = 3, number of occurrence 1 

For row = 5, number of occurrence 2 

 Sub-Table 1 contains {Sunny, Not Exist}, {Sunny, Exist} so they are not 

considered 

There is max-combination = {Rain, Exist} with number of occurrence 2. 

 

(Temperature, Humidity) Combinations 

 Sub-Table 1 contains {Hot, High}, {Cool, Normal}, {Mild, High} so they 

are not considered 

There is no max-combination of (Temperature, Humidity). 

 

(Temperature, Windy) Combinations 

 Hot, Exist: Not in Sub-Table 1  

For row = 2, number of occurrence 1 

 Sub-Table 1 contains {Hot, Not Exist}, {Cool, Exist},{Mild, Not Exist}, 

{Mild, Exist}, so they are not considered 

There is max-combination = {Hot, Exist} with number of occurrence 1. 
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(Humidity, Windy) Combinations 

 Sub-Table 1 contains {High, Not Exist}, {High, Exist}, {Normal, Exist} so 

they are not considered 

There is no max-combination of (Humidity, Windy). 

 

End of the two – attributes combinations when j = 2, (Outlook, Humidity) 

Combinations has max combination with max number of occurrence 3, so {Sunny, 

High} is max combination. We marked all rows of Sub-Table 2 which contains 

{Sunny, High}.Then we add new rule and set max-combination = , the sub tables 

after adding forth rule is shown in Table 3.9. 

 

RRRUUULLLEEE   444:::   YYYooouuu   dddooo   nnnooottt   llliiikkkeee   wwweeeaaattthhheeerrr   iiifff   OOOuuutttlllooooookkk   iiisss   {{{SSSuuunnnnnnyyy}}}   AAANNNDDD   

HHHuuummmiiidddiiitttyyy   iiisss   {{{HHHiiiggghhh}}}...   

   

   Table 3.9. Sub table state after adding forth rule. 
 

Sub-Table 1 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 3    Overcast Hot High Not Exist P Yes 

2 4     Rain Mild High Not Exist P Yes 

3 5     Rain Cool Normal Not Exist P Yes 

4 7     Overcast Cool Normal Exist P Yes 

5 9     Sunny Cool Normal Not Exist P Yes 

6 10   Rain Mild Normal Not Exist P Yes 

7 11   Sunny Mild Normal Exist P Yes 

8 12   Overcast Mild High Exist P Yes 

9 13   Overcast Hot Normal Not Exist P Yes 

Sub-Table 2 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 1     Sunny Hot High Not Exist N Yes 

2 2     Sunny Hot High Exist N Yes 

3 6     Rain Cool Normal Exist N No 

4 8     Sunny Mild High Not Exist N Yes  

5 14   Rain Mild High Exist N No 

 

After adding forth rule, combination count j is still 2, j = 2. We are applying ILA for 

unmarked rows of Sub-Table 2. Two – attribute combination list of Sub-Table 2 are 

the following: 

 

 



 

48 

 

(Outlook, Temperature) Combinations  

 Sub-Table 1 contains {Rain, Cool}, {Rain, Mild}, so they are not considered 

There is no max-combination of (Outlook, Temperature). 

 

(Outlook, Humidity) Combinations 

 Sub-Table 1 contains {Rain, Normal},{Rain, High}, so they are not 

considered 

There is no max-combination of (Outlook, Humidity). 

 

(Outlook, Windy) Combinations 

 Rain, Exist: Not in Sub-Table 1  

For row = 3, number of occurrence 1 

For row = 5, number of occurrence 2 

There is max-combination = {Rain, Exist} with number of occurrence 2. 

(Temperature, Humidity) Combinations 

 Sub-Table 1 contains {Cool, Normal}, {Mild, High} so they are not 

considered 

There is no max-combination of (Temperature, Humidity). 

 

(Temperature, Windy) Combinations 

 Sub-Table 1 contains {Cool, Exist}, {Mild, Exist}, so they are not 

considered 

There is no max-combination of (Temperature, Windy). 

 

(Humidity, Windy) Combinations 

 Sub-Table 1 contains {High, Exist}, {Normal, Exist} so they are not 

considered 

There is no max-combination of (Humidity, Windy). 

 

End of the two – attributes combinations when j = 2, (Outlook, Windy) 

Combinations has max combination with max number of occurrence 2, so {Rain, 

Exist} is max combination. We marked all rows of Sub-Table 2 which contains 
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{Rain, Exist}. Add rule and set max-combination = , the sub tables after adding 

fifth rule is shown in Table 3.10. 

