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Abstract: In this study, the transmission dynamics of Contagious Bovine Pleuropneumonia (CBPP) 

by finite difference method are presented. This model is made up of sensitive, exposed, vaccinated, 

infectious, constantly infected, and treated compartments. The model is studied by the finite difference 

method. Firstly, the finite difference scheme is constructed. Then the stability estimates are proved for 

this model. As a result, several simulations are given for this model on the verge of antibiotic therapy. 

From these figures, the supposition that 50% of infectious cattle take antibiotic therapy or the date of 

infection decrease to 28 days, 50% of susceptible obtain vaccination within 73 days. 
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1. Introduction 

CBPP is a great deal of restriction to cattle augmentation in the vital arcadian territory of Africa 

(see [1–3]). In [3], mathematical modeling of the transmission dynamics of contagious bovine 

pleuropneumonia was uncovered aim profiles at a small extent for upgraded vaccines and diagnostic 

tests. Development of real-time diagnostic analysis specific for Mycoplasma mycoides subspecies 

mycoides small colony were worked in [4]. It brings about high morbidity and fatality rate damages to 

cattle which causes economic decline (see [5–8] for more information). They worked Contagious 

Bovine Pleuropneumonia: Challenges and Prospects Regarding Diagnosis and Control Strategies in 

Africa [9]. Charge of restrain of CBPP is a big issue in African regions as well [10]. In [11], the model 

was given with no interference, having the purpose of revealing data that have a crucial part in altering 

the dynamics of the illness.  

In the study [12], the researchers have examined antibiotic treatment and vaccination as a 

controlling medium of CBPP and given a segmented model with six parts for the transmission 

dynamics of the CBPP: sensitive, exposed, vaccinated, infectious, often infected, and treated 

compartments. Antibiotic therapy was taken into consideration in the model by adding the recovery 

rate of treated cattle to ensure that the treated moved at a rate from the infectious compartment to cured 

compartment. 

The goal of this study [12] was to set up a more efficient handling program out of vaccination, 

antibiotic care, or both of them. We consider [12]: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝑁 + 𝜔𝑉 −

𝛽𝑆𝐼

𝑁
− 𝜌𝑆 − 𝜇𝑆       (2.1) 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌𝑆 − 𝜔𝑉 − 𝜇𝑉,         (2.2) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝛾𝐸 − 𝜇𝐸,         (2.3) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛾𝐸 + 𝑘𝑄 − (𝛼𝑡 + 𝛼𝑟)𝐼 − 𝛼𝑞𝐼 − 𝜇𝐼,     (2.4) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛼𝑞𝐼 − 𝑘𝑄 − 𝜓𝑄 − 𝜇𝑄,       (2.5) 

𝑑𝑅(𝑡)

𝑑𝑡
= (𝛼𝑡 + 𝛼𝑟)𝐼 + 𝜓𝑄 − 𝜇𝑄.       (2.6) 

This system has known well-posedness from [12]. The contagious bovine pleuropneumonia 

(CBPP) was a respiratory disease of cattle; CBPP was lead to by Mycoplasma mycoides subsp, 

mycoides small colony [17]. They gave and analyzed a mathematical model of the transmission 

dynamics of Contagious Bovine Pleuropneumonia (CBPP) in the presence of antibiotic treatment with 

limited medical supply [18]. The equilibrium solutions were studied in detail [2]. Using the symbols 

in this paper are given as: 
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𝑁: total number 

𝑡: time  

𝑆: susceptible class  

𝑉: vaccinal immune class  

𝐸: exposed compartment 

𝐼: infectious compartment  

𝑅: recovered compartment persistently infected 

Local stability analysis and global durability analysis for illness free equipoise the (İFE) were 

studied in [13]. Examining this model, which is defined by the Caputo derivative, with the finite 

difference method and obtaining simulations for an approximate solution makes this study different 

from previous studies. 

This paper is constructed as follows. In Section 2, the dynamics of CBPP for a mathematical 

model with antibiotic interventions and vaccination are demonstrated with Caputo derivative. In 

Section 3, finite difference method is constructed and the stability estimates of this model is presented. 

