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1. Introduction

The inverse problem for differential equations is part of the fascinating branches of mathematics.
It is developed in connection with diverse branches of applied science [1]. The type of boundary
condition determines the identity of the problem. If the boundary is given for an initial time the problem
is recognized as an initial value problem (IVP); if the boundary is described for the final, it is called
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a terminal value problem (TVP). If the boundary is described at both times, it is a Sturm-Liouville
problem [2].

For ordinary differential equations (ODEs), the terminal value problem can be transformed into an
initial value problem, and they are generally well-posed problems. Surprisingly, this is not true for
fractional differential equations (FDEs). Not only can a TVP for FDEs not be transformed into an IVP,
but also such problems are not well-posed in general [3,4]. It has been recently noticed that a TVP for
FDEs is well-posed in a small neighborhood of the boundary [5–9].

In recent decades, literature on fractional operators has been extensively increased for describing
non-local dynamical processes [10]. The non-local property of such processes is usually captured by
an integral with a memory kernel. Recently, in the notable paper [11], high dimensional problems are
reduced to an integral equation with a memory kernel. This is a green light for replacing ordinary
derivatives with fractional derivatives in complex processes. Thus, fractional differential equations can
describe abundant models well.

There is no unified definition for a fractional derivative. However, if we restrict some properties
(such as being singular or non-singular, local or non-local) we can obtain some completely separate
classifications. Among them, the Caputo derivative has received more interest and attention in
the literature, mainly for well-interpreted boundary conditions and more similarity to the ordinary
derivative (the Caputo derivative of the constant function is zero) [12].

Similarly, fractional integrals have diverse definitions. The route toward the generalized fractional
operator will be clear if we monitor some selected classes of fractional integrals. The Riemann-
Liouville fractional integral is a generalization of the integer order integral operator

In f (x) =

∫ x

a
dt1

∫ t1

a
dt2 . . .

∫ tn−1

a
f (tn)dtn =

1
(n − 1)!

∫ x

a
(x − t)n−1 f (t)dt,

and the Hadamard fractional integral is a generalization of the nth order integral operator

HIn f (x) =

∫ x

a

dt1

t1

∫ t1

a

dt2

t2
. . .

∫ tn−1

a
f (tn)

dtn

tn

=
1

(n − 1)!

∫ x

a
(ln(

x
t
))n−1 f (t)

dt
t

where n ∈ N [13]. Katugampola [14, 15] introduced his fractional derivative by replacing ti with tρi ,
ρ > 0. Fu et al. have replaced exponential functions to introduce exponential fractional derivatives [16].
It is tempting to replace ti with a general function g(ti), (where g is a weighted function) to study
generalized fractional derivatives. Such unified generalization of fractional operators with respect to
another function has been studied in [17, 18].

It is a common aspect of pure mathematics to see an application of a seemingly not applicable
concept later. Analogously, for generalized fractional derivatives, we see some noticeable applications
that have been published just very recently. For example, the subdiffusion equation with a generalized
fractional derivative has been effectively invoked to describe subdiffusion in a medium with an evolving
structure over time [19]. The application of generalized fractional operators for the Fokker-Planck
equation has been noticed in [16, 20]. We will show another importance of such generalization in
inverse problems.
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Considering the generality of the fractional derivative with respect to another derivative and its
application, it is highly motivated to study fractional differential equations with respect to another
derivative.

A ν-dimensional terminal value problem for a system of generalized fractional differential equations
(GFDEs) is described by

G
a Dᾱ,g

t y = f(t, y), t ∈ [a, b] (1.2)

and
y(b) = yb, (1.3)

where G
a Dᾱ,g

t is a generalized fractional derivative with respect to the vector function
g = [g1, . . . , gν]T (gi : [a, b] → R are strictly increasing functions with continuous derivatives
g′i on (a, b)), ᾱ = [α1, . . . , αν]T (αi ∈ (0, 1)), y : [a, b] → Rn is an unknown vector function,
f : [a, b] × Rn → Rn is a given vector function describing an evolutionary processes, and yb ∈ R

n

is a terminal value.
In a real dynamical process, we do not expect each separate component to have the same memory.

Therefore, the study of FDEs with vector order is more important than that for fixed order. We note
that the vector order introduced in [21] is an element-wise operator and defined by

G
a Dᾱ,g

t y = [G
a Dα1,g1

t y1, . . . ,
G
a Dαν,gν

t yν].

This paper contributes the following achievements:

* Study of the TVP for systems of high dimensional nonlinear generalized FDEs,
* Computing generalizing fractional operators by classical fractional operators,
* Introducing suitable weighted space that relates previous studies to generalized fractional

derivative,
* Introducing and analyzing a comprehensive collocation method that covers all generalized

operators,
* Obtaining a lower bound for well-posedness of TVPs with various weight functions,
* Applying generalized derivatives for estimating the past population of diabetes cases.

To the best of our knowledge, these are investigated for the first time. The important achievement
of this paper is that it gives us more analyzed options in modeling dynamical processes, to choose a
better weight function. If we need an inverse problem with a longer interval, the result of this paper
introduces a generalized derivative that guarantees the well-posedness in a study model.

A generalized fractional derivative can be transformed into a classical fractional derivative [13,22].
This fact was noticed and employed for solving generalized fractional differential equations, especially
in [22]. In this respect, we introduced a weighted space with respect to another function to carry out
our analysis from generalized fractional-order derivatives toward classical fractional derivatives.

Numerical methods in parallel to theoretical analysis for solving fractional differential equations
have developed rapidly. The Jacobi spectral methods for solving related functional integral and
fractional differential equations have been extensively studied in [23–26]. Applying this method for
terminal value problems can be found in [27]. The collocation methods on piecewise polynomials
spaces for fractional differential equations were studied in [6, 9]. The spectral methods provide fast
convergence methods that transform a related problem into a high-dimensional algebraic equation,
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while the collocation method provides a high order method with more options for control of the error.
As far as we know, the collocation method for terminal value problems with generalized fractional
differential equations is not yet studied and not analyzed. An important aim of this paper also is to
propose and analyze such methods for these problems.

