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Abstract: In this article, the effects of Newtonian heating along with wall slip condition on temper-
ature is critically examined on unsteady magnetohydrodynamic (MHD) flows of Prabhakar-like
non integer Maxwell fluid near an infinitely vertical plate under constant concentration. For the
sake of generalized memory effects, a new mathematical fractional model is formulated based on
a newly introduced Prabhakar fractional operator with generalized Fourier’s law and Fick’s law.
This fractional model has been solved analytically and exact solutions for dimensionless velocity,
concentration, and energy equations are calculated in terms of Mittag-Leffler functions by employing
the Laplace transformation method. Physical impacts of different parameters such as α, Pr, β, Sc, Gr,
γ, and Gm are studied and demonstrated graphically by Mathcad software. Furthermore, to validate
our current results, some limiting models such as classical Maxwell model, classical Newtonian
model, and fractional Newtonian model are recovered from Prabhakar fractional Maxwell fluid.
Moreover, we compare the results between Maxwell and Newtonian fluids for both fractional and
classical cases with and without slip conditions, showing that the movement of the Maxwell fluid is
faster than viscous fluid. Additionally, it is visualized that both classical Maxwell and viscous fluid
have relatively higher velocity as compared to fractional Maxwell and viscous fluid.

Keywords: Prabhakar derivative; magnetic effect; slip conditions; analytical solution; Mittag-Leffler
functions; physical aspect via graphs

1. Introduction

It is a well-known fact that many scientists and researchers have more interest in explor-
ing non-Newtonian fluids due to their wide practical applications in modern technologies
and significant characteristics. The properties of non-Newtonian fluids are demonstrated in
various industrial sectors because they play a vital role in manufacturing, e.g., greases, clay
coatings, polymer melts, waste liquid, extrusion of molten plastic, pharmaceutical, polymer
processing, oil and gas, well drilling, food processing industries, and many emulsions. For
instance, shampoo, drilling mud, biological materials, polymer melts, all emulsions, and
complex mixtures are considered as non-Newtonian fluids. The non-Newtonian fluids
have different characteristics and can not be described in a single model, but in the case
of Newtonian fluid it is possible to express in a single model. It is quite ambiguous how
to classify non-Newtonian fluids because, in the literature, several types of fluid exist.
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However, non-Newtonian fluids are classified into three types, rate, differential, and in-
tegral. Researchers studied these three types of non-Newtonian models, and each model
has different characteristics. Some common models that describe the computational and
physical characteristics of non-Newtonian fluids are second grade and third grade models,
the Jeffery model, Casson model, Maxwell model, and power law model [1–6]. Such fluid
models are simple, but each model has certain limitations; for example, second grade fluid
is a simple sub-class of a differential type of non-Newtonian fluid. Many scientists and
researchers are interested to explore the geometry of the flow regime of second grade fluid
and have discussed many interesting features in different configurations [7–13]. However,
the second grade fluid model does not provide sufficient knowledge about viscosity, only
describing the effects of elasticity. Identically, the power law model efficiently explains
the fluids viscosity, but is unable to provide information regarding effects of elasticity.
Further, these fluid models do not incorporate the relaxation time. Flow analysis of such
fluids have great importance for practical and theoretical studies in many industrial sectors.
Among them, the Maxwell fluid model, which is a simple sub-division of the rate type
of non-Newtonian fluids for authentic approximation of this phenomenon, has attracted
special attention. Maxwell fluid has both properties (viscosity and elasticity), so it is named
as viscoelastic fluid. The Maxwell fluid model was initially proposed by James Clerk
Maxwell in 1867. The Maxwell model was developed with an aim to foretell the elastic and
viscous behavior of air [14]. However, some researchers frequently operated the Maxwell
model in response to different viscoelastic fluids ranging from polymeric fluids to the
Earth’s mantle. Olsson et al. [15] discussed some rheological characteristics of Maxwell
fluid. Aman et al. [16] studied generalized Maxwell migration in a porous media under
second order slip effects. Choi et al. [17] discussed Maxwell fluid flow behavior passing
through a channel. The computational characteristics of viscosity variation of Maxwell fluid
flow through a thick surface with thermal stratifications was presented by Khan et al. [18].
Fetecau et al. [19,20] explored the Maxwell fluid models and obtained new analytical
solutions. Hosseinzadeh et al. [21] analyzed the effect of Joule heating and heat generation
on chemically reactive motion of Maxwell fluid by employing two dimensional form of
the Darcy–Forchheimer relation. Riaz et al. [22,23] described interesting facts regarding
Maxwell fluid, and numerical solutions with stability analysis using different fractional
operators are studied in [24–27].

