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Abstract: This work deals with a new finite time stability (FTS) of neutral fractional order systems
with time delay (NFOTSs). In light of this, FTSs of NFOTSs are demonstrated in the literature using
the Gronwall inequality. The innovative aspect of our proposed study is the application of fixed point
theory to show the FTS of NFOTSs. Finally, using two examples, the theoretical contributions are
confirmed and substantiated.
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1. Introduction

The Fractional Order System (FOS) is a nonlinear system presented with a non-integer
derivative. It is well established that mathematical models can be used to describe physical
systems. These mathematical models are used to operate such systems in a variety of ways,
including controlling, observing, and detecting. The faults and errors of modelization
may affect the system quality and performance. Therefore, the use of Fractional deriva-
tives can approach such a mathematical model to physical reality. This fact is proved in
many real physical systems, see for example [1]. Recently, the fractional calculus has at-
tracted the attention of many researchers and numerous works have been published in this
context [2–11]. In fact, by using quantum calculus, the work in [6] deals with the extension
of a hybrid fractional differential operator. Utilizing the local fractional Laplace variational
iteration methods and the local fractional reduced differential transform, authors in [7]
have obtained an approximation of the solutions for coupled Korteweg De Vries Equations.
The application of these FOSs is numerous in different domain applications, whether in
electricity [10], thermal [5], chemistry [11], signal processing [12], biology [13,14] or control
theory, such as fault estimation [15], stabilization [16], observer design [16,17], optimal
control [18], and asymptotic stability [19,20].

The study of FTS for the Fractional Order Time Delay Systems (FOTDSs) has been largely
studied in the literature in the case of continuous and discrete time [21–30]. In [30], H. Ye et al.,
have shown a Generalized Gronwall Inequality (GGI). After that, authors in [25] have used
the GGI to study the FTS for FOTDSs. The stability of neutral fractional order time delay
systems with Lipschitz nonlinearities in finite time has been investigated by F. Du et al.
in [23]. The finite-time stability of a class of fractional delayed neural networks with
commensurate order between 0 and 1 was studied by the authors in [28]. Additionally,
the authors in [26] have provided an analytical method based on the Laplace transform
and the ‘inf-sup’ approach for evaluating the finite-time stability of singular fractional-
order switching systems with delay. The authors have proposed a constructive geometric
design for switching laws based on the partitioning of the stability state regions in convex
cones. The suggested technique allows for the development of novel delay-dependent
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adequate conditions for the system’s regularity, impulse-free, and finite-time stability in
terms of tractable matrix inequalities and Mittag–Leffler functions. A case study is offered
to demonstrate the proposed method’s efficacy. Using the Lyapunov method, Thanh et al.
in [27] have investigated a novel FTS analysis of FOTDSs. By using Banach fixed point
method, author in [21] has studied the FTS for FOTDSs. In the discrete case, one has the
following references [22,24,29]. Indeed, authors in [24] have proposed a sufficient condition
for ensuring the FTS for Nabla uncertain FOS. Furthermore, authors in [22] have established
a new Gronwall Inequality and they have used it to study the FTS of a class of nonlinear
fractional delay difference systems. Furthermore, in [29], the FTS of Caputo delta fractional
difference equations is investigated. On a finite time domain, a generalized Gronwall
inequality is given. For fractional differential equations, a finite-time stability condition is
suggested. The concept is then generalized to discrete fractional cases. There are finite-time
stable conditions for a linear fractional difference equation with constant delays. To support
the theoretical result, one example is numerically shown.

Motivated by the above study, this article treats the FTS for FOS of neutral type by
using a version of the Banach fixed point theorem and some properties of the Mittag–Leffler
Function (MLF). The contribution of this work is summarized as follows:

• Knowing that, FTS of NFOTSs are proved in the literature based on the Gronwall
inequality, see [23]. The novelty of our suggested work comes from the use of the
fixed point theory to demonstrate the FTS of NFOTSs;

• A novel FTS result of FOS of neutral type is given;
• The theoretical contributions are confirmed and validated by two examples.

The rest of the paper is organized as follows. The second section deals with some
preliminaries. Some basic results related to fractional calculus, fixed point theory, as well
as finite time stability are shown. In regards to the third section, the stability analysis
of the suggested system (2), in the case of (λ1 < λ2) and (λ1 = λ2), is investigated and
described. Note that the fixed point approach is used to demonstrate the main results.
The fourth section is concentrated to show the validity of the proposed results. Two
examples are suggested to demonstrate the efficiency of the main results. Finally, to end
the work, a conclusion is presented in the fifth section showing the principle fundamentals
of the work.