This paper is organized as follows. In Section 2, we review the generalized fractional operators
(integral and derivative operators). In Section 3, we transform TVPs for systems of FDEs into weakly
singular Fredholm-Volterra integral equations with vanishing delay. In Section 4, we obtain a lower
bound for the well-posedness of such problems. In Section 5, we propose a numerical method, and
in Section 6 we provide an error analysis for the proposed method. In Section 7, after validating the
proposed method, we compare the effects of various choices of weight function on modeling with a
TVP.

2. Preliminaries

The generalized fractional operator is defined with respect to the weight function g : [a, b] → R
with the following properties:

C1 : g ∈ C1[a, b];

C2 : g is a strictly increasing function;

C3 : g−1 : g([a, b])→ [a, b] exists and is continuous (by C2, g([a, b]) = [g(a), g(b)]).

Definition 2.1. [18] Let f ∈ C[a, b] (a, b ∈ R). The generalized fractional integral G
a Iα,gt of order α

(α ∈ C, Re(α) > 0) with the weight function g is defined by

G
a Iα,gt f (t) =

1
Γ(α)

∫ t

a

g′(τ) f (τ)
(g(t) − g(τ))1−αdτ, t ∈ [a, b]. (2.1)

Remark 1. Particular choices of g result famous generalizations and classical definitions of fractional
operators:

(I). If g(x) = x, then G
a Iα,gt is the classical Riemann-Liouville fractional integral,

(II). If g(x) = ln(x) on [1, b], (b > 1), then G
a Iα,gt is the Hadamard fractional integral, in this case

g−1(x) = ex,

(III). If g(x) = eλx

λ
(λ > 0) on [a, b], then G

a Iα,gt is the exponential fractional integral, in this case
g−1(x) =

ln(λx)
λ
, [16],

(IV). If g(x) = xρ, then G
a Iα,gt is the Katugampola fractional integral, in this case g−1(x) = x

1
ρ [14, 15].

Definition 2.2. Let X[a, b] be a space of real valued functions on [a, b]. The weighted space with
respect to the weight function g is defined by

Xg[a, b] = {k : [a, b]→ R | kog−1 ∈ X[g(a), g(b)]},

with the weighted norm
‖k‖g = ‖k(g−1)‖,

where ‖.‖ is a norm of the space X[g(a), g(b)].
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For example, Lg[a, b] and Cg[a, b] are weighted spaces of the Lebesgue integrable functions and the
continuous functions with Lebesgue norm and supremum norm, respectively.

Remark 2. Suppose k ∈ C[a, b]. Since g−1 is continuous, kog−1 is continuous. Thus, k ∈ Cg[a, b] and
C[a, b] ⊂ Cg[a, b]. Similarly, we can prove that Cg[a, b] ⊂ C[a, b]. For supremum norm in this space,
we have

sup
[a,b]
|k(x)| = sup

[g(a),g(b)]
|k(g−1(x))|.

Thus, Cg[a, b] = C[a, b]. However, this type of equivalency can not happen for all spaces like L[a, b].
In this case, by substituting x = g(y) and dx = g′(y)dy, we have

‖k‖g = ‖k(g−1)‖ =

∫ g(b)

g(a)
|k(g−1(x))|dx =

∫ b

a
|k(y)|g′(y)dy , ‖k‖.

Throughout the paper we generally use the supremum norm unless we mention it. The following
theorem describes the generalized fractional integral by the Riemann-Liouville fractional integral.

Theorem 2.1. Suppose α ∈ C, Re(α) > 0, and g : [a, b] → R has the properties C1–C3. Then, for
h ∈ C[a, b],

G
a Iα,gt h(g(t)) =

(
RL
g(a)I

α
t h(t)

)
o(g(t)), (2.2)

where RL
g(a)I

α

t
stands for the Riemann-Liouville fractional integral, and the notation “o” stands for the

combination operator.

Proof. Setting k(t) = h(g(t)), we get

G
a Iα,gt k(t) =

1
Γ(α)

∫ t

a

h(g(τ))g′(τ)
(g(t) − g(τ))1−αdτ =

1
Γ(α)

∫ g(t)

g(a)

h(x)
(g(t) − x)1−αdx

=

(
1

Γ(α)

∫ t

g(a)

h(x)
(t − x)1−αdx

)
o(g(t)).

(2.3)

Here, we integrated with substitution x = g(τ), (dx = g′(τ)dτ). Thus, we obtain
G
a Iα,gt k(t) =

(
RL
g(a)I

α
t h(t)

)
o(g(t)).

This completes the proof. �

Remark 3. Theorem 2.1 shows that RL
g(a)I

α
t k(g−1(t)) is well-defined if and only if G

a Iα,gt k(t) is well-defined.
Let X[g(a), g(b)] be the space that the operator RL

g(a)I
α
t is well-defined. Then, the operator G

a Iα,gt k(t) is
well-defined on the weighted space Xg[a, b].

Definition 2.3. [18] Let α ∈ C, Re(α) > 0, and n = [Re(α)] + 1. The generalized fractional derivatives
on [a, b] (0 ≤ a < b) are defined by

G
a Dα,g

t f (t) =

(
G
a In−α,g

t

(
1

g′(t)
d
dt

)n

f (t)
)

=
1

Γ(n − α)

∫ t

a

(
1

g′(τ)
d
dτ

)n
f (τ)

(g(t) − g(τ))1−n+α
g′(τ)dτ

(2.4)

for α < N and for a Borel function f : [a, b]→ R in which the integral in Eq (2.4) is well-defined. For
α ∈ N, it is the classical integer order definition, i.e., K

a Dα,ρ

t f (t) = dn−1

dtn−1 .
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Theorem 2.2. Let α ∈ C, and 0 < Re(α) < 1. Then,

G
a Dα,g

t f (g(t)) =
(

C
g(a)D

α

t
f (t)

)
o(g(t)). (2.5)

Proof. Setting h(t) = f (g(t)), we get

G
a Dα,g

t h(t) =
1

Γ(1 − α)

∫ t

a

h′(τ)
(g(t) − g(τ))α

dτ =
1

Γ(1 − α)

∫ t

a

f ′(g(τ))g′(τ)
(g(t) − g(τ))α

dτ

=
1

Γ(1 − α)

∫ g(t)

g(a)

f ′(y)
(g(t) − y)α

dy =
(

C
g(a)D

α

t
f (t)

)
o(g(t)).

