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In this effort, we propose a new fractional differential operator in the open unit 
disk. The operator is an extension of the Atangana-Baleanu differential operator 
without singular kernel. We suggest it for a normalized class of analytic functions 
in the open unit disk. By employing the extended operator, we study the time-2-D 
space heat equation and optimizing its solution by a chaotic function.  
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Introduction 

The class of fractional heat equations is investigated by many researchers. They 

modeled different physical environments, involving time-space, random walks, non-local 

transport theory and delayed flux-force associations [1-4]. Moreover, some investigators 

introduced a general physical introduction to fractional diffusion equations, motivated by 

Atangana-Baleanu differential operator [5] to simulate heat transfer processes. Optimization by 

using chaotic functions is used in financial studies. Chaotic functions play a significant role in 

improving diffusion, symmetry ergodicity and stochasticity of chaos. 

In this work, we shall optimize the fractional heat equation type time-2-D space in 

terms of a special class of chaotic functions, which is used to define a chaotic map [6]. Our 

method is based on the majorization and subordination theory in the open unit disk [7, 8]. For 

two analytic functions φ and ψ in the open unit disk ={ :| |<1},z z  we say that φ is 

majorized by ( )    if there is an analytic function ,| |<1   such that ( ) = ( ) ( ).z z z    

Moreover, φ is subordinated to ψ if ( ) = [ ( )]z z   , [9]. 

Preparation 

A fractional differential operator for the complex Atangana and Baleanu is defined 

[10]:  

–––––––––––––– 
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where β(n) is normalized by (0) = (1) =1   and ( )   is the Mittag-Leffler function. 

Moreover, they introduced the following fractional differential operator: 
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To modify the previous operators, we define a class of analytic functions by 

=2
( ) = , .n

nn
f z z a z z


   This class is denoted by   calling the class of univalent functions 

and normalized by (0) = (0) 1= 0.f f     

Definition 1 Let .f   Then the modified operators of (1) and (2) are given by the 

integrals, respectively: 
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where u indicates the power of z.  

For example, let f(z) = z, then by [11], Theorem 2.4 or [12], Theorem 11.2, we have: 
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And in view of [11], Theorem 2.2, we have:  
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It is clear that ( ) = ( ).C R
z zz z    In general, we have:  
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We have the following property.  

Proposition 1 Consider the operators (3) and (4) for f  . Then by letting 

( ) := [ ( ) /1 ]:      
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– ( ) ( )z zf z f z  R C   

– ( ) ( ),z zf z f z  R C  provided that ( ),z f zC  is locally univalent of the first order (like 

convex function [13]) when | | (0.28, 2 1)z    or locally univalent of the second order 

(like the class of univalent functions [13]) when | | (0.21,0.3).z    

Proof 1 Let .f   Then a direct computation yields:  
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Similarly, we obtain ( ) .z f z R  This completes the first part. For the second part, 

it is sufficient to prove that, [14], | ( ) | | ( ) | .z zf z f z   R C  A computation yields: 
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The last part immediately comes from [14] Corollary 1 and 2, respectively.  

Based on Proposition 1, we shall focus on ( ).z f zC   

Heat equation associated with z
C  

The Koebe function is an extreme function in the field of geometric function theory. 

To determine the heat equation associated with ,z
C  we deal with the parametric Koebe 

function of the form: 
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Then the generalized heat equation is given by:  

 ( , ) = [ ( , )] [ ( , )] ,z t z zzt z f t z f t z z 
     C C  (5) 

Our aim is to optimize the solution of (5) by the chaotic function, fig. 1:  
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Note that sin (w) is univalent in the disk | |< /2,z   see [15].  

 

Figure 1. The plot of sin[z/(1 – tz)s], when t = 1, s = 1, 2, 3; the last two columns are 2-D plot for s = 1, 
2, 3, 4 (for color image see journal web site) 

Theorem 1 Consider the heat eq. (5). For a small value of [0,1],   the solution of 

(5) is optimized by the chaotic function sin[z/(1 – tz)s]. 

Proof 2 By Proposition 1, we indicate that ( ,0) = 0.t  Also, 0,   implies: 
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To optimize the solution of (5), it is sufficient to show that | ( , ) | | ( , ) | .n nt t     This 

means that we must find the value of s whenever <1.t  A comparison between the coefficients 

| ( , ) |n t   and | ( , ) |,n t   we obtain the value 0 < 1/ 3 0.57735...    This completes the 

proof.  

Corollary 1 Consider the heat equation (5). Then for , 1:t    

 ( , ) sin[ /(1 ) ], 0.21<| |< 0.3z f t z z tz z  C  

Proof 3 In view of Theorem 1, we have ( , ) sin[ /(1 ) ].z f t z z tz  C  Since sin(w) is 

univalent and [ ( ,0)] =1> 0,z zf tC  then in view of [14] Corollary 2, we conclude that 

( , ) sin[ /(1 ) ].z f t z z tz  C   

Corollary 2 Consider the heat eq. (5). Then for 1:t    

 [ ( , )] sin[ /(1 ) ] , | | 0.26794z z zf t z z tz z     C  

Proof 4 In view of Theorem 1, we obtain ( , ) sin[ /(1 ) ].z f t z z tz  C  According to 

[14] Theorem 1, where sin( )  is of the second kind of locally univalent function, we get the 

require assertion.  

Remark 1 In view of Proposition 1 (C) and Corollary 1, we confirm that: 

 ( , ) ( , ) sin[ /(1 ) ], | | (0.21,0.3)z zf t z f t z z tz z     R C  

Conclusion  

We formulated a modified Atangana-Baleanu differential operator of a class of 

normalized analytic functions in the open unit disk. We presented a new generalization of time-

2-D heat equations based on the suggested operator. Analytic solution is indicated by using the 

chaotic function sin[ /(1 ) ].z tz   The optimal solution is appeared when = 0.57735  (see fig. 

2). For future works, one may suggest another class of analytic function in the open unit disk 

such as meromorhpic, multivalent and harmonic functions.  
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