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The fractional Hamiltonian analysis of 1�1 dimensional field theory is investigated
and the fractional Ostrogradski’s formulation is obtained. The fractional path inte-
gral of both simple harmonic oscillator with an acceleration-squares part and a
damped oscillator are analyzed. The classical results are obtained when fractional
derivatives are replaced with the integer order derivatives. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2356797�

I. INTRODUCTION

Fractional calculus deals with the generalization of differentiation and integration to noninte-
ger orders. Fractional calculus has gained importance, especially during the last three decades.1–5

A large body of mathematical knowledge on fractional integrals and derivatives has been con-
structed. Fractional calculus, as a natural generalization of classical calculus, has played a signifi-
cant role in engineering, science, and pure and applied mathematics in recent years. The fractional
derivatives are the infinitesimal generators of a class of translation invariant convolution semi-
groups that appear universally as attractors.

Various applications of fractional calculus are based on replacing the time derivative in an
evolution equation with a derivative of fractional order. The results of several recent researchers
confirm that fractional derivatives seem to arise for important mathematical reasons.5–21

The fractional variational principles represents an important part of fractional calculus and it
is deeply related to the fractional quantization procedure. There are several proposed methods to
obtain the fractional Euler-Lagrange equations and the corresponding fractional Hamiltonians.
However, this issue is not yet complectly clarified and it requires a more further detailed analysis.

The quantization of systems with fractional derivatives is a novel area in the theory of appli-
cation of fractional differential and integral calculus. Schrödinger equation was considered with
the first order time derivative modified to Caputo fractional ones in Ref. 22. In this case the
obtained Hamiltonian was found to be non-Hermitian and nonlocal in time. In addition, the
obtained wave functions are not invariant under the time reversal. The quantization of fractional
Klein-Gordon field and fractional electromagnetic potential in the Coulomb gauge and the tem-
poral gauge were investigated very recently in Ref. 23.

Recently, the fractional variational principles and the fractional Euler-Lagrange were
obtained.24,25

Even more recently, the fractional constrained Lagrangian and Hamiltonian were
analyzed.26,27 The notion of the fractional Hessian27 was introduced and the Euler-Lagrange equa-
tions were obtained for a Lagrangian linear in velocities.26 Besides, the Hamiltonian equations
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have been obtained for systems with linear velocities.28 The classical fields with fractional deriva-
tives were investigated by using the fractional Lagrangian formulation and the fractional Euler-
Lagrange equations were obtained in Ref. 29.

Nonlocal theories have been investigated in several physical problems.30 During the last
decade, the nonlocal theories were subjected to an intense debate.31–35 A Hamilton formalism for
nonlocal Lagrangians was developed in Refs. 34 and 35, an equivalent singular first order La-
grangian was obtained and the corresponding Hamiltonian was pulled back on the phase space by
using the corresponding constraints.34 It was shown the space-time noncommutative field theories
are acausal and the unitarity is lost.36,37 The fractional Lagrangians and Hamiltonians are typical
examples of nonlocal theories.

For these reasons the fractional quantization of field theory is an interesting issue to be
investigated.

In this paper we analyze the fractional Hamiltonian quantization of nonsingular systems
possessing higher order derivatives.

The plan of the paper is as follows.
In Sec. II the 1+1 classical dimensional field theory analysis of nonlocal theories is briefly

reviewed and the fractional generalization of Ostrogradski’s formulation is presented. In Sec. III
the path integral quantization of the simple harmonic oscillator with an acceleration-squares part is
analyzed. Section IV is dedicated to the fractional path integral formulation of the damped oscil-
lator. Finally, Sec. V is dedicated to our conclusions.