(2.6)

This completes the proof. �

Computations of generalized derivatives and integrals of functions (g(t) − g(a))v, for 0 < Re(α) < 1
are a direct consequence of Theorems 2.1 and 2.2. Thus, we have

G
a Dα,g

t (g(t) − g(a))v =
(

C
g(a)D

α

t
(t − g(a))v

)
(g(t))

=


(

Γ(v+1)
Γ(v−α+1) (t − g(a))v−α

)
o(g(t)), v , 0,

0, v = 0,

=


(

Γ(v+1)
Γ(v−α+1) (g(t) − g(a))v−α

)
, v , 0,

0, v = 0,

(2.7)

and
G
a Iα,gt (g(t) − g(a))v =

(
RL
g(a)I

α

t
(t − g(a))v

)
o(g(t))

=

(
Γ(v + 1)

Γ(v + α + 1)
(t − g(a))v+α

)
o(g(t))

=
Γ(v + 1)

Γ(v + α + 1)
(g(t) − g(a))v+α.

(2.8)

Now, we can use Theorem 2.2 to find a suitable space for defining a generalized fractional derivative.
Regularly, the spaces ACn[a, b] and Cn[a, b] are the best choices for classical fractional derivatives with
order α such that n − 1 < Re(α) < n, (Theorems 2.1 and 2.2 of [28], also see [13]). We recall that

ACn[a, b] = { f : [a, b]→ C, f (n−1) ∈ AC[a, b]}, n ∈ N,

where AC[a, b] is the set of absolute continuous functions. Thus, we can state the following lemma.

Lemma 2.1. Let f ∈ ACn
g[a, b]. Then, G

a Dα,g
t f (t) exists almost everywhere on [a,b]. Moreover, if

f ∈ Cn
g[a, b], then G

a Dα,g
t f ∈ C[a, b].

Proof. The proof is a straightforward result of Eq (2.5), and Theorems 2.1 and 2.2 of [28]. �

Remark 4. Equations (2.2) and (2.5) can be rewritten as

G
a Iα,gt f (t) =

(
RL
g(a)I

α
t f (g−1(t))

)
o(g(t)) (2.9)

and
G
a Dα,g

t f (t) =
(

C
g(a)D

α

t
f (g−1(t))

)
o(g(t)). (2.10)
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Lemma 2.2. Let α ∈ (0, 1], ρ ∈ [0, 1), and f ∈ AC[a, b]. Then,

G
a It

α,gG
a Dα,g

t f (t) = f (t) − f (a). (2.11)

Proof. It follows from Eq (2.9) that

G
a It

α,g (
G
a Dα,g

t f (t)
)

=
(

RL
g(a)I

α
t

(
G
a Dα,g

t f (t)o(g−1(t))
))

o(g(t)).

Applying Eq (2.10), we get

G
a It

α,g (
G
a Dα,g

t f (t)
)

=
(

RL
g(a)I

α
t

((
C
g(a)D

α

t
f (g−1(t))

)
o(g(t))o(g−1(t))

))
o(g(t)).

Taking into account that (g(t))o(g−1(t)) = t, we obtain

G
a It

α,g (
G
a Dα,g

t f (t)
)

=
(

RL
g(a)I

α
t

(
C
g(a)D

α

t
f (g−1(t))

))
o(g(t)).

Finally, from properties of classical fractional operators, we obtain

G
a It

α,g (
G
a Dα,g

t f (t)
)

=
(

f (g−1(t)) − f (g−1(g(a)))
)

o(g(t))

=
(

f (g−1(t)) − f (a)
)

o(g(t)) = f (t) − f (a),
(2.12)

which completes the proof. �

Remark 5. All the mentioned results can be generalized to higher-dimensional spaces by the vector
order notation. For vector order ᾱ = [α1, . . . , αν]T (Re(αi) ∈ (0, 1), i = 1, . . . , ν) and vector weights
g = [g1, . . . , gν]T we have

G
a It

ᾱ,gG
a Dᾱ,g

t f(t) = [G
a It

α1,g1G
a Dα1,g1

t f1, . . . ,
G
a Iαν,gνG

a Dαν,gν
t fν]T

= [ f1(t) − f1(a), . . . , fν(t) − fν(a)]T

= [ f1(t), . . . , fν(t)]T − [ f1(a), . . . , fν(a)]T

= f(t) − f(a),

(2.13)

where f = [ f1, . . . , fν]T belongs to the ν-dimensional space (AC[a, b])ν. It is a straightforward
generalization of a one-dimensional case since all operators operate element-wise [21].

As an application of Eqs (2.7), (2.8)and (2.11), we can solve a linear initial value problem for FDEs:

G
a Dᾱ,g

t y = Ay(t) + B, t ∈ (a, b), (2.14)

with the initial value y(0) = y0 and imposing αi = α, gi = g for i = 1, · · · , ν. Applying G
a It

α,g to both
sides of Eq (2.14) and using Eq (2.11), we have

y = y0 + G
a It

ᾱ,gB + G
a It

ᾱ,gAy(t), t ∈ (a, b). (2.15)

Here, it is worth to mentioning that, for general ᾱ and g, the commutative property

G
a It

ᾱ,gAyn = G
a It

ᾱ,gAyn

AIMS Mathematics Volume 7, Issue 8, 14394–14418.
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does not hold for vector order fractional integrals as well as for vector order fractional derivatives.
The iterative method

yn+1 = y0 + G
a It

ᾱ,gB + G
a It

ᾱ,gAyn, n = 1, 2, ..., (2.16)

with the initial value
y1 = y0 + G

a It
ᾱ,gB

is utilized to obtain the exact solution y = limn→∞ yn. Recursively, we obtain

y2 =y0 + G
a It

ᾱ,gB + AG
a It

ᾱ,gy1

=y0 +
B

Γ(ᾱ + 1)
.(g(t) − g(a))ᾱ + AG

a It
ᾱ,g(y0 + G

a It
¯̄α,gB)

=y0 +
B

Γ(ᾱ + 1)
.(g(t) − g(a))ᾱ

+
Ay0

Γ(ᾱ + 1)
.(g(t) − g(a))ᾱ +

AB
Γ(2ᾱ + 1)

.(g(t) − g(a))2ᾱ

(2.17)

and similarly

y3 =y0 + G
a It

ᾱ,gB + AG
a It

ᾱ,gy2

=y0 +
B

Γ(ᾱ + 1)
.(g(t) − g(a))ᾱ

+
Ay0

Γ(ᾱ + 1)
.(g(t) − g(a))ᾱ +

AB
Γ(2ᾱ + 1)

(g(t) − g(a))2ᾱ

+
A2y0

Γ(2ᾱ + 1)
.(g(t) − g(a))2ᾱ +

A2B
Γ(3ᾱ + 1)

.(g(t) − g(a))3ᾱ.