 

RRRUUULLLEEE   555:::   YYYooouuu   dddooo   nnnooottt   llliiikkkeee   wwweeeaaattthhheeerrr   iiifff   OOOuuutttlllooooookkk   iiisss   {{{RRRaaaiiinnn}}}   AAANNNDDD   WWWiiinnndddyyy   

iiisss   {{{EEExxxiiisssttt}}}...   

 

   Table 3.10. Sub table state after adding fifth rule. 
 

Sub-Table 1 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 3    Overcast Hot High Not Exist P Yes 

2 4     Rain Mild High Not Exist P Yes 

3 5     Rain Cool Normal Not Exist P Yes 

4 7     Overcast Cool Normal Exist P Yes 

5 9     Sunny Cool Normal Not Exist P Yes 

6 10   Rain Mild Normal Not Exist P Yes 

7 11   Sunny Mild Normal Exist P Yes 

8 12   Overcast Mild High Exist P Yes 

9 13   Overcast Hot Normal Not Exist P Yes 

Sub-Table 2 

Row Ex 

No 

Outlook Temperature Humidity Windy Like Marked 

1 1     Sunny Hot High Not Exist N Yes 

2 2     Sunny Hot High Exist N Yes 

3 6     Rain Cool Normal Exist N Yes 

4 8     Sunny Mild High Not Exist N Yes  

5 14   Rain Mild High Exist N Yes 

 

After adding fifth rule there is no unmarked rows, so ILA terminates. List of 

discovered rules by ILA is shown in Table 3.11. 

 

       Table 3.11. Discovered rules by ILA – Weather Training Set. 
 

DISCOVERED RULES 

RULE 1: You like weather if Outlook is {Overcast}. 

 

RULE 2: You like weather if Outlook is {Rain} AND Windy is {Not Exist}. 

 

RULE 3: You like weather if Outlook is {Sunny} AND Humidity is {Normal}. 

 
RULE 4: You don‟t like weather if Outlook is {Sunny} AND Humidity is {High}. 

 
RULE 5: You don‟t like weather if Outlook is {Rain} AND Windy is {Exist}. 
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3.2.3.  Creating Graphical User Interfaces  

 

ILA Weather uses weather conditions pictures that are related to training examples. 

First, many set of pictures – images, photos, icons, etc. that are appropriate and for 

weather conditions were researched and then obtained via the Internet. To fully 

represent the training example, some of these graphical sources were merged with 

each other with using the photo editing tool (i.e. Adobe Photoshop), used images to 

represent the training example of ILA Weather are shown in Figure 3.1. 

 

 

Figure 3.1. Images used in ILA Weather. 

 

Images [12] sun, cloud and cloud is rain were used to represent “Outlook” attribute, 

image degree is used to represent “Temperature” and “Humidity attribute”, the 

image of wind flag[12] is used to represent “Windy” attribute and the tree is located 

in the middle of them to provide or characterize events  happened in the earth. 

Created pictures to represent each training example are given in Appendix A. 

 

After pictures that identify the training example are ready, ILA was implemented 

with Java Programming Language and by using Java Swing which provides Swing 

API (Application Programming Interface) to develop commercial-quality desktop 

applications. NetBeans IDE is chosen for development environment. It is easy to 

develop desktop application with NetBeans IDE that provides Java GUI Builder to 

create desktop application easily. It also has drag – and – drop feature that provides 
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easy design your screens with using GUI components (i.e.  JLabel, JButton, 

JTextField, etc.).   

 

 

3.2.3.  Demonstration of ILA Weather  

 

ILA Weather   is a simple desktop application which takes example sets from user 

and displays discovered rules to the user. Welcome - initial screen of ILA Weather 

is shown in Figure 3.2. 

 

 

Figure 3.2. Welcome screen of ILA Weather. 

 

After start button ILA Weather informs user about weather conditions used in 

graphical user interfaces. The information screen is shown in Figure 3.3. 

 

 

Figure 3.3. Information screen of weather conditions. 
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After next button, the user gives weather conditions that the user likes or not. An 

example of given weather conditions by user is shown in Figure 3.4. 

 

 
Figure 3.4. An example of given weather conditions by user. 

 

After discover rules button, ILA Weather process ILA on given examples of user, 

and then displays discovered rules on the next screen. A sample discovered rule by 

ILA Weather is shown in Figure 3.5. 