2. Basic Results

Definition 1 ([31]). Given 0 < χ < 1. The CFD is given by,

CDχ
a g(s) =

1
Γ(1− χ)

d
ds

∫ s

a
(s−ω)−χ

(
g(ω)− g(a)

)
dω. (1)

Definition 2 ([31]). The MLF is defined by :

Eχ(s) =
+∞

∑
q=0

sq

Γ(qχ + 1)
,

with χ > 0, s ∈ C.

Lemma 1 ([21]). We have for s ≥ 0

sχ

Eχ

(
λsχ
) ≤ Γ(χ + 1)

λ
,

where 0 < χ < 1 and λ > 0.

Remark 1. The function d(t) = Eχ

(
b(t− τ)χ

)
satisfies CDχ

a d(t) = bd(t), where b ∈ R∗.
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Definition 3. A mapping β : B× B → [0, ∞] is called a generalized metric on a nonempty set
B if:

S1 β(ω1, ω2) = 0 if, and only if, ω1 = ω2;

S2 β(ω1, ω2) = β(ω2, ω1) for all ω1, ω2 ∈ B;

S3 β(ω1, ω3) ≤ β(ω1, ω2) + β(ω2, ω3) for all ω1, ω2, ω3 ∈ B.

Theorem 1. Let (B, β) be a generalized complete metric space. Suppose that K : B → B is
contractive with k < 1. If there is an integer k0 ≥ 0, such that β(Kk0+1b0, Kk0 b0) < ∞ for some
b0 ∈ B, so:

(a) lim
n−→+∞

Knb0 = b1 with K(b1) = b1;

(b) b1 is the unique fixed point of K in B∗ := {b2 ∈ B : β(Kk0 b0, b2) < ∞};
(c) If b2 ∈ B∗, then β(b1, b2) ≤ 1

1−k β(Kb2, b2).

We consider the following system:

CDλ2
0 x(t)− C CDλ1

0 x(t− ς(t)) = B0x(t) + B1x(t− ς(t))

+B2υ(t) + F(t, x(t), x(t− ς(t)), υ(t)), t ≥ 0, (2)

with the initial condition x(s) = ζ(s) for −ς ≤ s ≤ 0, with 0 < λ1 ≤ λ2 < 1, ς(t) is
continuous, 0 ≤ ς(t) ≤ ς, υ(t) ∈ Rp is the disturbance, ζ ∈ C1([−ς, 0],Rq), C ∈ Rq×q,
B0 ∈ Rq×q B1 ∈ Rq×q, B2 ∈ Rq×p.

The function F is continuous and satisfies:

‖F(τ, σ1, σ2, σ3)− F(τ, ψ1, ψ2, ψ3)‖ ≤ f (τ)
(
‖σ1 − ψ1‖+ ‖σ2 − ψ2‖+ ‖σ3 − ψ3‖

)
, (3)

and F(τ, 0, 0, 0) = 0, for all (τ, σ1, σ2, σ3, ψ1, ψ2, ψ3) ∈ R+ ×Rq ×Rq ×Rp ×Rq ×Rq ×Rp

where f is a continuous function.
The function υ is continuous and satisfies:

∃$ > 0 : υT(t)υ(t) ≤ $2. (4)

Definition 4. The FOS (2) possesses FTS w.r.t. {γ1, γ2, $, T}, γ1 < γ2 if

‖ζ‖ ≤ γ1,

implies:
‖x(t)‖ ≤ γ2, ∀t ∈ [0, T],

for all υ satisfying (4), where ‖ζ‖ = sup
τ∈[−ς,0]

‖ζ(τ)‖.

3. Stability Analysis

This section is used to show our main results.
First, let us denote bi = max

r∈[0,T]

(
f (r) + ‖Bi‖

)
for i = 0, 1, 2 and c = ‖C‖.

In the next subsections, we study the FTS of (2) when λ1 < λ2 and when λ1 = λ2.
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3.1. The Case λ1 < λ2

From Theorem 1 in [23], we have the solution of the FOS (2) is the solution of the
following system

x(t) = ζ(0)− Cζ(−ς(0))
tλ2−λ1

Γ(λ2 − λ1 + 1)
+

1
Γ(λ2 − λ1)

∫ t

0
(t− s)λ2−λ1−1Cx

(
s− ς(s)

)
ds

+
1

Γ(λ2)

∫ t

0
(t− s)λ2−1

[
B0x(s) + B1x(s− ς(s))

+ B2υ(s) + F(s, x(s), x(s− ς(s)), υ(s))
]
ds, 0 ≤ t ≤ T,

x(t) = ζ(t),−ς ≤ t ≤ 0.