(2.18)

This pattern suggests

y(t) =

∞∑
n=0

Any0

Γ(nᾱ + 1)
.(g(t) − g(a))nᾱ

+
AnB

Γ((n + 1)ᾱ + 1)
.(g(t) − g(a))(n+1)ᾱ

(2.19)

where the dot (“.”) operator stands for element-wise multiplication.

3. Transforming inverse problem into integral equations

Applying the fractional integral to both sides of the system (1.2), it follows from Eq (2.2) that

y(t) = y(a) + G
a It

ᾱ,gf(t, y(t)), t ∈ (a, b), (3.1)

or equivalently,
y(t) = y(a) + RL

g(a)I
ᾱ
t f(g−1(t), y(g−1(t)))og(t). (3.2)

AIMS Mathematics Volume 7, Issue 8, 14394–14418.
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Computationally, it is important to note that

f(g−1(t), y(g−1(t))) =


f1(g−1

1 (t), [y1(g−1
1 (t)), . . . , yν(g−1

1 (t))])
...

fν(g−1
ν (t), [y1(g−1

ν (t)), . . . , yν(g−1
ν (t))])

 .
Putting t = b in Eq (3.2) and using the terminal condition, we obtain

y(a) = y(b) − RL
g(a)I

ᾱ
t f(g−1(t), y(g−1(t)))og(t) |t=b . (3.3)

Substituting y(a) from Eq (3.3) into Eq (3.2), we obtain

y(t) =y(b) − RL
g(a)I

ᾱ
t f(g−1(t), y(g−1(t)))og(t) |t=b

+ RL
g(a)I

ᾱ
t f(g−1(t), y(g−1(t)))og(t).

(3.4)

Equation (3.4) can be represented by a weakly singular Fredholm-Volterra integral equation with
vanishing delay g(t)

y(t) =yb −
1

Γ(ᾱ)

∫ g(b)

g(a)

f(g−1(τ), y(g−1(τ)))
(g(b) − τ)1−ᾱ dτ

+
1

Γ(ᾱ)

∫ g(t)

g(a)

f(g−1(τ), y(g−1(τ)))
(g(t) − τ)1−ᾱ dτ,

(3.5)

or equivalently,

y(t) =yb −
1

Γ(ᾱ)

∫ b

a

g′(x)f(x, y(x))
(g(b) − g(x))1−ᾱdx +

1
Γ(ᾱ)

∫ t

a

g′(x)f(x, y(x))
(g(t) − g(x))1−ᾱdx. (3.6)

Remark 6. If g(t) = pt, the corresponding system has proportional delay [29]. Also, with g(t) = t
3
2

and the non-local boundary condition

y(b) = 1 +
1

Γ(ᾱ)

∫ b

a

g′(x)f(x, y(x))
(g(b) − g(x))1−ᾱdx,

the system (3.6) is a Lighthill system. This system is used for describing the temperature distribution
of the surface of a projectile moving through a laminar layer [30].

4. Local existence results

4.1. Continuity of the operator G
a It

ᾱ,gf(t, y(t)) with respect to y(t)

We suppose the vector function f = [ f1, . . . , fν]T satisfies the following conditions.

(H1) The vector function f is continuous with respect to its variables on [0,T ] × Rν,

(H2) Functions fi, i = 1, . . . , ν, are Lipschitz functions with Lipschitz constants Li, i.e.,

‖ fi(t,w) − fi(t, y)‖ ≤ Li‖w − y‖

for y,w ∈ Rν, and we set
LM = max

i=1,...,ν
‖Li‖.
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It is a straightforward conclusion of Theorem 2.1 and Remark 2 that the operator

G
a It

ᾱ,gf(t, .) : (C[a, b])ν → (C[a, b])ν

transforms a continuous vector function into a continuous vector function, and thus it is well-defined.
We use the norm

‖y‖ = max
i=1,...,ν

‖yi‖∞, ‖yi‖∞ = sup
t∈[a,b]

‖y(t)‖

to state continuity of the operator G
a It

ᾱ,gf(t, .).

Theorem 4.1. Let assumptions (H1) and (H2) hold for the vector function f. Then, the operators
G
a It

ᾱ,gf(t, .) and G
a Ib

ᾱ,gf(b, .) are continuous, i.e.,

‖Ga It
ᾱ,gf(t,u) − G

a It
ᾱ,gf(t, v)‖ ≤ M‖u − v‖ (4.1)

and
‖Ga Ib

ᾱ,gf(b,u) − G
a Ib

ᾱ,gf(b, v)‖ ≤ M‖u − v‖, (4.2)

where the vector functions u and v belong to (C[a, b])ν and

M = max
i=1,...,ν

Li(gi(b) − gi(a))ᾱ

Γ(ᾱ + 1)
. (4.3)

Proof. The supremum norm of the ith component of the generalized fractional integral operator can be
estimated by

‖
(

G
a It

ᾱ,gf(t,u)
)

i
−

(
G
a It

ᾱ,gf(t, v)
)

i
‖∞

= sup
t∈[a,b]

1
Γ(αi)

∫ t

a

|g′i(x)( fi(x,u(x) − fi(x, v(x))|
(gi(t) − gi(x))1−αi

dx.

By assumptions C1–C3, gi(x) and (gi(t) − gi(x))1−αi for x ∈ [0, t] are non-negative. Thus,

‖
(

G
a It

ᾱ,gf(t,u)
)

i
−

(
G
a It

ᾱ,gf(t, v)
)

i
‖∞

= sup
t∈[a,b]

Li

Γ(αi)

∫ t

a

g′i(x)
(gi(t) − gi(x))1−αi

dx‖u − v‖

=
Li

Γ(αi)
sup

t∈[a,b]

(gi(t) − gi(a))αi

αi
‖u − v‖

=
Li(gi(b) − gi(a))αi

Γ(αi + 1)
‖u − v‖.