Nowadays, the branch of mathematics fractional order calculus has been growing
immensely on account of its enormous significance in science and engineering that are
absent in non-fractional calculus, which deals with an arbitrary order of integration and dif-
ferentiation. Fractional differential equations are massively applied to model various daily
life physical problems because fractional calculus has memory effects, such as problems in
fluid flow, diffusion, relaxation, reaction, oscillation, dynamical processes, and retardation
processes in complex systems and many more engineering processes, wherefore ordinary
models can not anticipate the preceding processes state. In the literature, most of the studies
are focused on flow problems relative to several fractional operators with local kernels, as
well as non-local kernels such as Marchaud–Caputo, Atangana–Baleanu, Caputo–Fabrizio,
Prabhakar fractional derivative, and others [28–30]. These indicate the current state but also
the future state of a system. Yavuz et al. [31] applied Liouville–Caputo fractional derivative
with its generalized version to solve the fractional incompressible second-grade fluid differ-
ential equations by combining both the ρ-Laplace homotopy transform method (ρ-LHTM)
and the heat balance integral method (HBIM) successfully. A linear visco-elastic model
with the application of a Prabhakar fractional operator has been investigated by Giusti
and Colombaro [32]. Further, comparative study for fractional model of MHD Maxwell
fluid to anticipate the heat impacts was established by Riaz et al. [33]. Ozkose et al. [34,35]
developed a fractional model of tumor-immune system interaction related to lung cancer
and also studied the interactions between COVID-19 and diabetes with hereditary traits
using real data. Naik et al. [36] analyzed COVID-19 epidemics with treatment in fractional
derivatives on the base of data from Pakistan and some other studies regarding COVID-19
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epidemic model investigated by Ikram et al. [37], Allegretti et al. [38], and Joshi et al. [39].
Furthermore, some respective studies associated with fractionalized models are discussed
in detail; see, for instance, [40–43]; most of the studies are focused on flow problems by
considering different fluids, related to fractional operators and heat transport phenomena.

Xiao-Hong Zhang et al. [44] recently, investigated the flow of a generalized fractional
Prabhakar-type Maxwell fluid model, without analyzing the impacts of diffusion equation,
and the results obtained via application of a Laplace transformation from the proposed
problem. In the considered model, a new approach was used to fractionalize the diffusion
equation by applying the definition of the Prabhakar fractional operator along with the
generalized Fick’s law; the influence of fractionalized diffusion equation is analyzed on
momentum equation. Based on the above mentioned discussion, the prominent features
of this derivation is to construct a new mathematical fractional model based on the newly
introduced Prabhakar fractional operator with generalized Fourier’s law and Fick’s law.
This fractional model has been solved analytically, and exact solutions for dimensionless
velocity, concentration, and energy equations are calculated in terms of Mittag-Leffler
functions by employing the Laplace transformation method. Physical impacts of different
parameters such as α, Pr, β, Sc, Gr, γ, and Gm are studied and demonstrated graphically
by Mathcad software. Furthermore, to validate our current results, some limiting models
such as the classical Maxwell model, classical Newtonian model, and fractional Newtonian
model are recovered from the Prabhakar fractional Maxwell model.

2. Mathematical Model

Consider the time dependent, incompressible, electrically conducting natural convec-
tive movement of Maxwell fluid over an erected plate which is also non conductive having
infinite length, along with wall slip condition on temperature. Initially, suppose that, at
time η = 0, the fluid and plate both are static having fixed species concentration C∞ and the
ambient temperature T∞. For time η = 0+, the plate is still at rest, while the temperature is
stabilized in the form T(0, η)− ω

∂T(0,η)
∂φ = u0 f (η), whereas concentration is maintained

at the value Cw and geometry of the proposed problem is configured in Figure 1. In the
present work, the fluid velocity, temperature, and concentration are functions of φ and
time η only, because the plate is infinite due to which the fluid properties only depend
on φ and time η; therefore, velocity field, temperature, and concentration take the form of
~U(φ, η) = u(φ, η)î, T(φ, η), and C(φ, η), respectively, where î represents the unit vector in
the x direction and u(φ, η) is the x-component of the velocity. Further, the fluid velocity
satisfies the continuity equation in the presence of these factors.