II. FRACTIONAL FIELD THEORY

A. Classical nonlocal theory

Let us start with an ordinary local Lagrangian depending on a finite number of derivatives at
a given time, namely,

L„q�t�, q̇�t�, . . . ,q�n��t�… . �1�

The next step is to consider a Lagrangian depending on a piece of the trajectory q�t ,�� for ∀�
belonging to an interval �a ,b�,

Lnon�t� = L„q�t + ��… , �2�

where a ,b are real numbers. Therefore a nonlocal Lagrangian was introduced. In this case the
action function corresponding to �2� is given by

S�q� =� dt Lnon�t� �3�

and the Euler-Lagrange equation corresponding to �3� are given by

� dt
�Lnon�t�
�„q�t�…

= 0. �4�

Equations �4� should be understood as a functional relation to be satisfied by physical trajec-
tories, i.e., a Lagrangian constraint. These functional relations define a subspace JR of physical
trajectories JR�J, in the space of all possible trajectories.32,34 The crucial point is that there is no
dynamics except the displacement inside the trajectory, namely,

q�t� → q�t + �� . �5�

Let us introduce now the dynamical variable Q�t ,�� as follows:

Q�t,�� = q�t + �� . �6�

If we consider a field Q�t ,�� instead of a trajectory q�t�, such that
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Q̇�t,�� = Q��t,�� , �7�

where Q̇=�Q�t ,�� /�t and Q��t ,��=�Q�t ,�� /�� we obtain a field theory in one spatial and one
time dimension, namely a 1+1 dimensional formulation of nonlocal Lagrangians.32,34

The coordinates and momenta are suppose to have the following forms:

Q�t,�� = �
m=0

�

em���q�m��t�, P�t,�� = �
m=0

�

em���p�m��t� , �8�

where

�q�n��t�,p�m��t�� = �m
n �9�

and

em��� =
�m

m!
, em��� = �− ���m���� . �10�

Therefore, the Hamiltonian for the 1+1 dimensional field becomes

H�t,�Q,P�� =� d� P�t,��Q��t,�� − L̃�t,�Q�� , �11�

where P denotes the canonical momentum of Q. The phase space is T*J together with the
fundamental Poisson brackets,

�Q�t,��,P�t,���� = ��� − ��� . �12�

The functional L̃�t , �Q�� is defined as follows:

L̃�t,�Q�� =� d� ����L�t,�� . �13�

By using �13�, the primary constraint arises as given below:

��t,�,�q,P�� = P�t,�� −� d� ���,− ����t;�,�� 	 0. �14�

Here ��t ;� ,�� and ��� ,−�� have the following definition:

��t;�,�� =
�L�t,��
�Q�t,��

, ���,− �� =
���� − ����

2
, �15�

where ���� is the sigma distribution. The Euler-Lagrange equation is guaranteed by itself,

�̇ 
 	 =� d� 
�t;�,�� . �16�

B. Fractional Ostrogradski’s construction

Higher-derivatives theories38,39 appear naturally as corrections to general relativity and cosmic
strings.40 Unconstrained higher order derivatives possess specific features, namely they have more
degrees of freedom than lower-derivative theories and they lack a lower-energy bound. A method
how to remove all these problems was presented in Ref. 41. It was observed that the nonlocal
formulation translates into infinite order Ostrogradski’s formulation.34,35

103503-3 Fractional Hamiltonian analysis J. Math. Phys. 47, 103503 �2006�



In this section, we would like to derive both the Lagrangian and the Hamiltonian formalisms
for nonsingular Lagrangians with fractional order derivatives starting from the Hamiltonian for-
malism of nonlocal theories.32 Let us consider the following Lagrangian to start with:

L�q,t� = L�t,q�m� , �17�

where the generalized coordinates are defined as

q�m = aDt
�mx�t� , �18�

where m is a natural number.
To obtain the reduced phase space quantization, we start with the infinite dimensional phase

space T*J�t�= �Q�t ,�� , P�t ,���.
The key issue is to find an appropriate generalization of �10� for the fractional case. As it was

pointed out in Refs. 32 and 34, the coordinates and the momenta are considered as a Taylor series.
Therefore, the first step is to generalize the classical series to the fractional case. A natural
extension is to use instead of the factorial the Gamma function. In this way we introduce naturally
the generalized functions42 instead of em��� and em��� given by �10�.