(4.4)

Consequently, the inequalities (4.1) and (4.2) follow from Eq (4.4). �

4.2. Existence

By Theorem 4.1, the operator T : (C[a, b])ν → (C[a, b])ν described by

T (y) = yb −
G
a Ib

ᾱ,gf(b, y) + G
a It

ᾱ,gf(t, y) (4.5)

is well-defined.
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Theorem 4.2. Let assumptions (H1) and (H2) hold for f : [0,T ] × Rν → Rν. Let

M := max
i=1,...,ν

2Li(gi(b) − gi(a))αi

Γ(αi + 1)
< 1. (4.6)

Then, the system (3.6) has a unique solution on (C[a, b])ν.

Proof. Systems (3.5) and (3.6) can be rewritten in the operator form

y = T (y). (4.7)

By using Theorem 4.1 for the vector functions u and v ∈ (C[a, b])ν, we have

‖T (u) − T (v)‖ ≤ M‖u − v‖. (4.8)

From condition (4.6), M < 1, and hence

‖T (u) − T (v)‖ ≤ ‖u − v‖. (4.9)

Thus, T is a contracting operator, and by the Banach fixed point theorem, it has a unique solution on
(C[a, b])ν. This completes the proof. �

5. Collocation method on piecewise polynomial spaces

Let us adopt notations of [29]. Let Ih = {tn : a = t0 < t1 < . . . < tN = b} be a partition of [a, b],
hn = tn+1− tn, σn = (tn, tn+1] (n = 0, . . . ,N−1) and h = maxn=0,...,N−1 hn. We recall that the grading mesh
points of the form tn := (b − a)(n/N)r are an appropriate choice for integral equations with weakly
singular kernels [29]. The piecewise polynomial space can be defined by

S−1
m−1(Ih) = {v : v |σn∈ Πm−1},

where Πm−1 is the space of polynomials of degree less than m. An approximate solution of the
system (1.2) has the dense representation

uN(t0) = y0,

uN(tn + vhn) =

m∑
i=1

Li(v)Un,i, v ∈ (0, 1], n = 0, . . . ,N − 1,
(5.1)

where Li are Lagrange interpolation formulas, and Un,i := uN(tn,i) and collocation points are defined by
tn,i := tn + cihn for given collocation parameters 0 ≤ c1 < . . . < cm ≤ 1. The operator PN that projects(
C[0,T ]

)ν
into

(
S−1

m−1(Ih)
)ν

is described by

PN(u(tn,i)) = u(tn,i), i = 1, . . . ,m, n = 0, . . . ,N − 1.

Thus, we can explicitly and uniquely define PN by

PN(uN(tn + vhn)) =

m∑
i=1

Li(v)Un,i, n = 0, . . . ,N − 1. (5.2)
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The quadrature approximation of the operator G
a It

ᾱ,gf(t, .) is computed by

QNuN(t) = G
a It

ᾱ,gPNf(t,uN(t)).

Let t := tn + vhn ∈ [tn, tn+1]. Then,

QNuN(t) =

n−1∑
l=0

m∑
j=1

λn,l, j(v)f(tl, j,Ul, j) +

m∑
j=1

λn,n, j(v)f(tn, j,Un, j), (5.3)

where the weights of the quadrature are determined by

λn,l, j(v) =

 hl
Γ(ᾱ)

∫ 1

0
g′(tl+zhl)L j(z)

(g(tn+vhn)−g(tl+zhl))1−ᾱ dz, l = 0, . . . , n − 1,
hn

Γ(ᾱ)

∫ v

0
g′(tn+zhn)L j(z)

(g(tn+vhn)−g(tn+zhn))1−ᾱ dz, l = n,
(5.4)

for j = 1, . . . ,m and n = 0, . . . ,N − 1. Similarly, a quadrature method for G
a Ib

ᾱ,gf(t, .) can be computed
by

Q̃NuN(t) = G
a Ib

ᾱ,gPNf(t,uN(t))

or, equivalently,

Q̃NuN =

N−1∑
l=0

m∑
j=1

λN−1,l, j(1)f(tl, j,Ul, j). (5.5)

Setting t = to,k for o = 0, . . . ,N − 1 and k = 1, . . . ,m, and using the introduced quadrature method, the
unknown Uo,k can be obtained by solving the system of nonlinear equations described by

Uo,k = yb − Q̃NuN + QNuN(to,k). (5.6)

After solving this system, we can obtain the dense approximate solution by Eq (5.1). The nonlinear
system (5.6) is solved by the recursive formula

U i
o,k = yb − Q̃Nui−1

N + QNU i−1
o,k , i = 1, ..., nt, (5.7)

where nt is the constant number of iterations (can be chosen by a user), or can be adopted by

‖ui
N − ui−1

N ‖ ≤ Tol

with a given tolerance Tol.
In this research, we also need to introduce a numerical method for solving related initial value

problems. Let us consider the system (1.2) with a given initial condition

y(a) = ya. (5.8)

A numerical approach by recursively solving the νm dimensional algebraic systems

Uo,k = ya + QNuN(to,k), k = 1, . . . ,m, (5.9)

for o = 0, . . . ,N − 1 is utilized to obtain the corresponding dense solution. However, for the IVP in
each interval, we need to solve only a nonlinear equation of dimension ν × m, while for the TVP we
need to solve a nonlinear equation of dimension ν × m × N.
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5.1. Existence of the approximate solution

Does the nonlinear system (5.6) have a solution? Is it unique? What is the convergence of the
proposed iterative method (5.7)? This subsection answers these questions.

Theorem 5.1. Let assumptions (H1) and (H2) hold for the vector function f : [0,T ] × Rν → Rν. Let

Λ := max
i=1,...,ν

2Li(gi(b) − gi(a))αi‖PN‖
2

Γ(αi + 1)
< 1 (5.10)

for a given N. Then, the approximate solution of the system (5.6) exists and is unique, and the iterative
method (5.7) converges to the solution of the system (5.6) on collocation points.

Proof. Since uN ∈
(
S−1

m−1(Ih)
)ν

we have PNuN = uN , and the dense approximate solution (5.1) satisfies

uN(t) = PNTNuN , (5.11)

where
TNu := yb − Q̃Nu + QNu.

