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1. INTRODUCTION

The concept of variable and distributed order fractional derivative firstly appeared
in [9] since many physical processes exhibited memory effects that may vary with
time or space variables. Some new variable order fractional derivatives and applica-
tions were suggested, for example, Hamilton’s principle [2], variable–order mechan-
ics [3], constitutive relation for vis-coelasiticity [12], fractional diffusion equations
[8, 13, 14]. Although the variable-order fractional derivative provides more freedom
degrees and new ways to understand the complicated dynamics, the main difficulty
is to consider the qualitative theories. Hence, it is a challenging work to define a
variable-order function not only can be efficient in explanation of physical phenom-
ena but also for convenience of mathematical analysis.

In this paper, we propose a kind of short memory fractional differential equations
and try to address this problem which is our main purpose. We investigate the fol-
lowing fractional differential equation and give existence results{ C

tlk
Dαk+1

t x = f (x, t), t ∈
[
tlk , tlk+1

]
x(tl0) = η, 0 < αk+1 ≤ 1,k = 0,1, . . . ,m−1, l0 = 0, tlm = T,1 ≤ m,

(1.1)
where tlk is the initial point, C

tlk
Dαk+1

t x is the Caputo derivative of the function x(t),
f : R× [t0,T ]→R and the fractional order αk+1 is a piecewise constant defined over
each

[
tlk , tlk+1

]
.

The paper in the organized in following sections. Section 2 compares the clas-
sical fractional differential equations with Eq. (1.1). Then it gives existence results.
Section 3 applies predictor-corrector method to obtain numerical solutions. Section
4 derives the exact solution of linear equations. Section 5 investigates the linear
fractional variable–order system’s asymptotic stability. Finally, conclusion is made
in Section 6 and some possible applications are discussed.
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2. EXISTENCE RESULTS

We need to point out Eq. (1.1) is totally different from classical fractional differ-
ential equations with initial conditions{

C
t0Dα

t x(t) = f (x, t)
x(t0) = η, 0 < α ≤ 1. (2.1)

Eq. (1.1) has “moving” initial points. We call it as a short memory fractional dif-
ferential equation since the solution x(t) only depends on the information from x(tlk)
for t ∈ [tlk , tlk+1 ]. There is no need to start from t0 in fractional modelling and this
provides more freedom degrees in real-world applications. Besides, this feature is
much easier for mathematical analysis of variable-order problems. In the rest of the
paper, we give existence results and numerical solutions of Eq. (1.1).

Now, let’s revisit some results in the fractional calculus and introduce the following
definitions in [11].

Definition 1. For α > 0, the Riemann-Liouville integral of α order for function y
on [t0,+∞) is defined as

t0Iα
t y =

1
Γ(α)

∫ t

t0
(t − s)α−1y(s)ds, t > t0. (2.2)

Definition 2. For 0 < α < 1 and y(t) ∈ AC1[t0,+∞), the Caputo derivative of α

order is defined by

C
t0Dα

t y :=
1

Γ(1−α)

∫ t

t0
(t − s)−αy′(s)ds, t > t0. (2.3)

For α = 1, then C
t0Dα

t y(t) = y
′
(t).

Assume that B(b,a)= {(x, t) : |x− x∗| ≤ b, |t − t∗| ≤ a}. Let the function f : B(b,a)
→ R be bounded by M∗, and f is Lipschitz continuous with respect to x with the con-
stant L∗.

Lemma 1 ([1, 7]). x(t) is a solution of the fractional differential equation{
C
t∗D

α
t x = f (x, t), (x, t) ∈ B(b,a), 0 < α ≤ 1,

x(t∗) = x∗. (2.4)

if and only if x(t) is a solution of the following equivalent integral equation

x(t) = x(t∗)+ t∗Iα
t f (x, t). (2.5)

Lemma 2 ([1, 7]). The system (2.4) has a unique solution over the interval
[t∗, t∗+h∗] if f satisfies the Lipschitz condition

| f (x, t)− f (y, t)| ≤ L∗|x− y|,(x, t),(y, t) ∈ B(b,a). (2.6)

where

h∗α = min
{

aα,
Γ(1+α)

L∗ ,
Γ(1+α)b

M∗

}
. (2.7)
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and M∗ = max(x,t)∈B(b,a)(| f (x, t)|).

Considering the fractional variable order system (1.1), let t∗ = tlk , k = 0, . . ., m−
1, l0 = 0 and the initial condition becomes (tlk ,xlk). For example t∗ = t0, we can
determine h0 and get the interval [t0, tl1 ] where tl1 = tl0 + h0. With the new initial
condition (tl1 ,xl1) and by use of the existence condition (2.7), we can determine h1,
[tl1 , tl1 +h1] and (tl2 ,xl2). More generally, we can obtain each hk and [tlk , tlk +hk]
successively in this way. Hence, we now arrive at existence results of Eq. (1.1).