Figure 1. Geometrical formation of the flow model.
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The movement of the fluid and thermal transport govern partial differential equations
of the considered problem for MHD Maxwell fluid under Boussinesq’s approximation [45].

The momentum equation(
1 + λ

∂

∂η

)
∂u(φ, η)

∂η
= υ

∂2u(φ, η)

∂φ2 +

(
1 + λ

∂

∂η

)
[gβT(T(φ, η)− T∞) + gβC(C(φ, η)− C∞)]. (1)

The energy balance equation

Cp
∂T(φ, η)

∂η
= −1

ρ

∂q(φ, η)

∂φ
. (2)

Fourier’s thermal flux law

q(φ, η) = −k
∂T(φ, η)

∂φ
. (3)

The diffusion equation

∂C(φ, η)

∂η
= −∂χ(φ, η)

∂φ
. (4)

Fick’s Law

χ(φ, η) = −Dm
∂C(φ, η)

∂φ
. (5)

with associated initial/boundary conditions

u(φ, 0) = 0, T(φ, 0) = T∞, C(φ, 0) = C∞, φ ≥ 0,

u(0, η) = 0, T(0, η)−ω
∂T(φ, η)

∂φ
|φ=0 = u0 f (η), C(0, η) = Cw, η ≥ 0,

u(φ, η)→ 0, T(φ, η)→ ∞, C(φ, η)→ ∞ as φ→ ∞. (6)

To obtain the non-dimentionalized equations, the following new on-dimensional
quantities are introduced:

η∗ =
u2

0η

υ
, φ∗ =

u0φ

υ
, u∗ =

u
u0

, υ =
µ

ρ
, T∗ =

T − T∞

Tw − T∞
, C∗ =

C− C∞

Cw − C∞
,

λ∗ =
u2

0λ

υ
, q∗ =

q
q0

, χ∗ =
χ

χ0
, q0 =

k(Tw − T∞)u0

υ
, χ0 =

Dm(Cw − C∞)u0

υ
,

Gr =
gβT(Tw − T∞)

u3
0

, Gm =
gβC(Cw − C∞)

u3
0

, Pr =
µCp

k
, Sc =

υ

Dm
. (7)

After substituting Equation (7) into Equations (1)–(5) and ignoring the notation of
asterisk ∗, we find all equations in dimentionless form, as:(

1 + λ
∂

∂η

)
∂u(φ, η)

∂η
=

∂2u(φ, η)

∂φ2 +

(
1 + λ

∂

∂η

)
GrT(φ, η) +

(
1 + λ

∂

∂η

)
GmC(φ, η), (8)

∂T(φ, η)

∂η
= − 1

Pr
∂q(φ, η)

∂φ
, (9)

q(φ, η) = −∂T(φ, η)

∂φ
, (10)
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∂C(φ, η)

∂η
= − 1

Sc
∂χ(φ, η)

∂φ
, (11)

χ(φ, η) = −∂C(φ, η)

∂φ
. (12)

Additionally, the set of initial and boundary conditions in non-dimensional form are
stated as:

u(φ, 0) = 0, T(φ, 0) = 0, C(φ, 0) = 0, f or φ ≥ 0, (13)

u(0, η) = 0, T(0, η)−ω
∂T(φ, η)

∂φ
|φ=0 = f (η), C(0, η) = 1, f or η ≥ 0, (14)

u(φ, η)→ 0, T(φ, η)→ 0, C(φ, η)→ 0 as φ→ ∞. (15)

3. Preliminaries

The regularized Prabhakar derivative is described as:

CDγ
α,β,℘ f (t) = E−γ

α,m−β,℘ f (m)(t) =
∫ t

0
(t− τ)m−β−1E−γ

α,m−β(℘(t− τ)α) f (m)(τ)dτ. (16)

where

Eγ
α,β,℘ f (t) =

∫ t

0
(t− τ)β−1Eγ

α,β(℘(t− τ)α) f (τ)dτ.

represents the Prabhakar integral, and

Eγ
α,β(z) =

∞

∑
n=0

Γ(γ + n)zn

n!Γ(γ)Γ(αn + β)
, α, β, γ, z ∈ C, Re(α) > 0

is the three-parameter Mittag-Leffler function. Additionally, the function tβ−1Eγ
α,β(℘tα)

with t ∈ R, α, β, γ,℘ ∈ C, Re(α) > 0 is called the Prabhakar kernel.
The Laplace transformation of the regularized Prabhakar derivative is described as:

L
{

CDγ
α,β,℘ f (t)

}
= ξβ−m(1− ℘ξ−α)γL

{
f (m)(t)

}
(17)

where α, β, and γ represent the fractional parameters and ξ denoted by Laplace transform
parameter.