Let u, v ∈
(
S−1

m−1(Ih)
)ν
. The ith component of the QNu(t) − QNv(t) satisfies

|(QNu(t))i − (QNv(t))i| = |(G
a It

ᾱ,gPNf(t,u(t)))i − (G
a It

ᾱ,gPNf(t, v(t)))i|

≤

∣∣∣∣ 1
Γ(αi)

∫ t

a

|g′i(x)(PN( f (x,u(x) − f (x, v(x)))i|

(gi(t) − gi(x))1−αi
dx

∣∣∣∣
≤

∣∣∣∣ 1
Γ(αi)

∫ t

a

g′i(x)dx
(gi(t) − gi(x))1−αi

∣∣∣∣‖(PN( f (x,u − f (x, v))i‖∞

≤
(gi(t) − gi(a))αi

Γ(αi + 1)
‖Li(PN)i(u − v)i‖∞

≤
Li(gi(t) − gi(a))αi

Γ(αi + 1)
‖PN‖‖u − v‖.

(5.12)

Therefore,
‖QNu − QNv‖ ≤ M‖PN‖‖u − v‖, (5.13)

where M is defined as in Eq (4.3). Similarly,

‖Q̃Nu − Q̃Nv‖ ≤ M‖PN‖‖u − v‖. (5.14)

The operator PNTN is a contractor since

‖PNTN‖ ≤ 2‖PN‖
2M(‖u − v‖) ≤ ‖u − v‖

by the hypothesis of the theorem. It follows from the Banach fixed point theorem that the operator

PNTN :
(
S−1

m−1(Ih)
)ν
→

(
S−1

m−1(Ih)
)ν

has a unique solution, and the recursive formula

ui
N = PNTNui−1

N , i = 1, 2, · · · .

converges to the fixed point of PNTN with any initial solution

u0
N ∈

(
S−1

m−1(Ih)
)ν
.

We recall that
(
S−1

m−1(Ih)
)ν

is a finite dimensional space and thus a Banach space. �
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6. Analysis of the method

In this section, we show that the error of the discretized collocation method is proportional to the
error of the quadrature method for the exact solution:

R(y) := (T − PNTN)(y). (6.1)

Theorem 6.1. Let assumptions (H1) and (H2) hold for f : [0,T ] × Rν → Rν. Let Λ defined by (5.10)
satisfy

Λ < 1. (6.2)

Then, the approximate solution described by (5.1) and (5.6) exists, and

‖uN − y‖ ≤
1

1 −C
‖R(y)‖. (6.3)

Proof. Since uN ∈
(
S−1

m−1(Ih)
)ν
, it follows that PNuN = uN . Hence, the dense approximate solution (5.1)

satisfies

uN(t) = PNTNuN , (6.4)

where
TNu = yb − Q̃Nu + QNu(t).

By using Eq (6.1),
y = PNTN(y) + R(y). (6.5)

Setting
e := uN − y

and subtracting Eq (6.5) from Eq (5.10), we obtain

e = PNTNuN − PNTN(y) − R(y). (6.6)

The first difference of Eq (6.6) satisfies

‖PNTNuN−PNTN(y)‖ ≤ ‖PN‖‖TNuN − TN(y)‖
≤ ‖PN‖‖ − Q̃NuN + QNuN(t) + Q̃Ny − QNy(t)‖
≤ ‖PN‖(‖Q̃NuN − Q̃Ny‖ + ‖QNuN(t) − QNy(t)‖).

(6.7)

Let us consider the the ith component of the QNuN(t) − QNy(t), and we have

|(QNuN(t))i − (QNy(t))i| = |(G
a It

ᾱ,gPNf(t,uN(t)))i − (G
a It

ᾱ,gPNf(t, y(t)))i|

≤ |
1

Γ(αi)

∫ t

a

|g′i(x)(PN( f (x,uN(x) − f (x, y(x)))i|

(gi(t) − gi(x))1−αi
dx|

≤ |
1

Γ(αi)

∫ t

a

g′i(x)dx
(gi(t) − gi(x))1−αi

|‖(PN( f (x,uN(x) − f (x, y(x)))i‖∞

≤
(gi(t) − gi(a))αi

Γ(αi + 1)
‖Li(PN)i(uN − y)i‖∞

≤
Li(gi(t) − gi(a))αi

Γ(αi + 1)
‖PN‖‖uN − y‖.

(6.8)
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It follows from Eq (6.8) that
‖QNuN − QNy‖ ≤ M‖PN‖‖uN − y‖. (6.9)

Similarly, we can prove that

‖Q̃NuN − Q̃Ny‖ ≤ M‖PN‖‖uN(x) − y(x)‖. (6.10)

Substituting Eqs (6.9) and (6.10) into Eq (6.7), we obtain

‖PNTNuN − PNTN(y)‖ ≤ 2M‖PN‖
2‖uN(x) − y(x)‖ = 2M‖PN‖

2‖e‖. (6.11)

Taking the norm from Eq (6.6) and using Eq (6.11), we obtain

‖e‖ ≤ ‖PNTNuN − PNTN(y)‖ + ‖R(y)‖
≤ 2M‖PN‖

2‖e‖ + ‖R(y)‖.
(6.12)

This leads to an interesting bound for the error,

‖e‖ ≤
1

1 − Λ
‖R(y)‖. (6.13)

�

The following lemma supports Theorem 6.1 by a bound for ‖PN‖.

Lemma 6.1. Let PN : (C[0,T ])ν →
(
S −1

m−1(Ih)
)ν

be a projection defined by Eq (5.2). Let ‖.‖ be the
induced norm of projection. Then, there exist N0 ∈ N and a constant C such that

‖PN‖ ≤ C

for all N > N0.

Proof. We prove this statement for the 1-D case, and the proof of the ν-dimensional case is similar. Let
‖y‖ < 1.

‖PNy‖ = max
n=0,...,N−1

‖PNy |σn ‖

=

{
maxt∈[tn,tn+1], n=0,...,N−1

∑m
j=1

∏m
i=1,i, j|y(tn, j)|, m = 1,

maxt∈[tn,tn+1], n=0,...,N−1
∑m

j=1
∏m

i=1,i, j
t−tn,i

tn, j−tn,i
|y(tn, j)|, m > 1.