Theorem 2. The FOS (2) is FTS w.r.t. {γ1, γ2, $, T}, γ1 < γ2 if there exist η1, η2 > 0, such that

G(γ1, $) ≤ γ2, (5)

where

G(γ1, $) =
(

δ + c1Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

))
γ1

+ c2Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

)
$, (6)

δ = 1 + c Tλ2−λ1
Γ(λ2−λ1+1) , c1 =

1
(1− η)

( cδM1

Γ(λ2 − λ1 + 1)
+

b0δM2

Γ(λ2 + 1)
+

b1δM2

Γ(λ2 + 1)

)
,

c2 =
b2M2

(1− η)Γ(λ2 + 1)
, M1 = sup

τ∈[0,T]

( τλ2−λ1

Eλ2−λ1

(
(c + η1)τλ2−λ1

)),

M2 = sup
τ∈[0,T]

( τλ2

Eλ2

(
(b0 + b1 + η2)τλ2

)) and η =
( c

c+η1
+ b0+b1

b0+b1+η2

)
.

Proof. Let ζ ∈ C1([−ς, 0],Rq), such that ‖ζ‖ ≤ γ1.
Let F = C

(
[−ς, T],Rq) and consider the metric β on F by

β(y1, y2) = inf

{
r ∈ [0, ∞] : ‖y1(t)− y2(t)‖ ≤ rg(t), ∀t ∈ [−ς, T]

}
,

where g is given by g(τ) = Eλ2−λ1

(
(c + η1)τ

λ2−λ1
)
Eλ2

(
(b0 + b1 + η2)τ

λ2
)

for τ ∈ [0, T]
and g(τ) = 1, for τ ∈ [−ς, 0].

We consider the operator: D : F → F , such that

(DX)(w) = ζ(0)− Cζ(−ς(0))
wλ2−λ1

Γ(λ2 − λ1 + 1)

+
1

Γ(λ2 − λ1)

∫ w

0
(w− s)λ2−λ1−1CX

(
s− ς(s)

)
ds

+
1

Γ(λ2)

∫ w

0
(w− s)λ2−1

[
B0X(s) + B1X(s− ς(s))

+B2υ(s) + F(s, X(s), X(s− ς(s)), υ(s))
]
ds, (7)

for w ∈ [0, T] and (DX)(w) = ζ(w), for w ∈ [−ς, 0].
Note that,D is well defined, (F , β) is a generalized complete metric space, β(DX0, X0) <

∞, and {X1 ∈ F : β(X0, X1) < ∞} = F , ∀X0 ∈ F .
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Let X1, X2 ∈ F , for w ∈ [−ς, 0], we get (DX1)(w)− (DX2)(w) = 0.
For w ∈ [0, T], we have∥∥∥(DX1)(w)− (DX2)(w)

∥∥∥
≤
∫ w

0

(w− r)λ2−λ1−1

Γ(λ2 − λ1)
c‖X1(r− ς(r))− X2(r− ς(r))‖dr

+
∫ w

0

(w− r)λ2−1

Γ(λ2)

[(
f (r) + ‖B0‖

)
‖X1(r)− X2(r)‖

+
(

f (r) + ‖B1‖
)
‖X1(r− ς(r))− X2(r− ς(r))‖

]
dr

≤ c
∫ w

0

(w− r)λ2−λ1−1

Γ(λ2 − λ1)
‖X1(r− ς(r))− X2(r− ς(r))‖dr

+b0

∫ w

0
(w− r)λ2−1 ‖X1(r)− X2(r)‖

Γ(λ2)
dr

+b1

∫ w

0
(w− r)λ2−1 ‖X1(r− ς(r))− X2(r− ς(r))‖

Γ(λ2)
dr. (8)

Then, ∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥

≤ c
∫ w

0

(w− r)λ2−λ1−1

Γ(λ2 − λ1)

‖X1(r− ς(r))− X2(r− ς(r))‖
g(r− ς(r))

g(r− ς(r))dr

+
b0

Γ(λ2)

∫ w

0
(w− r)λ2−1 ‖X1(r)− X2(r)‖

g(r)
g(r)dr

+
b1

Γ(λ2)

∫ w

0
(w− r)λ2−1 ‖X1(r− ς(r))− X2(r− ς(r))‖

g(r− ς(r))
g(r− ς(r))dr

≤ cβ(X1, X2)
∫ w

0

(w− r)λ2−λ1−1

Γ(λ2 − λ1)
g(r− ς(r))dr

+
b0β(X1, X2)

Γ(λ2)

∫ w

0
(w− r)λ2−1 g(r)dr

+
b1β(X1, X2)

Γ(λ2)

∫ w

0
(w− r)λ2−1 g(r− ς(r))dr.