Theorem 1. f (x, t) is globally Lipschitz continuous with respect to x

| f (x∗2, t)− f (x∗1, t)| ≤ L∗ |x∗2 − x∗1| ,(x∗1, t) ,(x∗2, t) ∈ B(b,a),k = 0,1, . . . ,m−1. (2.8)

Eq. (1.1) has a unique solution on
[
t0, t0 +∑

m−1
k=0 hk

]
, where hk is defined

hαk+1
k = min

{
aαk+1 ,

Γ(1+αk+1)

L∗ ,
Γ(1+αk+1)b

M∗

}
. (2.9)

Theorem 2. Eq. (1.1) has a unique solution for t ∈ [t0, t0 +ml] where

l = min{h0, . . . ,hm−1} . (2.10)

3. NUMERICAL METHOD

Although we can use Picard’s method to obtain series solutions, the accuracy is
not high enough to get the update initial conditions (tkl,xkl). Hence, in this section,
we consider the numerical solutions. Let us first illustrate general steps for exact
solutions of the linear equations. Then we consider the predictor-corrector method
for the nonlinear case.

The predictor-corrector method developed in [6] is the most popular numerical
method for chaotic analysis of fractional differential equations. Recently, several
improved versions and other applications are considered [4, 5]. Eq. (2.1) is equal to

x(t) = x(t0)+ t0Iα
t f (x, t). (3.1)

Diethelm proposed the rectangle and trapezoid formulae for the fractional integral [6]
where the coefficients were derived as

b j,n+1 =
1
α
((n+1− j)α − (n− j)α) (3.2)

and

a j,n+1 =

 nα+1 − (n−α)(n+1)α if j = 0;
(n− j+2)α+1 +(n− j)α+1 −2(n− j+1)α+1 if 1 ≤ j ≤ n;
1 if j = n+1.

(3.3)
For the variable–order fractional differential equation,{

C
tkl

Dαk+1
t x(t) = f (x, t), t ∈

[
tkl, t(k+1)l

]
,

x(t0) = η, 0 < αk+1 ≤ 1,k = 0,1, . . . ,m−1,
(3.4)
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it has the same numerical formulae on the first interval [t0, tl]. From t ∈
[
tkl, t(k+1)l

]
,

1 ≤ k ≤ m− 1, m = 2,3, . . . , and ∆t = l
s where s is a positive integer, we obtain the

numerical formula
xp

ks+i+1 = xks +
∆tαk+1

Γ(αk+1)

i
∑
j=0

b j,i+1 f
(
x j+ks, t j+ks

)
, i = 0, . . . ,s−1,

xks+i+1 = xks +
∆tαk+1

Γ(αk+1+2)

i
∑
j=0

a j,i+1 f
(
x j+ks, t j+ks

)
+ ∆tαk+1

Γ(αk+1+2) f
(
xp

ks+i+1, tks+i+1
)
.

(3.5)
Here xn is the numerical solution, xn := x(tn) and ∆t is the step–length of the numer-
ical formulae. The error estimation is O(∆t p) and p = 1+αk+1.

Example 1. Consider the following fractional differential equation{
C
tkl

Dαk+1
t x = sin(x), t ∈

[
tkl, t(k+1)l

]
,

x(t0) = 0.1, 0 < αk+1 ≤ 1,k = 0,1, . . . ,m−1.
(3.6)

We adopt the following parameters: m= 3, L= 1, α1 = 0.7, α2 = 0.8 and α3 = 0.9.
According to Theorem 2, we can use solutions’ interval as [0, 3l] and l = 0.8.

By use of the numerical method, the numerical solutions are given in Figs. 1 and 2.
With different time domains, the fractional order is varied in Fig. 1. And the constant
order case is compared in Fig. 2 where we set the order to 0.8. From the solution’s be-
havior, we can see that although the fractional order is the same on different domains,
the solution is not differentiable at the ends tkl due to the short memory effects.

FIGURE 1. Numerical solutions of variable order system (3.6) (the
blue: α1 = 0.7 and t ∈ [0,0.8]; the red: α2 = 0.8 and t ∈ [0.8,1.6]
the green: α3 = 0.9 and t ∈ [1.6,2.4].).

4. EXACT SOLUTIONS OF LINEAR EQUATIONS

In this subsection, we discuss two linear equations.
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FIGURE 2. Numerical solutions of constant order system (3.6) on
different time domains (the blue: α1 = 0.8 and t ∈ [0,0.8]; the red:
α2 = 0.8 and t ∈ [0.8,1.6]; the green: α3 = 0.8 and t ∈ [1.6,2.4].).

Theorem 3. The fractional differential equation{
C
tkl

Dαk+1
t x(t) = λx(t), t ∈

[
tkl, t(k+1)l

]
,

x(t0) = η, 0 < αk+1 ≤ 1,k = 0,1, . . .
(4.1)

has a unique solution as

x(t) = η

[
k

∏
i=1

Eαi

(
λ,
(
til − t(i−1)l

)αi
)]

Eαk+1

(
λ,(t − tkl)

αk+1
)
, t ∈

[
tkl, t(k+1)l

]
. (4.2)

Proof. For t ∈ [t0, tl], we derive that

x(t) = x(t0)+λt0Iα1
t x(t),

x(t) = ηEα1

(
λ,(t − t0)

α1
)

and
x(tl) = ηEα1

(
λ,(tl − t0)

α1
)

where Eα(λ, t) is the Mittag-Leffler function defined by

Eα(λ, t) =
+∞

∑
k=0

λktkα

Γ(1+ kα)
.