Numerical simulations have been demonstrated in Section 4. In Section 5, conclusion is proposed. 

2. Mathematical model with Caputo derivative 

2.1. The Caputo derivative 

Definition 2.1: The definition of the Caputo derivative of 𝛼 order is given as [6]:  

𝐷𝑡
𝛼𝑓(𝑡) =

𝜕𝛼𝑓(𝑡)

𝜕𝑡𝛼
=

1

Γ(n − 𝛼)
∫

1

(𝑡 − 𝑝)𝛼−𝑛+1

𝑡

𝑎

𝜕𝛼𝑓(𝑝)

𝜕𝑝𝛼
𝑑𝑝,  

where 𝑛 −  1 <  𝛼 <  𝑛 and 𝑛 =  [𝛼]  +  1. The Caputo derivative has some advantages over the 

Riemann-Liouville derivative. First, the Caputo derivative is frequently used in the solution of fractional 

differential equations in the Laplace transform method. The Laplace transform of the Riemann-Liouville 

derivative requires boundary conditions involving the boundary values of the Riemann-Liouville 

fractional derivatives at the lower bound at 𝑡 = 𝑎. Although mathematically such problems are solvable, 

there is no physical interpretation of such conditions. On the other hand the Laplace transform of the 

Caputo derivative imposes boundary conditions involving integer-order derivatives at the lower point 

𝑡 =  𝑎  which usually are acceptable physical conditions. The second advantage is that the Caputo 

derivative of a constant is zero while the Riemann Liouville derivative is nonzero [14]. The fractional 

order partial differential equations were studied by many researchers [15,16]. 

2.2. The constructed finite difference method 

In this part, we construct finite difference method for the model of the antibiotic treatment and 

vaccination as a controlling tool of CBPP and the transmission dynamics of CBPP. The fractional order 

differential equation model defined by Caputo derivative is given by the following system: 

𝐷𝑡
𝛼

0
𝐶 𝑆(𝑡) = 𝜇𝑁 + 𝜔𝑉 −

𝛽𝑆𝐼

𝑁
− 𝜌𝑆 − 𝜇𝑆      (2.7) 
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𝐷𝑡
𝛼𝑉(𝑡)0

𝐶 = 𝜌𝑆 − 𝜔𝑉 − 𝜇𝑉,        (2.8) 

𝐷𝑡
𝛼𝐸(𝑡)0

𝐶 =
𝛽𝑆𝐼

𝑁
− 𝛾𝐸 − 𝜇𝐸,        (2.9) 

𝐷𝑡
𝛼𝐼(𝑡)0

𝐶 = 𝛾𝐸 + 𝑘𝑄 − (𝛼𝑡 + 𝛼𝑟)𝐼 − 𝛼𝑞𝐼 − 𝜇𝐼,    (2.10) 

𝐷𝑡
𝛼𝑄(𝑡)0

𝐶 = 𝛼𝑞𝐼 − 𝑘𝑄 − 𝜓𝑄 − 𝜇𝑄,      (2.11) 

𝐷𝑡
𝛼𝑅(𝑡)0

𝐶 = (𝛼𝑡 + 𝛼𝑟)𝐼 + 𝜓𝑄 − 𝜇𝑄,      (2.12) 

with initial conditions 

𝑆(0) = 𝑆0, 𝑉(0) = 𝑉0, 𝐸(0) = 𝐸0, 𝐼(0) = 𝐼0, 𝑄(0) = 𝑄0, 𝑅(0) = 𝑅0. 

3. Finite difference method and stability estimates for mathematical model 

We present grids with uniform steps in the domain [0, T] 

Wτ = {tn: tn = nτ, n = 0,1, … , M }, τ =
T

M
. 

We use the notation 𝑢𝑛 = u(tn) for functions defined on the grid (or parts of this grid) Wτ. 