Therefore,∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥ ≤ cβ(X1, X2)

∫ w

0

(w− τ)λ2−λ1−1

Γ(λ2 − λ1)
g(τ)dτ

+
(b0 + b1)β(X1, X2)

Γ(λ2)

∫ w

0
(w− τ)λ2−1 g(τ)dτ

≤ cβ(X1, X2)Eλ2

(
(b0 + b1 + η2)wλ2

)
×

∫ w

0

(w− τ)λ2−λ1−1

Γ(λ2 − λ1)
Eλ2−λ1

(
(c + η1)τ

λ2−λ1
)
dτ

+ (b0 + b1)β(X1, X2)Eλ2−λ1

(
(c + η1)wλ2−λ1

)
×

∫ w

0

(w− τ)λ2−1

Γ(λ2)
Eλ2

(
(b0 + b1 + η2)τ

λ2
)
dτ.

Using Remark 1, we get



Fractal Fract. 2022, 6, 289 6 of 13

∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥ ≤ c

c + η1
β(X1, X2)g(w) +

b0

b0 + b1 + η2
β(X1, X2)g(w)

+
b1

b0 + b1 + η2
β(X1, X2)g(w)

≤
( c

c + η1
+

b0 + b1

b0 + b1 + η2

)
β(X1, X2)g(w). (9)

Then, ∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥

g(w)
≤
( c

c + η1
+

b0 + b1

b0 + b1 + η2

)
β(X1, X2).

Thus,

β(DX1,DX2) ≤
( c

c + η1
+

b0 + b1

b0 + b1 + η2

)
β(X1, X2).

Therefore, D is contractive.
Let x0 be the function given by x0(τ) = ζ(τ), for τ ∈ [−ς, 0] and x0(τ) = ζ(0) −

Cζ
(
− ς(0)

)
τλ2−λ1

Γ(λ2−λ1+1) for τ ∈ [0, T].
Then, we have

‖x0(τ)‖ ≤
(
‖ζ‖+ c‖ζ‖ Tλ2−λ1

Γ(λ2 − λ1 + 1)
)
,

for all τ ∈ [−ς, T].
For τ ∈ [−ς, 0], we get (Dx0)(τ)− x0(τ) = 0.
For w ∈ [0, T], we have∥∥∥(Dx0)(w)− x0(w)
∥∥∥ ≤

∫ w

0

(w− s)λ2−λ1−1

Γ(λ2 − λ1)
c‖x0

(
s− ς(s)

)
‖ds

+
1

Γ(λ2)

∫ w

0
(w− s)λ2−1[b0‖x0(s)‖+ b1‖x0

(
s− ς(s)

)
‖+ b2$

]
ds

≤ c
(
‖ζ‖+ c‖ζ‖ Tλ2−λ1

Γ(λ2 − λ1 + 1)
) wλ2−λ1

Γ(λ2 − λ1 + 1)

+
(

b0
(
‖ζ‖+ c‖ζ‖ Tλ2−λ1

Γ(λ2 − λ1 + 1)
)
+ b1

(
‖ζ‖

+ c‖ζ‖ Tλ2−λ1

Γ(λ2 − λ1 + 1)
)
+ b2$

) wλ2

Γ(λ2 + 1)

≤ c‖ζ‖δ wλ2−λ1

Γ(λ2 − λ1 + 1)

+
(
b0‖ζ‖δ + b1‖ζ‖δ + b2$

) wλ2

Γ(λ2 + 1)
. (10)

Then ∥∥∥(Dx0)(w)− x0(w)
∥∥∥

g(w)
≤ c‖ζ‖δM1

Γ(λ2 − λ1 + 1)

+
(
b0‖ζ‖δ + b1‖ζ‖δ + b2$

) M2

Γ(λ2 + 1)
, (11)

for all w ∈ [0, T].
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Therefore,

β(Dx0, x0) ≤
c‖ζ‖δM1

Γ(λ2 − λ1 + 1)

+
(
b0‖ζ‖δ + b1‖ζ‖δ + b2$

) M2

Γ(λ2 + 1)
. (12)

It follows from Theorem 1 that there is a unique solution x of (2) with initial conditions
of ζ, such that

β(x0, x) ≤ 1
1− η

[ c‖ζ‖δM1

Γ(λ2 − λ1 + 1)

+
(
b0‖ζ‖δ + b1‖ζ‖δ + b2$

) M2

Γ(λ2 + 1)

]
≤ c1γ1 + c2$. (13)

Therefore,

‖x0(t)− x(t)‖ ≤
(
c1γ1 + c2$

)
Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

)
,

for every t ∈ [0, T].
Then,

‖x(t)‖ ≤ ‖x0(t)‖+ ‖x(t)− x0(t)‖

≤
(

δ + c1Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

))
γ1

+ c2Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

)
$, (14)

for every t ∈ [0, T].
Thus, ‖x(t)‖ ≤ γ2, for all t ∈ [0, T], if (5) is satisfied.