 

 

Figure 3.6. A Discovered rule by ILA Weather. 
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List of discovered rules is according to given examples in Figure 3.4., are shown in 

Table 3.12.  

 

       Table 3.12. Discovered rule list by ILA Weather. 
 

NO RULE 

RULE 1 You LIKE the weather IF Outlook IS Sunny. 

RULE 2 You LIKE the weather IF Outlook IS Rain AND Temperature IS Cool. 

RULE 3 You do not LIKE the weather IF Outlook IS Overcast. 

RULE 4 You do not LIKE the weather IF Humidity IS High. 

RULE 5 
You do not LIKE the weather IF Outlook IS RAIN AND Temperature 

IS Mild. 
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CHAPTER 4 
 

 

SUMMARY AND CONCLUSION 

 

 

ILA is a supervised and simple inductive learning algorithm for classifying 

symbolic data. In particular, it deals discrete and symbolic rules. In this thesis, a 

visual demonstration of the inductive learning algorithm, ILA, has been realized.  

 

After analyzing the EMERALD System that demonstrates capabilities of ML and an 

example of the EMERALD System, EMERAL-AQ that creates natural rules from 

examples – user data via inductive hypothesis, a similar system using ILA algorithm 

has been designed and implemented in Java. 

 

“Weather Conditions” is chosen as the domain which seemed appropriate for 

creating rules from the user data having ILA to process user entries on the selected 

ILA Weather domain. The system discovers rules from user provided data and 

demonstrates these rules through its custom graphical user interface. 

 

ILA Weather can also be applied to different domains. The domain should provide 

at least two decision classes that ILA algorithm separates training examples into 

decision classes and discovers production rules from attributes of training examples. 

Visual aids of the domain should be carefully determined and introduced to the user. 

This study does not aim to measure the accuracy of the algorithm under 

consideration. The contribution of the thesis is to generate a visual demonstration 

based on examples provided to the system.              

  

The domain to apply ILA algorithm may be determined based on more complex 

training examples which enforce ILA algorithm to discover rules with more 

combination of attributes but simple training examples may show clearly how ILA 
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algorithm works on decision classes. Therefore, ILA Weather has demonstrated the 

operation of the ILA algorithm clearly with the selected weather condition training 

examples.  

 

 

4.1.  Further Study 

 

The developed system can be applied easily to other domains, however, in order to 

do this, domain – dependent graphics should be designed and utilized. Designed 

graphics can be put on the developed system with a small change in the code. But 

there are only two restrictions of the system for being used in other domains. First, 

is the name of the traning example attributes (Outlook, Temperature, etc.) , because 

variable definitions are created according to these attributes. The second is the 

number of traning examples which changes design induction and selection screen of 

the system. After setting graphics of training examples and some code change on the 

system, ILA Weather can discrover production rules for other domains.  

 

The system user interface consists of only simple graphics - images and user 

interaction. To have a more powerful demonstration the features of some sounds, 

animated images, natural language support, etc. can be integrated to the system. 
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APPENDIX A 

 

WEATHER PICTURES FOR CORRESPONDING TRAINING EXAMPLE 

 

Ex. 

No 

Outlook Temperature Humidity Windy Created Picture 

1 Sunny Hot High Not 

Exist 

 
2 Sunny Hot High Exist 

 
3 Overcast Hot High Not 

Exist 

 
4 Rain Mild High Not 

Exist 

 



 

A2 

 

 

 

WEATHER PICTURES FOR CORRESPONDING TRAINING EXAMPLE 

(continued) 

 

Ex. 

No 

Outlook Temperature Humidity Windy Created Picture 

5 Rain Cool Normal Not 

Exist 

 
6 Rain Cool Normal Exist 

 
7 Overcast Cool Normal Exist 

 
8 Sunny Mild High Not 

Exist 

 
9 Sunny Cool Normal Not 

Exist 

 



 

A3 

 

 

WEATHER PICTURES FOR CORRESPONDING TRAINING EXAMPLE 

(continued) 

 

Ex. 

No 

Outlook Temperature Humidity Windy Created Picture 

10 Rain Mild Normal Not 

Exist 

 
11 Sunny Mild Normal Exist 

 
12 Overcast Mild High Exist 

 
13 Overcast Hot Normal Not 

Exist 

 
14 Rain Mild High Exist 

 
 