4. Solution of the Problem

In the present study, we introduce a novel mathematical model named Prabhakar’s
fractional operator which generalizes the thermal memory effects. The generalized Fourier
and Fick’s laws are based on Prabhakar’s fractional derivative, and are defined as:

q(φ, η) = −CDγ
α,β,℘

∂T(φ, η)

∂φ
, (18)

χ(φ, η) = −CDγ
α,β,℘

∂C(φ, η)

∂φ
. (19)

where CDγ
α,β,℘ represents the Prabhakar fractional operator and detailed discussion with

properties are given in [45]. Further, the classical Fourier’s law will be obtained for
β = γ = 0.
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4.1. Exact Solution of Temperature

Applying Laplace transformation to Equations (9) and (18) to find the solution with
conditions given in Equations (13)–(15), we have

PrξT̄(φ, ξ) = −∂q̄(φ, ξ)

∂φ
. (20)

and

q̄(φ, ξ) = −ξβ
(
1− ℘ξ−α

)γ ∂T̄(φ, ξ)

∂φ
. (21)

with

T̄(0, ξ)−ω
∂T̄(φ, ξ)

∂φ
|φ=0 = f̄ (ξ) and T̄(φ, ξ)→ 0 as φ→ ∞. (22)

where ζ̄(φ, ξ) represents the Laplace transformation of the function ζ(φ, η) and defined as:

ζ̄(φ, ξ) =
∫ ∞

0
ζ(φ, η)e−ξηdη.

and ξ is the transformed parameter.
Using Equation (21) into Equation (20), we find

PrξT̄(φ, ξ) = ξβ
(
1− ℘ξ−α

)γ ∂2T̄(φ, ξ)

∂φ2 , (23)

∂2T̄(φ, ξ)

∂φ2 =
Prξ

ξβ(1− ℘ξ−α)γ T̄(φ, ξ), (24)

∂2T̄(φ, ξ)

∂φ2 − A(ξ)T̄(φ, ξ) = 0. (25)

The solution for Equation (25) is written as:

T̄(φ, ξ) = e1eφ
√

A(ξ) + e2e−φ
√

A(ξ). (26)

To determine the unknown constants e1 and e2, employing the stated conditions in
Equation (22) for temperature, we have

T̄(φ, ξ) =
f̄ (ξ)

1 + ω
√

A(ξ)
e−φ
√

A(ξ). (27)

where A(ξ) = Prξ

ξβ(1−℘ξ−α)γ . We write the Equation (27) in series form by using the series
formula for exponential function, then its equivalent form is expressed as:

T̄(φ, ξ) = f̄ (ξ)
∞

∑
m=0

(−1)m(ω
√

A(ξ))m
∞

∑
n=0

(−φ
√

A(ξ))n

n!
,

= f̄ (ξ)
∞

∑
m=0

(−ω
√

Pr)m

ξ(β−1)m
2 (1− ℘ξ−α)

γm
2

∞

∑
n=0

(−φ
√

Pr)n

n!ξ(β−1) n
2 (1− ℘ξ−α)

γn
2

, (28)

Taking the inverse Laplace transformation of Equation (28), the required solution for
temperature is written as:
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T(φ, η) = f (η) ∗
∞

∑
m=0

(−ω)m(Pr)
m
2 η(β−1)m

2 −1E
γm
2

α,(β−1)m
2
(℘ηα) ∗

∞

∑
n=0

(−φ)n

n!
(Pr)

n
2 η(β−1) n

2−1E
γn
2

α,(β−1) n
2
(℘ηα). (29)

where

L −1
{

1
ξβ(1− ℘ξ−α)γ

}
= L −1

{
ξαγ−β

(ξα − ℘)γ

}
= tβ−1Eγ

α,β(℘tα)

and ‘∗’ represents the convolution product.