Setting t = tn + vhn and |y(z)| = max|y(tn, j)|, we obtain

‖PNy‖ ≤ C|y(z)|C‖y‖

where

C =

 1, m = 1,
maxv∈[0,1]

∑m
j=1

∏m
i=1,i, j

|v−ci |

|c j−ci |
, m > 1,

is independent of y and t. �

Remark 7. We note that for m = 1, we have ‖PN‖ ≤ 1. Thus, Λ in Eqs (6.2) and (5.10) will be equal
to M defined in (4.6). This means that the conditions of (6.1), (5.1) and (4.2) coincide.
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7. Numerical experiments

To start numerical implementation, we compute the weight coefficients for the given parameters m
and c. Let m = 1 and c1 = θ, L1(t) = 1. The corresponding methods are known as the θ method. The
θ method approximates the solution with a constant function in each interval. In uniform mesh, it is
similar to Haar scale functions. The weight of the proposed approximate quadrature can be computed
by

λn,l,1(v) =

 (g(tn+vhn)−g(tl))ᾱ

Γ(ᾱ+1) −
(g(tn+vhn)−g(tl+1))ᾱ

Γ(ᾱ+1) , l = 0, . . . , n − 1,
(g(tn+vhn)−g(tl))ᾱ

Γ(ᾱ+1) , l = n.

7.1. Validation example

Consider a system of GFDEs described by Eq (1.2) with the vector order ᾱ = [0.5, 0.5]T , the weight
function g = [g, g]T , the source function

f(t, y) =

 0.1 sin(y2
1 + y2

2) − 0.1 sin(2(g(t) − g(a))) +
√
π

2

0.1 cos(y1 − y2) + 0.1
√
π

2 − 0.1


and the terminal value

yb = [
√

(g(b) − g(a)),
√

(g(b) − g(a))]T .

Before giving the exact solution, we notice that f satisfies the condition (H1) and (H2). According
to Theorem 4.2, for an appropriately chosen value of b, the solution falls into (C[a, b])2. The exact
solution of this system is

y = [
√

(g(t) − g(a)),
√

(g(t) − g(a))]T .

This is in agreement with the assertion of Theorem 4.2.
We notice that we could not choose a = 0 for case II, since the function ln is not defined at zero.

For a better comparison, we choose the initial terminal a = 1, and we find b such that

b ≤ g−1(
π

0.16
). (7.1)

Equation (7.1) guarantees the condition (4.6) of Theorem 4.1. Thus, the corresponding system has a
unique solution with an arbitrary value of yb. Table 1 shows lower bounds of b for various choices of
weight functions g obtained by Eq (7.1).

Table 1. The bounds for different choices of weight function g.

Category type Value of parameters The bound

I no parameter 20.6350
II no parameter 3.3678e+08
III λ = 0.1 11.2124
III λ = 1 3.1070
III λ = 2 1.9214
IV ρ = 0.1 1.3997e+13
IV ρ = 0.5 425.8013
IV ρ = 10 1.3535

AIMS Mathematics Volume 7, Issue 8, 14394–14418.



14410

Remark 8. Table 1 highlights case II (Hadamard fractional operator) as well as case IV (Katugampola
type) as candidates for having bigger bounds of well-posedness. The parameters of cases III and IV
change b with different rates. The most rapid change occurs in the Katugampola type. We recall that
the terminal value problem may not be well-posed [4], at all.

Remark 8 guides us toward available options for modeling inverse problems in applied science.
Actually, we need well-posedness for larger intervals in general.

In Figure 1, we illustrate the exact and the approximate solutions for various weight functions g,
with the upper bound b = 2, the collocation parameter c = 0.1, the graded mesh exponent r = 2
and the number of steps N = 20. The maximum errors and estimated orders of convergence for
both components of the solution are compared in Tables 2 and 3, respectively. The maximum error is
computed by

EN = max
n=0,...,N−1

{uN(tn,1) − y(tn,1)}.

1 1.2 1.4 1.6 1.8 2

t

0

0.2

0.4

0.6

0.8

1

1.2

y
1

Approx. Sol., Case I

Exact. Sol., Case I

Approx. Sol., Case II

Exact. Sol., Case II

Approx. Sol., Case III, =0.1

Exact. Sol., Case III

Approx. Sol., Case IV, =0.1

Exact. Sol., Case IV

Figure 1. A comparison of the exact and the approximate solutions for various values of
weight functions g.

It is known that, for y ∈ (C[a, b])2, R(y) = O(N−m) + O(Nrβ) (see for example [9]). In this example,
m = 1 and r = 2; thus, according to Theorem 6.1,

e = O(N−1).

Tables 2 and 3 show that the order of converge tends to 1. Thus, the reported results are in complete
agreement with the theoretical results.

Table 2. Maximum error and the estimated order of convergence for the first component of
the solution.

Category type E32 E64 E128 log2 E32/E64 log2 E64/E128

I 0.0313 0.0156 0.0079 1.0000 0.9773
II 0.0312 0.0156 0.0079 0.9997 0.9772
III, λ = 0.1 0.0353 0.0177 0.0090 0.9981 0.9771
IV, ρ = 0.1 0.0099 0.0049 0.0025 0.9998 0.9772
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Table 3. Maximum error and the estimated order of convergence for the second component
of the solution.

Category type E32 E64 E128 log2 E32/E64 log2 E64/E128

I 0.0313 0.0156 0.0079 1.0000 0.9773
II 0.0312 0.0156 0.0079 0.9997 0.9772
III, λ = 0.1 0.0353 0.0177 0.0090 0.9981 0.9771
IV, ρ = 0.1 0.0099 0.0049 0.0025 0.9998 0.9772

7.2. Past population history of diabetes cases

Diabetes is a silent epidemic of high blood sugar levels, mainly due to decreasing activities and
an inappropriate diet. An epidemiology model using FADEs for simulating the population of diabetes
cases is proposed in [31]. This model applies linear two-dimensional FDEs

G
a D[α1,α2]T ,[g1,g2]T

t y(t) = Aλ(t) + B (7.2)

to describe the population of diabetes cases. Here,

A =

[
a11 a12

−a21 a22

]
is a 2 × 2 matrix, and B is a 2-dimensional column vector. By some physical interpretation of the
model [31], we impose 0 ≤ a11 < 5, 0 ≤ a12 ≤ 1 and 0 ≤ a21 < 2. The interpretation of a22 is the rate
of death in [31]. However, the population of the studied zone is not a constant parameter, and indeed it
is increasing. Thus, we let a22 be positive, and we impose −1 ≤ a22 < 8.