For the fractional Caputo derivative operator, difference scheme is known as [13]: 

𝐷𝑆(𝑡𝑛) =
𝜕𝛼𝑠(𝑡𝑛)

𝜕𝑡𝛼  ≅
𝜏−𝛼

Γ(2−𝛼)
 ∑ 𝑤𝑗

(𝛼)
(𝑛

𝑗=00
𝐶 𝑢𝑛−𝑗+1 − 𝑢𝑛−𝑗) =

𝜏−𝛼

Γ(2−𝛼)
[𝑆𝑛+1 − 𝑆𝑛 +

∑ 𝑤𝑗
(𝛼)

(𝑛
𝑗=1 𝑆𝑛−𝑗+1 − 𝑆𝑛−𝑗),     (2.13) 

here 𝑤𝑗
(𝛼)

= (𝑗 + 1)1−𝛼 − (𝑗)1−𝛼, 𝑆(𝑡𝑛) = 𝑆𝑛,  𝑡𝑛 = 𝑛𝜏. 

Using the formula (2.13), we can obtain the finite difference method for the formulas (2.7)–(2.12) 

𝜏−𝛼

Γ(2−𝛼)
[𝑆𝑛+1 − 𝑆𝑛 + ∑ 𝑤𝑗

(𝛼)
(𝑛

𝑗=1 𝑆𝑛−𝑗+1 − 𝑆𝑛−𝑗)] = 𝜇𝑁 + 𝜔𝑉𝑛 −
𝛽𝑆𝑛𝐼𝑛

𝑁
− 𝜌𝑆𝑛 − 𝜇𝑆𝑛, (2.14) 

𝜏−𝛼

Γ(2−𝛼)
[𝑉𝑛+1 − 𝑉𝑛 + ∑ 𝑤𝑗

(𝛼)
(𝑘

𝑗=1 𝑉𝑛−𝑗+1 − 𝑉𝑛−𝑗)] = 𝜌𝑆𝑛 − 𝜔𝑉𝑛 − 𝜇𝑉𝑛, (2.15) 

𝜏−𝛼

Γ(2−𝛼)
[𝐸𝑛+1 − 𝐸𝑛 + ∑ 𝑤𝑗

(𝛼)
(𝑛

𝑗=1 𝐸𝑛−𝑗+1 − 𝐸𝑛−𝑗)] =
𝛽𝑆𝑛𝐼𝑛

𝑁
− 𝛾𝐸𝑛 − 𝜇𝐸𝑛, (2.16) 

𝜏−𝛼

Γ(2−𝛼)
[𝐼𝑛+1 − 𝐼𝑛 + ∑ 𝑤𝑗

(𝛼)
(𝑛

𝑗=1 𝐼𝑛−𝑗+1 − 𝐼𝑛−𝑗)] = 𝛾𝐸𝑛 + 𝑘𝑄𝑛 − (𝛼𝑡 + 𝛼𝑟)𝐼𝑛 − 𝛼𝑞𝐼𝑛 − 𝜇𝐼𝑛, (2.17) 

𝜏−𝛼

Γ(2−𝛼)
[𝑄𝑛+1 − 𝑄𝑛 + ∑ 𝑤𝑗

(𝛼)
(𝑛

𝑗=1 𝑄𝑛−𝑗+1 − 𝑄𝑛−𝑗)] = 𝛼𝑞𝐼𝑛 − 𝑘𝑄𝑛 − 𝜓𝑄𝑛 − 𝜇𝑄𝑛, (2.18) 
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𝜏−𝛼

Γ(2−𝛼)
[𝑅𝑛+1 − 𝑅𝑛 + ∑ 𝑤𝑗

(𝛼)
(𝑛

𝑗=1 𝑅𝑛−𝑗+1 − 𝑅𝑛−𝑗)] = (𝛼𝑡 + 𝛼𝑟)𝐼𝑛 + 𝜓𝑄𝑛 − 𝜇𝑄𝑛. (2.19) 

Now, we shall prove that these systems are satisfied the stability estimates. For this, the Von-Neuman 

analysis method will be used as follow: 