Remark 2. Using Lemma 1, we get

c1 ≤
1

(1− η)

( cδ

c + η1
+

b0δ

b0 + b1 + η2
+

b1δ

b0 + b1 + η2

)
and

c2 ≤
1

(1− η)

b2

b0 + b1 + η2
.

Let
c̃1 =

1
(1− η)

( cδ

c + η1
+

b0δ

b0 + b1 + η2
+

b1δ

b0 + b1 + η2

)
and

c̃2 =
1

(1− η)

b2

b0 + b1 + η2
.

Therefore, the condition (5) can be relaxed by:

G̃(γ1, $) ≤ γ2, (15)

where

G̃(γ1, $) =
(

δ + c̃1Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

))
γ1

+ c̃2Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

)
$. (16)
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3.2. The Case λ1 = λ2

The solution of the FOS (2) is the solution of

x(t) = ζ(0) + C
(

x
(
t− ς(t)

)
− ζ(−ς(0))

)
+

1
Γ(λ2)

∫ t

0
(t− s)λ2−1

[
B0x(s) + B1x(s− ς(s))

+ B2υ(s) + F(s, x(s), x(s− ς(s)), υ(s))
]
ds, 0 ≤ t ≤ T,

x(t) = ζ(t),−ς ≤ t ≤ 0.

Theorem 3. The FOS (2) is FTS w.r.t. {γ1, γ2, $, T}, γ1 < γ2 if there exist θ > 0, such that

η < 1,

and
K(γ1, $) ≤ γ2, (17)

where
η =

(
c +

b0 + b1

b0 + b1 + θ

)
,

K(γ1, $) =
(

1 + c1Eλ2

(
(b0 + b1 + θ)Tλ2

))
γ1

+ c2Eλ2

(
(b0 + b1 + θ)Tλ2

))
$, (18)

c1 =
1

(1− η)

(
2c +

b0M
Γ(λ2 + 1)

+
b1M

Γ(λ2 + 1)

)
, c2 =

b2M
(1− η)Γ(λ2 + 1)

and

M = sup
τ∈[0,T]

( τλ2

Eλ2

(
(b0 + b1 + θ)τλ2

)).

Proof. Let ζ ∈ C1([−ς, 0],Rq), such that ‖ζ‖ ≤ γ1.
Let F = C

(
[−ς, T],Rq) and consider the metric β on F by

β(y1, y2) = inf

{
r ∈ [0, ∞] :

‖y1(l)− y2(l)‖
g(l)

≤ r, ∀l ∈ [−ς, T]

}
,

where g is given by g(l) = 1, for l ∈ [−ς, 0] and g(l) = Eλ2

(
(b0 + b1 + θ)lλ2

)
for l ∈ [0, T].

We consider the operator: D : F → F , such that

(DX)(w) = ζ(0) + C
(

X
(
w− ς(w)

)
− ζ(−ς(0))

)
+

1
Γ(λ2)

∫ w

0
(w− s)λ2−1

[
B0X(s) + B1X(s− ς(s))

+ B2υ(s) + F(s, X(s), X(s− ς(s)), υ(s))
]
ds, (19)

for w ∈ [0, T] and (DX)(w) = ζ(w), for w ∈ [−ς, 0].
Note that,D is well defined, (F , β) is a generalized complete metric space, β(DX0, X0) < ∞,
and {X1 ∈ F : β(X0, X1) < ∞} = F , ∀X0 ∈ F .
Let X1, X2 ∈ F , for w ∈ [−ς, 0], we get (DX1)(w)− (DX2)(w) = 0.
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For w ∈ [0, T], we have∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥

≤ c‖X1(w− ς(w))− X2(w− ς(w))‖

+
∫ w

0

(w− r)λ2−1

Γ(λ2)

[(
f (r) + ‖B0‖

)
‖X1(r)− X2(r)‖

+
(

f (r) + ‖B1‖
)
‖X1(r− ς(r))− X2(r− ς(r))‖

]
dr

≤ c
‖X1(w− ς(w))− X2(w− ς(w))‖

g
(
w− ς(w)

) g
(
w− ς(w)

)
+b0

∫ w

0

(w− u)λ2−1

Γ(λ2)

‖X1(u)− X2(u)‖
g(u)

g(u)du

+b1

∫ w

0

(w− u)λ2−1

Γ(λ2)