4.2. Exact Solution of Diffusion Equation

Applying Laplace transformation to Equations (11) and (19) to find the solution with
conditions given in Equations (13)–(15), we have

ScξC̄(φ, ξ) = −∂χ̄(φ, ξ)

∂φ
. (30)

and

χ̄(φ, ξ) = −ξβ
(
1− ℘ξ−α

)γ ∂C̄(φ, ξ)

∂φ
. (31)

with

C̄(0, ξ) =
1
ξ

and C̄(φ, ξ)→ 0 as φ→ ∞. (32)

Using Equation (31) into Equation (30), we find

ScξC̄(φ, ξ) = ξβ
(
1− ℘ξ−α

)γ ∂2C̄(φ, ξ)

∂φ2 , (33)

∂2C̄(φ, ξ)

∂φ2 =
Scξ

ξβ(1− ℘ξ−α)γ C̄(φ, ξ), (34)

∂2C̄(φ, ξ)

∂φ2 − B(ξ)C̄(φ, ξ) = 0. (35)

The solution for Equation (35) is written as:

T̄(φ, ξ) = e3eφ
√

B(ξ) + e4e−φ
√

B(ξ). (36)

To determine the unknown constants e3 and e4, employing the stated conditions in
Equation (32) for concentration, we have

C̄(φ, ξ) =
1
ξ

e−φ
√

B(ξ). (37)

where B(ξ) = Scξ

ξβ(1−℘ξ−α)γ . We write the Equation (37) in series form by using the series
formula for exponential function, then its equivalent form is expressed as:
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C̄(φ, ξ) =
1
ξ

∞

∑
k=0

(−φ
√

B(ξ))k

k!
,

=
1
ξ

∞

∑
k=0

(−φ
√

Sc)k

k!ξ(β−1) k
2+1(1− ℘ξ−α)

γk
2

. (38)

Taking the inverse Laplace transformation of Equation (38), the required solution for
concentration is written as:

C(φ, η) =
∞

∑
k=0

(−φ)k

k!
(Sc)

k
2 η(β−1) k

2 E
γk
2

α,(β−1) k
2+1

(℘ηα). (39)

4.3. Exact Solution of Fluid Velocity

The velocity field solution from Equation (8) with the help of Laplace transformation
is calculated as:

(1 + λξ)ξū(φ, ξ) =
d2ū(φ, ξ)

dφ2 + (1 + λξ)GrT̄(φ, ξ) + (1 + λξ)GmC̄(φ, ξ) (40)

with

ū(0, ξ) = 0 and ū(φ, ξ)→ 0 as φ→ ∞. (41)

substituting the value of T̄(φ, ξ) from Equation (27) and the value of C̄(φ, ξ) from
Equation (37) in Equation (40), then after manipulation the solution written in the form

ū(φ, ξ) = e5eφ
√

ξ(1+λξ) + e6e−φ
√

ξ(1+λξ) − (1 + λξ)Gr

[
f̄ (ξ)

1 + ω
√

A(ξ)

][
e−φ
√

A(ξ)

A(ξ)− ξ(1 + λξ)

]

− (1 + λξ)Gm
1
ξ

[
e−φ
√

B(ξ)

B(ξ)− ξ(1 + λξ)

]
. (42)

The involving constants e5 and e6 in the above Equation (42) are determined with the
help of stated conditions in Equation (41), then solution is written as:

ū(φ, ξ) = (1 + λξ)Gr

[
f̄ (ξ)

1 + ω
√

A(ξ)

][
e−φ
√

A(ξ) − e−φ
√

ξ(1+λξ)

ξ(1 + λξ)− A(ξ)

]

+ (1 + λξ)Gm
1
ξ

[
e−φ
√

B(ξ) − e−φ
√

ξ(1+λξ)

ξ(1 + λξ)− B(ξ)

]
,

=
Gr(1 + λξ)

ξ(1 + λξ)− A(ξ)

[
f̄ (ξ)e−φ

√
A(ξ)

1 + ω
√

A(ξ)
− f̄ (ξ)e−φ

√
ξ(1+λξ)

1 + ω
√

A(ξ)

]

+
Gm(1 + λξ)

ξ(1 + λξ)− B(ξ)

[
e−φ
√

B(ξ)

ξ
− e−φ

√
ξ(1+λξ)

ξ

]
. (43)

Equation (43) can also be written in a more precise form as:

ū(φ, ξ) = Grū1(φ, ξ)
[
T̄(φ, ξ)− f̄ (ξ)ū2(φ, ξ)