𝑆𝑛 = 𝑉𝑛 = 𝐸𝑛 = 𝐼𝑛 = 𝑄𝑛 = 𝑅𝑛 = 𝑟𝑛.     (2.20) 

Taking 𝛼 → 1, 𝑛 = 1, the formulas (2.14)–(2.19) can be written as: 

(
1

𝜏
+

𝛽

𝑁
) 𝑟2 + (𝜌 + 𝜇 −

1

𝜏
− 𝜔) 𝑟 − 𝜇𝑁 = 0,   (2.21) 

1

𝜏
𝑟2 + (𝜔 + 𝜇 −

1

𝜏
− 𝜌) 𝑟 = 0,      (2.22) 

(
1

𝜏
−

𝛽

𝑁
) 𝑟2 + (𝛾 + 𝜇 −

1

𝜏
) 𝑟 = 0,       (2.23) 

(
1

𝜏
) 𝑟2 + (𝛼𝑡 + 𝛼𝑟 + 𝛼𝑞 + 𝜇 − 𝑘 − 𝛾 −

1

𝜏
) 𝑟 = 0,   (2.24) 

(
1

𝜏
) 𝑟2 + (𝜇 + 𝜓 + 𝑘 − 𝛼𝑞 −

1

𝜏
) 𝑟 = 0,     (2.25) 

(
1

𝜏
) 𝑟2 + (𝜇 − 𝜓 − (𝛼𝑡 + 𝛼𝑟) −

1

𝜏
)𝑟 = 0.    (2.26) 

These formulas are quadratic equations. For the stability estimates the following conditions have to be 

satisfied: 

i) 𝑎) 𝜔 < 𝛾 + 𝜇 +
𝛽

𝑁
, 𝑏) 

1

𝜏
+

𝛽

𝑁
> −𝜇𝑁, 

ii) 𝜌 < 𝜔 + 𝜇, 

iii) 𝛽 < 𝑁(𝛾 + 𝜇), 

iv) 𝑘 + 𝛾 < 𝛼𝑡 + 𝛼𝑟 + 𝛼𝑞 + 𝜇, 

v) 𝛼𝑞 < 𝜇 + 𝜓 + 𝑘, 

vi) 𝜓 + 𝛼𝑡 + 𝛼𝑟 < 𝜇. 

From the Von-Neumann analysis method, it can be seen that the (2.14)–(2.19) system is stable if 

the conditions (i)–(vi) are satisfied. Because the roots of the quadratic equation satisfying the system 

are 0 or less than 1. 
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Table 1. Explanations of the data. 

Variables Definitions Baseline references 

𝜔 vaccinal immunity loss 

rate 

1

3 × 365
 0.00078–0.0011 [11] 

𝑃𝑒 Vaccination success rate 0.65 0.5–0.8 [11] 

𝑃𝑣 Vaccination rate 0.5 [11] 

∈ Vaccination efficacy 0.8 [11] 

𝑝 Ratio of immunization 𝑃𝑒 × 𝑃𝑣 ×∈ [11] 

𝛽 Rate of contact 

efficiency  

0.126 0.07–0.13 [10] 

𝜌 Ratio of vaccination 
𝑝

73
 assumed 

𝛾 Transition rate from 

exposed to contagious 

compartment 

0.0238 0.0179–0.0357 [11] 

𝑎𝑟 Natural recuperation 

rate of contagious cattle 

0.0045 0.0060–0.0036 [11] 

𝑎𝑞 Rate of sequestrum 

formation of contagious 

cattle 

3𝑎𝑟 [11] 

𝑎𝑡 Rate of recovery of 

treated cattle 

0.0179 0.0119–0.0214 assumed 

𝑘 Rate of sequestrum  

re-initiate 

0.00009 0.00007–0.00011 [11] 

𝜓 Rate of sequestrum 

resolution 

0.0075 0.0068 to 0.0079 [11] 

𝜇 death rate 1

5 × 365
 

1

6×365
 to 

1

20×365
 [11] 

B Birth rate 1

5 × 365
 

1

6×365
 to 

1

20×365
 [11] 

and estimated 

4. Numerical simulations 

Firstly, we investigated 500 bovine populations consisting of an infectious cattle and 499 susceptible 

cattle with individual animals as epidemiological units. Consistent with the conclusion of [7], we 

suggested that the best way to control the disease is vaccination with antibiotic therapy. Because the 

proportion to be vaccinated 𝑝𝑣 and 𝑡 are not dependent variables of 𝜌, a given value of 𝜌 can have 

many practical interpretation. Therefore, practical application of the value of 𝜌 can be adjusted based 

on cost of control, availability, and time value. 