‖X1(u− ς(u))− X2(u− ς(u))‖
g
(
u− ς(u)

) g
(
u− ς(u)

)
du

≤ cβ(X1, X2)g
(
w− ς(w)

)
+

b0β(X1, X2)

Γ(λ2)

∫ w

0
(w− u)λ2−1 g(u)du

+
b1β(X1, X2)

Γ(λ2)

∫ w

0
(w− u)λ2−1 g(u)du. (20)

Using Remark 1, we get∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥ ≤ cβ(X1, X2)g(w) +

b0

b0 + b1 + θ
β(X1, X2)g(w)

+
b1

b0 + b1 + θ
β(X1, X2)g(w)

≤
(
c +

b0 + b1

b0 + b1 + θ

)
β(X1, X2)g(w). (21)

Then, ∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥

g(w)
≤
(
c +

b0 + b1

b0 + b1 + θ

)
β(X1, X2),

Thus,

β(DX1,DX2) ≤
(
c +

b0 + b1

b0 + b1 + θ

)
β(X1, X2).

Therefore, D is contractive.
Let x0 be the function given by x0(τ) = ζ(τ), for τ ∈ [−ς, 0] and x0(τ) = ζ(0) for

τ ∈ [0, T].
Then, we have

‖x0(τ)‖ ≤ ‖ζ‖,

for all t ∈ [−ς, T].
For τ ∈ [−ς, 0], we get (Dx0)(τ)− x0(τ) = 0.
For w ∈ [0, T], we have∥∥∥(Dx0)(w)− x0(w)
∥∥∥ ≤ 2c‖ζ‖

+
1

Γ(λ2)

∫ w

0
(w− s)λ2−1[b0‖x0(s)‖+ b1‖x0

(
s− ς(s)

)
‖+ b2$

]
ds

≤ 2c‖ζ‖+ wλ2

Γ(λ2 + 1)

(
b0‖ζ‖+ b1‖ζ‖+ b2$

)
. (22)
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Then, ∥∥∥(Dx0)(w)− x0(w)
∥∥∥

g(w)
≤ 2c‖ζ‖

+
(
b0‖ζ‖+ b1‖ζ‖+ b2$

) M
Γ(λ2 + 1)

, (23)

for all w ∈ [0, T].
Therefore,

β(Dx0, x0) ≤ 2c‖ζ‖

+
(
b0‖ζ‖+ b1‖ζ‖+ b2$

) M
Γ(λ2 + 1)

. (24)

Theorem 1 implies that (2) has a unique solution x with initial conditions of ζ, such that

β(x0, x) ≤ 1
1− η

[
2c‖ζ‖

+
(
b0‖ζ‖+ b1‖ζ‖+ b2$

) M
Γ(λ2 + 1)

]
≤ c1γ1 + c2$. (25)

Therefore,

‖x0(t)− x(t)‖ ≤
(
c1γ1 + c2$

)
Eλ2

(
(b0 + b1 + θ)Tλ2

)
,

for all t ∈ [0, T].
Then,

‖x(t)‖ ≤ ‖(x− x0)(t)‖+ ‖x0(t)‖

≤
(

1 + c1Eλ2

(
(b0 + b1 + θ)Tλ2

))
γ1

+ c2Eλ2

(
(b0 + b1 + θ)Tλ2

)
$. (26)

Thus, ‖x(t)‖ ≤ γ2, for all t ∈ [0, T], if (17) is satisfied.

Remark 3. Using Lemma 1, we get

c1 ≤
1

(1− η)

(
2c +

b0

b0 + b1 + θ
+

b1

θ + b1 + b0

)
and

c2 ≤
1

(1− η)

b2

b0 + b1 + θ
.

Let us consider

c̃1 =
1

(1− η)

(
2c +

b0

θ + b1 + b0
+

b1

b0 + b1 + θ

)
and

c̃2 =
1

(1− η)

b2

θ + b1 + b0
.

Therefore, the condition (17) can be relaxed by:

K̃(γ1, $) ≤ γ2, (27)
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where

K̃(γ1, $) =
(

1 + c̃1Eλ2

(
(b0 + b1 + θ)Tλ2

))
γ1

+ c̃2Eλ2

(
(b0 + b1 + θ)Tλ2

)
$. (28)

Remark 4. In the Theorem 3, c < 1 it is a necessary condition.

Remark 5. In the case when C = 0, we get the results in [21].

4. Examples

Two examples are studied to prove the applicability of Theorems 2 and 3.