Let us use the system (7.2) as a black box for modeling the populations of diabetes cases with model
parameters A and B. We use available data, which was reported in [32], for the population of diabetes
cases from 1990–2017 to find the model parameters. Then, we use the obtained model for predicting
the past dynamics by a terminal value problem.

We set ᾱ = [0.9, 0.9]T to involve history in our model. Our interest is to study the effect of g on
the results of this model. Let the output of the black box be o(t) = y2(t), indicating the population of
diabetes cases for an input value of t.

We use o for simulating the dynamics of the prevalence number of diabetes. Let D(t) show available
data for the prevalence number of diabetes. Then, D(t)/DM is normalized data, where DM = max |D(t)|.

Setting A = [0, 0; 0, 0], we obtain

y(t) = y0 +
(g(t) − g(a))α

Γ(α + 1)
B.

This means, by tending α → 0, the matrix B can be regarded as an approximation for the slope of
the curve y(t). Thus, a reasonable physical interpretation suggests choosing B as the prevalence rate of
diabetes with some gain related to g.

According to [32], a prevalence rate is a number between 4500 and 5500 per 100k population.
Thus, we use B = η[0, 0.045]T to reduce the parameters in the related optimization problem, where the
parameter η ∈ R is a model parameter.
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Now, the inverse problem of modeling dictates to determining A and η such that minimizes the
following objective function:

E =

2017∑
t=1990

‖o(t) − D(t)/DM‖. (7.3)

The output o(t) will be calculated from the block box as an initial value problem on [1990, 2017].
The modeled IVP can be solved by Eq (2.19) or a numerical method described by (5.9). We applied
the latter one.

Let’s apply the inverse problem to the obtained model. We emphasize that classical fractional-order
TVPs (i.e., TVPs with Caputo fractional derivative) for high dimensional systems are not well-posed
on the large intervals. A cure for such a modeling problem is the ultimate aim of this paper. To this
end, we use appropriate generalized fractional derivatives with a larger well-posedness bound.

Let g(x) = [xρt, xρt]T . The case ρ = 1 corresponds to the Caputo fractional derivative. In Figure 2(a)
we depict the result of the fitted model for ρ = 1. We apply (5.9) with N = 200, c = 1 and graded
mesh of exponent r = 2. The fitting error (7.3) in this case is E = 0.24998. Since Λ = 113.2473,
the conditions (6.2) and (4.6) do not hold. Thus, Theorems 4.2, 5.1 and 6.1 do not guarantee the
corresponding numerical and exact solutions exist. Also, there is no guarantee for convergence of
the approximate solution. Figure 2(b) shows the approximate solution by the prescribed method in
Eqs (5.1) and (5.7) (N = 200, c = 1 and r = 2) for the corresponding TVP. It is not a surprise that
the numerical approximation for the TVP does not converge to the corresponding solution of the IVP.
Thus, this model cannot be used for predicting past dynamics.
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Figure 2. FDEs (7.2) with g(x) = [x, x]T and (a) normalized data and simulated results with
the initial condition, (b) normalized data and simulated results with terminal conditions. The
solution of the TVP does not converge with the solution of the IVP.

Mathematically, the constraints for elements of A impose that the Lipschitz constant of f be less
than 8. As a result, we can improve the domain of well-posedness by decreasing ρ in g(x) = [xρt, xρt]T .
On the other hand, this restriction may increase the optimization error, i.e., E.Using the same procedure
as we reported for the case ρ = 1, we report the result for ρ = 0.2, 0.4, 0.8 in Figures 3–5, respectively
(the case ρ = 0.6 is similar to case ρ = 0.8 and it does not add more information).
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For the case ρ = 0.8, the fitting error E = 0.1530 is decreased (Figure 3(a)–(c)). The λ

corresponding to interval I1 := [1990, 2017] is decreased to 13.1412. It is not in the zone of the
predicted bound for well-posedness and convergence of the given TVP. However, it converges, and
the solutions of the TVP and IVP coincide, as shown in Figure 3(b). The solution for prediction of past
time on I2 = [1940, 2017] with the same TVP is illustrated in Figure 3(c). Obviously, increasing the
interval length increases λ. For interval I2 we get λ = 33.8248. There is no guarantee of well-posedness,
and the results cannot be reliable (a similar pattern repeats for the case λ = 0.6).
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Figure 3. FDEs (7.2) with g(x) = [xρ, xρ]T and ρ = 0.8. (a) Modeling, (b) Past dynamics
(validation) and (c) Past dynamics (prediction).

For the case ρ = 0.4, the fitting error E = 0.37360 is increased (Figure 4(a)–(c)). However,
the values λ corresponding to I1 and I2 are decreased, and both are near the well-posedness and
convergence zone. We can rely on these results.
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Figure 4. FDEs (7.2) with g(x) = [xρ, xρ]T and ρ = 0.4. (a) Modeling, (b) Past dynamics
(validation) and (c) Past dynamics (prediction).

The last case is ρ = 0.2 : see Figure 5(a)–(c). The optimization result will cross some boundaries
of our restricted conditions on A. The values of λ for both intervals are less than 1. Well-posedness of
the corresponding TVP and convergence of the proposed numerical method are ensured. However, the
error decreases to E = 0.9076. It behaves not better than a model with linear regression.

Conclusively, there is a contrast between the fitting error and the well-posedness condition. A
compromise can be made by considering both conditions for a given model. In this case, we propose
the model with ρ = 0.4, for estimating past dynamics.
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Figure 5. FDEs (7.2) with g(x) = [xρ, xρ]T and ρ = 0.2. (a) Modeling, (b) Past dynamics
(validation) and (c) Past dynamics (prediction).

8. Discussion and conclusions

An extensive application of FDEs is involved in many branches of science, such as biology,
epidemiology, medicine and chemistry. Always, these systems are higher dimensional and generally
involve some terms of nonlinear Lotka Volterra dynamics with initial conditions. Therefore, as IVPs
they are well-posed. However, the inverse problem is not well-posed for higher dimensional equations.
It is useless and dangerous to use fractional derivatives for modeling such processes, especially when
we have boundary conditions, without considering their well-posedness. Fortunately, this paper’s
results for modeling with general fractional derivatives open a new window to overcome this problem.
However, we encounter another problem: increasing fitting error. For this aim, a compromising
solution between well-posedness and less fitting error is considered.
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