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In this effort, we propose a new fractional differential operator in the open unit
disk. The operator is an extension of the Atangana-Baleanu differential operator
without singular kernel. We suggest it for a normalized class of analytic functions
in the open unit disk. By employing the extended operator, we study the time-2-D
space heat equation and optimizing its solution by a chaotic function.
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Introduction

The class of fractional heat equations is investigated by many researchers. They
modeled different physical environments, involving time-space, random walks, non-local
transport theory and delayed flux-force associations [1-4]. Moreover, some investigators
introduced a general physical introduction to fractional diffusion equations, motivated by
Atangana-Baleanu differential operator [5] to simulate heat transfer processes. Optimization by
using chaotic functions is used in financial studies. Chaotic functions play a significant role in
improving diffusion, symmetry ergodicity and stochasticity of chaos.

In this work, we shall optimize the fractional heat equation type time-2-D space in
terms of a special class of chaotic functions, which is used to define a chaotic map [6]. Our
method is based on the majorization and subordination theory in the open unit disk [7, 8]. For
two analytic functions ¢ and w in the open unit disk U={zeC:|z|<1}, we say that ¢ is
majorized by w (@ < ) if there is an analytic function @,| @ |<1 such that ¢(z) = @(2)yw(2).
Moreover, ¢ is subordinated to y if ¢(z) = w[@(2)]. [9].

Preparation

A fractional differential operator for the complex Atangana and Baleanu is defined
[10]:
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where f(v) is normalized by AB(0)=p(1)=1 and E, (@) is the Mittag-Leffler function.
Moreover, they introduced the following fractional differential operator:

; Av) -
"ag(2) = (IV J (O, -4, (2-¢)" 1S )

i, :1L, ve(0,1), D=[z+re™(z—0):0<r<1]

To modlfy the previous operators, we define a class of analytic functions by
f(2)=z+ Z , ze U. Thisclass is denoted by A calling the class of univalent functions
and normalized 6y f(O) =f'(0)—-1=0.

Definition 1 Let f € A. Then the modified operators of (1) and (2) are given by the
integrals, respectively:
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where v indicates the power of z.
For example, let f(z) = z, then by [11], Theorem 2.4 or [12], Theorem 11.2, we have:

CAL@) = [BML[E, (4B [p, (2 - €)1 =
0
= [BO)L-VIZE2 o[-, (2)' 1=

- (2 2

=[B(v)1- V]ZZW’ (©)o =1, (P = e +1)..(0+n-1)

And in view of [11], Theorem 2.2, we have:
d Z
A1) =[0IV [ S B T (2-€) 16dE =
0

=[B0) I11-VIZ°E] 3[4, (2) T} =
=[B0) 11-vRZE] o[-, ()" ]}

It is clear that © A% (z) =RAY(z). In general, we have:
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We have the following property.
Proposition 1 Consider the operators (3) and (4) for f eA. Then by letting

b(v) =[p(W)/1-v]:

C AV RAv
N () [ A Ry WL NS T P A R
P(V)E) o[-1,(2)"] P(V)E o[-1,(2)"]
- PN <A (2)
f (2), is locally univalent of the first order (like

— RAVf(2) <AL f(2), provided that QAE\/j
convex function [13]) when |z|e (0.28,+/2 —1) or locally univalent of the second order
(like the class of univalent functions [13]) when | z | (0.21,0.3).

Proof 1 Let f e A. Then a direct computation yields:
n=2 —
DVE] o[-, (2)"]

g =2 punls (z)”]}
= S(n—1)d 2kt TVET JUan S CAYf(2) e A
er 2 ){ 2w

cxt s @l DD s @
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Similarly, we obtain mA‘ng (2) € A. This completes the first part. For the second part,
it is sufficient to prove that, [14], [ A} f(2) I<¢ Ay f(z)|. A computation yields:

2 [E s (zm}
A f@1 =2+ Ya oy U
2 {Ev,z[—ﬂv(z)v]

= =20l (2)']
< . -1 v,1+n 14 n_
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The last part immediately comes from [14] Corollary 1 and 2, respectively.
Based on Proposition 1, we shall focus on ¢ A f (z).

Heat equation associated with GAZ
The Koebe function is an extreme function in the field of geometric function theory.
To determine the heat equation associated with ®A!, we deal with the parametric Koebe

function of the form:
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f (t,z) =z/(1-12)° =

=z+ —(U)"‘lt”‘lz”, t<lz|<1

=2 (N-1)!
Then the generalized heat equation is given by:
W(t,z) =[FALf_(t,2)] —[CAY T (t,2)],,, z€U (5)
Our aim is to optimize the solution of (5) by the chaotic function, fig. 1:
sin[z/(1-1t2)°] =z+otz? + 2°[U20 (o + 1)t —16] + U6tz [(o +1)(o + 2)t* — 3] +
+1/1202°[-6002t? + 50(c +1)(0 + 2)(o + 3)t* =300 (o + L)t? +1] +
+1/1200t2°[-10(9% + 95 + 2)t? +

4 3 2 4 7 (6)
+(o” +100° +350° + 500 + 24)t" + 5]+ 0(z")

=7+ ¢, (o )2", t<zl<1
n=2

Note that sin (@) is univalent in the disk | z |< /2, see [15].
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Figure 1. The plot of sin[z/(1 —t2)°], whent =1, o= 1, 2, 3; the last two columns are 2-D plot for =1,
2, 3, 4 (for color image see journal web site)

Theorem 1 Consider the heat eq. (5). For a small value of v €[0,1], the solution of
(5) is optimized by the chaotic function sin[z/(1 — tz)°].
Proof 2 By Proposition 1, we indicate that ¥(t,0) =0. Also, v — 0, implies:

[aﬁ,m[—uxz)“]

— ~ ~1, then
:‘V,Z[_ﬂl/(z) ]
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To optimize the solution of (5), it is sufficient to show that | x;,(o,t) |< g, (o,t)|. This
means that we must find the value of o whenever t <1. A comparison between the coefficients
| x,(o,t)| and |g,(o,t)], we obtain the value 0< o <1/ J3~0.57735... This completes the
proof.

Corollary 1 Consider the heat equation (5). Then for v,t > 1

€AY f(t,2) <sin[z/(1-1t2)°], 0.21<|z|<0.3

Proof 3 In view of Theorem 1, we have ®AY f (t,z) < sin[z/(1—tz)°]. Since sin(w) is
univalent and [¢A§f(t,0)]Z =1>0, then in view of [14] Corollary 2, we conclude that
CAYf(t,z) <sin[z/(1-1z)° ]

Corollary 2 Consider the heat eq. (5). Then for t -1

[FAYf(t,2)], < {sin[z/(1-1t2)°]},, |z|<0.26794

Proof 4 In view of Theorem 1, we obtain A f (t,z) < sin[z/(1—tz)°]. According to
[14] Theorem 1, where sin(w) is of the second kind of locally univalent function, we get the
require assertion.

Remark 1 In view of Proposition 1 (C) and Corollary 1, we confirm that:

RAYE(t,2) <CAY f(t,2) <sin[z/(1-12)°], |z]e(0.21,0.3)

Conclusion

We formulated a modified Atangana-Baleanu differential operator of a class of
normalized analytic functions in the open unit disk. We presented a new generalization of time-
2-D heat equations based on the suggested operator. Analytic solution is indicated by using the
chaotic function sin[z/(1—1tz)?]. The optimal solution is appeared when & =0.57735 (see fig.
2). For future works, one may suggest another class of analytic function in the open unit disk
such as meromorhpic, multivalent and harmonic functions.
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