Example 1. Consider the NFOTDSs (2), with λ2 = 0.7, λ1 = 0.2, ς(s) = 0.1,

υ(τ) =
(
0.5, 0

)T , ζ(τ) =
(
0.05, 0

)T , for τ ∈ [−0.1, 0],

F(s, x(s), x(s− ς(s)), υ(s)) = 0.01
(

sin
(
x2(s− ς(s))

)
, sin

(
x1(s)

))T
,

and

B0 =

(
0 0.4

0.1 0

)
, B1 =

(
−0.6 0
−0.2 0

)
, B2 =

(
0.3 0
0.4 0

)
, C =

(
0.2 0
−0.1 0

)
.

We get b0 = 0.41, b1 = 0.64, b2 = 0.51 and c = 0.2236.
For η1 = η2 = 1, $ = 1, γ1 = 0.3 and γ2 = 60. Moreover, if we calculate δ, c̃1 and c̃2, then

G̃(γ1, $) ' 59 < γ2, for T = 0.61. Based on theorem 2 it is clear that the NFOTDSs is FTS w.r.t(
0.3, 60, 1, 0.61

)
.

Example 2. Consider the NFOTDSs (2), with λ2 = λ1 = 0.6, ς(s) = 0.1,

υ(τ) =
(
0, 0.5, 0

)T , ζ(τ) =
(
0.04, 0, 0.02

)T , for τ ∈ [−0.1, 0],

F(s, x(s), x(s− ς(s)), υ(s)) = 0.01
(

sin
(
x2(s− ς(s))

)
, sin

(
x3(s− ς(s)

)
, sin

(
x1(s))

))T
,

and

B0 =

 0.01 −0.2 0.25
−0.02 0.05 0.1

0.2 −0.01 0.15

, B1 =

 0.01 −0.15 0.31
0.25 0.12 −0.14
0.13 −0.12 0.22

,

B2 =

 0.08 0.07 0.2
0.08 −0.07 −0.06
−0.12 −0.03 −0.14

, C =

 0.1 0.2 0.03
0.12 0.22 0.05
−0.17 0.05 −0.21

.

We get b0 = 0.37, b1 = 0.47, b2 = 0.30, and c = 0.35.
For $ = 1, θ = 1, γ1 = 0.4, γ2 = 100, and T = 1.05, we get K̃(γ1, $) ' 97 < γ2.
Theorem 3 implies that the NFOTDSs is FTS w.r.t

(
0.4, 100, 1, 1.05

)
.

5. Conclusions

In this paper, a new robust FTS for NFOTDSs was described. By suggesting an
approach based on the fixed point theory, novel sufficient conditions for the robust FTS of
such systems are obtained. Finally, two examples were described to show the validity and
the useless of the suggested result.

Author Contributions: Formal analysis, A.B.M.; writing—original draft preparation, A.B.M.; Su-
pervision, D.B.; Visualization, D.B. All authors have read and agreed to the published version of
the manuscript.



Fractal Fract. 2022, 6, 289 12 of 13

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Warrier, P.; Shah, P. Fractional Order Control of Power Electronic Converters in Industrial Drives and Renewable Energy Systems:

A Review. IEEE Access 2021, 9, 58982–59009. [CrossRef]
2. Afshari, A. Solution of fractional differential equations in quasi-b-metric and bmetric- like spaces. Adv. Differ. Equ. 2019, 2019, 285

[CrossRef]
3. Afshari, A.; Gholamyan, H.; Zhai, C.B. New applications of concave operators to existence and uniqueness of solutions for

fractional differential equations. Math. Commun. 2020, 25, 157–169.
4. Afshari, A.; Sajjadmanesh, M.; Baleanu, D. Existence and uniqueness of positive solutions for a new class of coupled system via

fractional derivatives. Adv. Differ. Equ. 2020, 2020, 111. [CrossRef]
5. Feng, Y.Y.; Yang, X.J.; Liu, J.G.; Chen, Z.Q. A new fractional Nishihara-type model with creep damage considering thermal effect.

Eng. Fract. Mech. 2021, 242, 107451. [CrossRef]
6. Ibrahim, R.W.; Baleanu, D. On quantum hybrid fractional conformable differential and integral operators in a complex domain.

Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2021, 31, 514–531. [CrossRef]
7. Jafari, H.; Jassim, H.K.; Baleanu, D.; Chu, Y. On the Approximate Solutions for a System of Coupled Korteweg De Vries Equations

with Local Fractional Derivative. Fractals 2021, 29, 2140012. [CrossRef]
8. Sakar, M.G. Numerical solution of neutral functional-differential equations with proportional delays. Int. J. Optim. Control. Theor.