]
+ Gmū3(φ, ξ)[C̄(φ, ξ)− ū4(φ, ξ)]. (44)

Taking the Laplace inverse transformation along with the convolution theorem, the
velocity field solution is finally obtained as:
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u(φ, η) = Gru1(φ, η) ∗ [T(φ, η)− f (η) ∗ u2(φ, η)] + Gmu3(φ, η) ∗ [C(φ, η)− u4(φ, η)]. (45)

where

u1(φ, η) = L −1{ū1(φ, ξ)} = L −1
{

(1 + λξ)

ξ(1 + λξ)− A(ξ)

}
= L −1

{
∞

∑
k=0

∞

∑
r=0

(Pr)k(−λ)rΓ(k + r)
r!Γ(k)

1
ξ(βk−r+1)(1− ℘ξ−α)γk

}

=
∞

∑
k=0

∞

∑
r=0

(Pr)k(−λ)rΓ(k + r)
r!Γ(k)

ηβk−rEγk
α,βk−r+1(℘ηα)

u2(φ, η) = L −1{ū2(φ, ξ)} = L −1

{
e−φ
√

ξ(1+λξ)

1 + ω
√

A(ξ)

}

= L −1

{(
∞

∑
m=0

(−ω
√

Pr)m

ξ(β−1)m
2 (1− ℘ξ−α)

γm
2

)(
∞

∑
n=0

∞

∑
i=0

(−φ)n(λ)
n
2−iΓ( n

2 + 1)
n!i!Γ( n

2 − i + 1)
1

ξ i−n

)}

=

(
∞

∑
m=0

(−ω)m(Pr)
m
2 η(β−1)m

2 −1E
γm
2

α,(β−1)m
2
(℘ηα)

)
∗
(

∞

∑
n=0

∞

∑
i=0

(−φ)n(λ)
n
2−iΓ( n

2 + 1)
n!i!Γ( n

2 − i + 1)
ηi−n−1

Γ(i− n)

)
,

u3(φ, η) = L −1{ū3(φ, ξ)} = L −1
{

(1 + λξ)

ξ(1 + λξ)− B(ξ)

}
= L −1

{
∞

∑
k=0

∞

∑
r=0

(Sc)k(−λ)rΓ(k + r)
r!Γ(k)

1
ξ(βk−r+1)(1− ℘ξ−α)γk

}

=
∞

∑
k=0

∞

∑
r=0

(Sc)k(−λ)rΓ(k + r)
r!Γ(k)

ηβk−rEγk
α,βk−r+1(℘ηα),

u4(φ, η) = L −1{ū4(φ, ξ)} = L −1
{

1
ξ

e−φ
√

ξ(1+λξ)

}
= L −1

{
∞

∑
n=0

∞

∑
δ=0

(−φ)n(λ)
n
2−δΓ( n

2 + 1)
n!δ!Γ( n

2 − δ + 1)
1

ξδ−n+1

}

=
∞

∑
n=0

∞

∑
δ=0

(−φ)n(λ)
n
2−δΓ( n

2 + 1)
n!δ!Γ( n

2 − δ + 1)
ηδ−n

Γ(δ− n + 1)

4.3.1. Classical Maxwell Fluid

To find the Ordinary Maxwell fluid, we substitute β = 0 and γ = 0 in Equation (43),
then the transformed velocity expression becomes

ū(φ, ξ) =
Gr(1 + λξ)

ξ(1 + λξ)− Prξ

[
f̄ (ξ)e−φ

√
Prξ

1 + ω
√

Prξ
− f̄ (ξ)e−φ

√
ξ(1+λξ)

1 + ω
√

Prξ

]

+
Gm(1 + λξ)

ξ(1 + λξ)− Scξ

[
e−φ
√

Scξ

ξ
− e−φ

√
ξ(1+λξ)

ξ

]
(46)

4.3.2. Fractionalized Viscous Fluid

For this case, we take λ = 0 in Equation (43); then the velocity expression for viscous
fluid is written as
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ū(φ, ξ) =
Gr

ξ − A(ξ)

[
f̄ (ξ)e−φ

√
A(ξ)

1 + ω
√

A(ξ)
− f̄ (ξ)e−φ

√
ξ

1 + ω
√

A(ξ)

]
+

Gm
ξ − B(ξ)

[
e−φ
√

B(ξ)

ξ
− e−φ

√
ξ

ξ

]
(47)