Numerical simulations are obtained using MATLAB in Figures 1–7. 

We did not treat any of the infected cattle in the 49-day period. We can control by vaccinating 80% 

of susceptible cattle in see Figure 2. 
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On the condition that the other values in Figure 6 and Figure 7 are the same, the values of 𝛼 = 0.01 

and 𝛼 = 0.50 are compared.  

Finally, for the parametric values in Table 1, assuming 50% of susceptible people are vaccinated 

a period of 73 days and 50% of infected cattle appear to be cured.  

 
Figure 1. Using the supposition that 50% of infectious cattle take antibiotic therapy or the 

interval of infection is decreased to 28 days (𝑎𝑡 = 1/28−1/56), 50% of credulous obtain 

vaccination within 73 days (𝜌 = (0.5×0.8×0.65)/73), 𝐼0 = 1 , 𝑆0 = 499  and 𝑉0 = 𝐸0 =

𝑄0 = 𝑅0 = 0. 

 

Figure 2. Using the supposition that 80% of sensitive cattle are vaccinated within 49 days 

(𝜌 = (0.65 ∗ 0.8 ∗ 0.8)/49) with no treating infectious cattle (𝑎𝑡 = 0  ), 𝐼0 = 1 , 𝑆0 =

499 and 𝑉0 = 𝐸0 = 𝑄0 = 𝑅0 = 0. 
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Figure 3. Using the Table 1 with the supposition that 85.7% of infectious cattle give 

antibiotic treatment within 8 days (𝑎𝑡 =1/8−1/56) with no vaccinating healthy cattle (𝜌 =

 0), 𝐼0 = 1, 𝑆0 = 499 and 𝑉0 = 𝐸0 = 𝑄0 = 𝑅0 = 0. 

 

Figure 4. Using the Table 1 with 𝜌 =  𝑎𝑡  =  0, 𝐼0 = 1, 𝑆0 = 499 and 𝑉0 = 𝐸0 = 𝑄0 = 𝑅0 = 0. 
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Figure 5. Using the Table 1 with 𝑎𝑟= 1/56 (as in [14]) and 𝐼0 = 1, 𝑆0 = 499 and 𝑉0 =

𝐸0 = 𝑄0 = 𝑅0 = 0. 

 

Figure 6. Using the Table 1 with 𝛼 = 0.01 𝑎𝑟= 1/56, 𝑎𝑡 = 0.1049 and 𝑆0 = 499 and 

𝑉0 = 𝐸0 = 0. 
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Figure 7. Using the Table 1 with 𝛼 = 0.50 𝑎𝑟= 1/56, 𝑎𝑡 = 0.1049 and 𝑆0 = 499 and 

𝑉0 = 𝐸0 = 0.  

5. Conclusions 

The simulations obtained using the Matlab program and the results obtained from these 

simulations were given in the main text. In this paper, we presented differential equations defined by 

Caputo derivative for the transmission aspects of CBPP with intercession. We constructed finite 

difference scheme for this equation. The stability estimates are proved for this difference method. 

Consequently, the verge of the antibiotic therapy is 𝐚𝐭 = 𝟎. 𝟏𝟎𝟒𝟗. The values of 𝜶 = 𝟎. 𝟎𝟏 and 𝜶 =

𝟎. 𝟓𝟎 are compared and showed by Figures 6 and 7. This fractional order model defined by the 

Atangana-Baleanu derivative can be compared with the Caputo derivative by applying the finite 

difference method. 
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