For t ∈ [tl, t2l], we have

x(t) = x(tl)+λtl I
α2
t x(t),

x(t) = ηEα1

(
λ,(tl − t0)

α1
)

Eα2

(
λ,(t − tl)

α2
)
.

Finally, we get

x(t) = x(tkl)+λ tkl I
αk+1
t x(t),



490 GUO-CHENG WU, CHUAN-YUN GU, LAN-LAN HUANG, AND DUMITRU BALEANU

x(t) = η

[
k

∏
i=1

Eαi

(
λ,
(
til − t(i−1)l

)αi
)]

Eαk+1

(
λ,(t − tkl)

αk+1
)
, t ∈

[
tkl, t(k+1)l

]
.

which completes the proof. □

We can use the predictor corrector method to derive the numerical solutions in
Figs. 3 and 4 where λ = 0.8 and λ =−0.8, respectively. Other parameters are set to
η = 1, l = 3, m = 3, α1 = 0.7, α2 = 0.8 and α3 = 0.9.

FIGURE 3. Mittag-Leffler function of variable order (5.1) (the red:
α1 = 0.7 and t ∈ [0,3]; the blue: α2 = 0.8 and t ∈ [3,6]; the green:
α3 = 0.9 and t ∈ [6,9].).

FIGURE 4. Mittag-Leffler function of variable order (5.1) on differ-
ent time domains (the blue: α1 = 0.7 and t ∈ [0,3]; the red α2 = 0.8
and t ∈ [3,6]; the green: α3 = 0.9 and t ∈ [6,9].).
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5. ASYMPTOTIC STABILITY

We can define a Mittag–Leffler function of variable order as

εαk+1(λ, t) :=

[
k

∏
i=1

Eαi

(
λ,
(
til − t(i−1)l

)αi
)]

Eαk+1

(
λ,(t − tkl)

αk+1
)
, t ∈

[
tkl, t(k+1)l

]
(5.1)

where 0 < αk+1 ≤ 1, for t ∈
[
tkl, t(k+1)l

]
and k = 0,1, · · · , m−1.

If m is a positive integer number, for λ < 0, t ∈ [tml,∞) and t →+∞, we can obtain

x(t) = ηεαk+1(λ, t)→ 0. (5.2)

Much more generally, according to Matigon’s stability conditions [10], we know
the following stability result of the standard fractional linear systems.

Lemma 3. [10] Suppose λ is an eigenvalue of the coefficient matrix A. The frac-
tional linear autonomous system{

C
t0Dα

t x = Ax, 0 < α ≤ 1
x(t0) = η,

where x ∈ Rn and A ∈ Rn×n is asymptotically stable if and on if |arg(λ)| > απ

2 is
satisfied for all eigenvalues of matrix A.

We can extend Theorem 3 and the exact solution can be presented in form of a
matrix Mittag–Leffler function of variable order εαk+1(A, t). We now give the stability
theorem.

Theorem 4. The fractional linear system{
C
tkl

Dαk+1
t x(t) = Ax(t), t ∈

[
tkl, t(k+1)l

]
,

x(t0) = η, 0 < αk+1 ≤ 1,k = 0,1, . . .

is asymptotically stable if there exists a positive integer N such that |arg(λ)|> αk+1π

2
for k > N.

6. CONCLUSIONS

Fractional derivative has non-locality or memory effects. This feature has made it
be a powerful tool in various applied sciences and the fractional differential equation
has become one of the popular directions. The concept of variable-order fractional
derivative was proposed about fifteen years ago and it was efficient to reveal complic-
ated fractional dynamics. However, less theories contributed except some numerical
methods for numerical solutions. This paper provides a new concept of short memory
which is very convenient to define a variable-order function. We then give existence
conditions of such equations with variable orders. The predictor-corrector method
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is used to show the new concept both suitable for theoretical analysis and numer-
ical calculation. We only give the existence results in this paper and we believe the
following topics are important in future:

1) Numerical methods of high accuracy. We only illustrate the application of the
predictor-corrector method. There are many numerical methods developed and avail-
able. They also can be used in this study. Besides, we notice that the computational
time is saved a lot, particularly when the m becomes very large. The fractional dif-
ferential equation itself is a short memory one and it saves much storage space in
numerical calculations.

2) New applications of the short memory. Many applications now all considered
the memory or non-locality of the whole interval. However, we may only need some
of the information or data. That means we need a fractional approach between non–
locality and locality. This study gives some a possible way for fractional modeling.
We now can consider some other applications such as short memory Euler-Lagrange
equations, fractional diffusion equations and signal processing.
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