As it is already known, several fractional Taylor’s series expansions were developed,3,43

therefore we have to decide which one is appropriate for our generalization. Since we are dealing
with fractional Riemann-Liouville derivatives we choose the generalization proposed in Ref. 44,
namely,

Q�t,�� = �
m=−�

�

e�m
���q��m��t� ,

P�t,�� = �
m=−�

�

e�m���p��m��t� , �19�

where

e�m
��� =

�� − �0��m

���m + 1�
, e�m��� = D�

�m��� − �0� , �20�

and �m=m+�, with 0��1. Here �0 is a constant. The coefficients in �19� are new canonical
variables,

�q��m�,p��m��
� = ��m

�m�. �21�

By using �21�, we obtain that

�
m=−�

�

e�m���e�m
���� = ��� − ��� , �22�

and

�
−�

+�

d� e�m���e�m�
��� = �

�m�
�m. �23�

Therefore, e�m��� and e�m
��� form an orthonormal basis.

We stress the fact that �22� and �23� involve the generalized functions and the relations have
the meaning in the sense of generalized functions approach.42,44

The fractional Hamiltonian is now given by
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H = �
m=−�

�

p�mq�m+1 − L�q0,q�m� . �24�

The momenta constraints become an infinite set of constraints,

�n = p�n
�t� − �

m=n

�

tDb
�m−n

�L

�q��m+1��t�
= 0. �25�

The fractional Euler-Lagrange equations are as follows;

�
l=−�

�

tDb
�l

�L�t�
�q�l�t�

= 0. �26�

An interesting property of the fractional series proposed by Riemann and discussed by Hardy
in Ref. 44 is that when �m become integers, the usual form of Taylor series is obtained. Therefore
one should notice that for integer values of �m, we have

p�m
�t� − �

l=0

n−m−1 �−
d

dt
�l �L�t�

�„�t
l+m+1q�t�…

= 0, �27�

which is the definition of Ostrogradski’s momenta.38

In this case the Euler-Lagrange equation for the original fractional derivative Lagrangian26–30

is given below,

�
l=0

n

tDb
�l

�L�t�
�q�l�t�

= 0. �28�

Now, from this equation, for integer values of �m we obtain the Euler-Lagrange equation for
a higher derivative Lagrangian,32,34,38 namely

�
l=0

n �−
d

dt
�l �L�t�

�„�t
lq�t�…

= 0. �29�

The constraints �27� and �29� lead us to eliminate canonical pairs �q�l , p�l
��l�n�.

In this case the infinite dimensional phase space is reduced to a finite dimensional one. The
reduced space is coordinated by T*Jn= �q�l , p�l

� with l=0,1 , . . . ,n−1. The Hamiltonian in the
reduced space is given by

H = �
m=0

n−1

p�mq�m+1 − L�q0,q�m� . �30�

One should notice that the canonical reduced phase space Hamiltonian �30� is obtained in
terms of the reduce canonical phase space coordinates �q�l , p�l

� with l=0,1 , . . . ,n−1. In this case
the path integral quantization of a field system is given by

K =� 
m=0

n−1

dq�m dp�m ei��dt��m=0
n−1 p�mq�m+1−H��. �31�

We observe that when � are integers, we obtain the path integral for systems with higher order
Lagrangians.32,45,46
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III. FRACTIONAL PATH INTEGRAL QUANTIZATION OF A SIMPLE HARMONIC
OSCILLATOR POSSESSING AN ACCELERATION-SQUARES PART

The classical Lagrangian to start with is given by41

Lc =
1

2
�1 + �2�2�ẋ2 −

1

2
�2x2 −

1

2
�2ẍ2. �32�

The fractional generalization of �32� has the following form:

L =
1

2
�1 + �2�2�„tDa

�x�t�…2 −
1

2
�2x2 −

1

2
�2�tDa

�
„tDa

�x�t�…�2. �33�

The independent coordinates are x�t� and tDa
�x�t�, respectively. Let us denote their correspond-

ing momenta as p1
�= px and p2

�= p(tDa
�x�t�). The fractional canonical momenta are38

p1
� =

�L

� tDa
�x�t�

− tDa
�� �L

� tDa
2�x�t�

�, p2
� =

�L

� tDa
2�x�t�

. �34�

By making use of �33�, we obtain the forms of the fractional canonical momenta, as given below:

p1
� = �1 + �2�2�tDa

�x�t� + �2
tDa

3�x�t� , �35�

p2
� = − �2

tDa
2�x�t� . �36�

The fractional canonical Hamiltonian becomes

H = p1
�

tDa
�x�t� + p2

�
tDa

2�x�t� − L . �37�

Taking into account �33�, �35�, and �36� the form of �37� is given by

H =
1

2
�2p1

�
tDa

�x�t� −
�p2

��2

�2 + �2x2�t� − �1 + �2�2�„tDa
�x�t�…2� . �38�

By making use of �38�, the fractional path integral is written as

K =� dx d„tDa
�x�t�…dp1

� dp2
� ei��dt�p1

�x�t�+p2
�

tDa
�x�t�−H��. �39�

IV. FRACTIONAL PATH INTEGRAL QUANTIZATION OF DAMPED HARMONIC
OSCILLATOR

The Lagrangian for this system in Ostrogradski’s notations38 takes the form9

L =
1

2
mq1

2 + i
�

2
q1/2

2 − V�q0� , �40�

where

q�n = tDb
�nx, n = 0,1,2. �41�

Here �0=0 ,�1= 1 � 2, �2=1, and q0=x, q1= ẋ, q1 � 2 = tDb
1/2x, q2= ẍ.

The expressions for canonical momenta are

p0 = i�x�1/2� + imx�3/2�, �42�

p1/2 = mẋ . �43�
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By using �40� the classical Euler-Lagrange equation of motion read as9

mẍ + �ẋ +
�V

�x
= 0. �44�

The canonical reduced Hamiltonian has the following expression:

H =
p1/2

2

2m
+ q1/2p0 − i

�

2
q1/2

2 + V�q0� . �45�

As a result the corresponding fractional path integral representation is given by

K =� d� exp i�� �q1p1/2 −
p1/2

2

2m
+ i

�

2
q1/2

2 − V�q0��dt� , �46�

where d�=dq0 dp0 dq1/2 dp1/2.
The path integral representation for �46� is an integration over the canonical phase space

coordinates �q0 , p0� and �q1/2 , p1/2�. Integrating over p1/2 and p0, we obtain

K =� dq0 dq1/2 exp i� �1

2
mq1

2 − V�q0� + i
�

2
q1/2

2 �dt . �47�

Equation �47� can be put in a compact form as follows:

K =� dq0 ei���1/2�mq1
2−V�q0��dt dq1/2 ei�„i��/2�q1/2

2
…dt. �48�

After performing an integration over q1/2, �48� becomes

K = C� dq0 ei�„�1/2�mq1
2−V�q0�…dt dt ,

where C represents a constant.

V. CONCLUSIONS

The interest in fractional quantization appears because it describes both conservative systems
and nonconservative systems as well. The fractional quantization of field theory is not an easy
task, especially when the fractional Hamiltonian is involved. The fractional derivatives represent
the generalization of the classical ones, and therefore some of the classical properties are lost, e.g.,
the fractional Leibniz rule or the chain rule that becomes more complicated than the classical
counterparts. The fractional path integral formulation deserves further investigations, mainly be-
cause the fractional generalization of the classical case is not yet complectly understood. Namely,
for a system possessing second class constraints in Dirac’s classification it is difficult to find the
corresponding fractional generalization. In addition, there are no fractional formulations of the
classical secondary or tertiary constraints due to the fact that the fractional Hamiltonian is not a
constant of motion.

In this paper we generalize to the fractional case the nonlocal theories in one space and one
time dimension via the infinite Ostrogradski’s formalism. The classical Taylor series involved in
this problem are convergent because of the properties of the Dirac’s delta function. Namely, the
coordinates and the corresponding momenta are defined as Taylor series and the Ostrogradski’s
canonical pairs fulfill the classical Poisson’s brackets commutation relations. The generalization to
the fractional case of all the above mentioned results is not straightforward because there exist
many formulations for the fractional Taylor series. However, a powerful tool in fractional field
theory is to work to the Riemann-Liouville derivatives because of their important property of
integration by parts. Therefore, in this paper we focus on the fractional Taylor series involving the
Riemann-Liouville derivatives. We assumed that the fractional Lagrangian density has a compact
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support in the x directions. In this work we have obtained the path integral quantization for
fractional generalization of a 1+1 dimensional nonlocal field theory. The path integral formulation
for the simple harmonic oscillator with an acceleration-squares part as well as for the damped
oscillator are obtained. It is worthwhile to mention that the general expression for the path integral
leads to the path integral representation for systems with higher order Lagrangians.
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