Appl. (IJOCTA) 2017, 7, 186–194. [CrossRef]
9. Veeresha, P.; Yavuz, M.; Baishya, C. A computational approach for shallow water forced Korteweg-De Vries equation on critical

flow over a hole with three fractional operators. Int. J. Optim. Control. Theor. Appl. (IJOCTA) 2021, 11, 52–67. [CrossRef]
10. Vigya; Mahto, T.; Malik, H.; Mukherjee, V.; Alotaibi, M.A.; Almutairi, A. Renewable generation based hybrid power system

control using fractional order-fuzzy controller. Energy Rep. 2021, 7, 641–653. [CrossRef]
11. Zhang, K.; Wu, L. Using a fractional order grey seasonal model to predict the dissolved oxygen and pH in the Huaihe River.

Water Sci. Technol. 2021, 83, 475–486. [CrossRef] [PubMed]
12. Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. Biomedical signals reconstruction and zero-watermarking using

separable fractional order Charlier-Krawtchouk transformation and Sine Cosine Algorithm. Signal Process. 2021, 180, 107854.
[CrossRef]

13. Higazy, M.; Allehiany, F.M.; Mahmoud, E.E. Numerical study of fractional order COVID-19 pandemic transmission model in
context of ABO blood group. Results Phys. 2021, 22, 103852. [CrossRef] [PubMed]

14. Liu, D.; Zhao, S.; Luo, X.; Yuan, Y. Synchronization for fractional-order extended Hindmarsh-Rose neuronal models with
magneto-acoustical stimulation input. Chaos Solitons Fractals 2021, 144, 110635. [CrossRef]

15. Zhang, C.; Yang, H.; Jiang, B. Fault Estimation and Accommodation of Fractional-Order Nonlinear, Switched, and Interconnected
Systems. IEEE Trans. Cybern. 2020, 52, 1443–1453. [CrossRef]

16. Amiri, S.; Keyanpour, M.; Asaraii, A. Observer-based output feedback control design for a coupled system of fractional ordinary
and reaction-diffusion equations. IMA J. Math. Control. Inf. 2021, 38, 90–124. [CrossRef]

17. Feng, T.; Wang, Y.E.; Liu, L.; Wu, B. Observer-based event-triggered control for uncertain fractional-order systems. J. Frankl. Inst.
2020, 357, 9423–9441. [CrossRef]

18. Edrisi-Tabriz, Y.; Lakestani, M.; Razzaghi, M. Study of B-spline collocation method for solving fractional optimal control problems.
Trans. Inst. Meas. Control 2021, 43, 2425–2437. [CrossRef]

19. Brandibur, O.; Kaslik, E. Stability analysis of multi-term fractional-differential equations with three fractional derivatives. J. Math.
Anal. Appl. 2021, 495, 124751. [CrossRef]

20. Ivanescu, M.; Popescu, N.; Popescu, D. Physical Significance Variable Control for a Class of Fractional-Order Systems. Circuits
Syst. Signal Process. 2021, 40, 1525–1541. [CrossRef]

21. Ben Makhlouf, A. A Novel Finite Time Stability Analysis of Nonlinear Fractional-Order Time Delay Systems: A Fixed Point
Approach. Asian J. Control 2021. [CrossRef]

22. Du, F.; Jia, B. Finite-time stability of a class of nonlinear fractional delay difference systems. Appl. Math. Lett. 2019, 98, 233–239.
[CrossRef]

23. Du, F.; Lu, J.G. Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities. Appl. Math.
Comput. 2020, 375, 125079. [CrossRef]

24. Lu, Q.; Zhu, Y.; Li, B. Finite-time stability in mean for Nabla Uncertain Fractional Order Linear Difference Systems. Chaos Solitons
Fractals 2021, 29, 2150097. [CrossRef]



Fractal Fract. 2022, 6, 289 13 of 13

25. Phat, V.N.; Thanh, N.T. New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality
approach. Appl. Math. Lett. 2018, 83, 169–175. [CrossRef]

26. Thanh, N.T.; Phat, V.N. Switching law design for finite-time stability of singular fractional-order systems with delay. IET Control
Theory Appl. 2019, 13, 1367–1373. [CrossRef]

27. Thanh, N.T.; Phat, V.N.; Niamsup, T. New finite-time stability analysis of singular fractional differential equations with time-
varying delay. Fract. Calc. Appl. Anal. 2020, 23, 504–519. [CrossRef]

28. Wu, R.; Lu, Y.; Chen, L. Finite-time stability of fractional delayed neural networks. Neurocomputing 2015, 149, 700–707. [CrossRef]
29. Wu, G.C.; Baleanu, D.; Zeng, S.D. Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability

criterion. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 299–308. [CrossRef]
30. Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal.

Appl. 2007, 328, 1075–1081. [CrossRef]
31. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.