4.3.3. Ordinary Viscous Fluid

For this case, we take λ = 0 in Equation (46); then the velocity expression for classical
viscous fluid is written as

ū(φ, ξ) =
Gr

ξ − Prξ

[
f̄ (ξ)e−φ

√
Prξ

1 + ω
√

Prξ
− f̄ (ξ)e−φ

√
ξ

1 + ω
√

Prξ

]
+

Gm
ξ − Scξ

[
e−φ
√

Scξ

ξ
− e−φ

√
ξ

ξ

]
(48)

We recover the same velocity field expressions for all cases which are discussed above
by taking Gm = 0 in Equations (43), (46)–(48) as X. H. Zhang et al. [44] investigated in
Equations (26), (33), (35) and (37). All these results validate our current results.

5. Results and Discussion

In the present work, we investigated the time dependent, in-compressible, electrically
conducting natural convective movement of Maxwell fluid over an erected plate with
infinite length along with a wall slip condition on temperature under constant concentration.
For the sake of generalized memory effects, a fractional model was developed by applying
the newly introduced Prabhakar fractional operator and having a Mittag-Leffler kernel in
the constitutive equations. This fractional model has been solved analytically and exact
solutions for dimensionless velocity, concentration, and energy equations were calculated in
terms of Mittag-Leffler functions by employing the Laplace transformation. The influence
of the various system parameters such as α, Pr, β, Sc, Gr, γ, and Gm are used to discuss
the physical interpretation of the derived results. The analytical solutions for energy,
concentration, and momentum equations are graphically portrayed in Figures 2–18.

Figure 2. Graphical representations of temperature profile in the presence of slip and no slip condi-
tions by taking the distinct values of α at two different levels of time, when Pr = 12, β = 0.3, ℘ = 0.4,
ω = 0.5, and γ = 0.5.

Figures 2–4 portray the effect of fractional parameters α, β, and γ on temperature
profile by taking two distinct values of time in the presence of slip condition and taking
the value of slip parameter to be zero. From these graphs, it is observed that the decline in
temperature profile corresponds to large values of fractional parameters. Further, there is a
notable, rapid decline in temperature on the profile with the slip condition compared to
without slip condition. It is also analyzed that fractional parameters have a significant effect
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on thermal flux for smaller values of time, but the effect is more significant on thermal flux
for large values of time.

Figure 3. Graphical representations of temperature profile in the presence of slip and no slip condi-
tions by taking the distinct values of β at two different levels of time, when Pr = 12, ω = 0.5, ℘ = 0.4,
α = 0.3, and γ = 0.5.

Figure 4. Graphical representations of temperature profile in the presence of slip and no slip condi-
tions by taking the distinct values of γ at two different levels of time, when Pr = 12, ω = 0.5, ℘ = 0.4,
β = 0.3, and α = 0.5.

Figure 5 displayed the impact of Prandtl number Pr over the temperature profile by
taking the various values of Pr at two different levels of time. A decay in temperature profile
is seen while increasing the values of Prandtl number with and without slip conditions.
Physically, when the values of Pr increase, then the thermal boundary layer thickness
decreases rapidly, which causes a decrease in energy profile.

Figures 6–8 illustrated the behavior of α, β, and γ respectively, on mass profile by tak-
ing two distinct values of time. From these curves, it is noted that a decay in concentration
profile corresponds to large values of fractional parameters. It is also seen that fractional
parameters have a significant effect on mass profile for smaller values of time, but the effect
is more significant for large values of time.
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Figure 5. Graphical representations of temperature profile in the presence of slip and no slip condi-
tions by taking the distinct values of Pr at two different levels of time, when α = 0.4, β = 0.3, ℘ = 0.4,
ω = 0.5, and γ = 0.5.

Figure 6. Graphical representations of concentration profile by taking distinct values of α at two
different levels of time, when Sc = 9, ℘ = 0.4, β = 0.3 and γ = 0.5.

Figure 7. Graphical representations of concentration profile by taking distinct values of β at two
different levels of time, when Sc = 9, ℘ = 0.4, α = 0.3, and γ = 0.5.
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Figure 8. Graphical representations of concentration profile by taking distinct values of γ at two
different levels of time, when Sc = 9, ℘ = 0.4, β = 0.3, and α = 0.5.

Figure 9 displayed the influence of Schmidt number Sc over the concentration profile
by taking the various values of Sc corresponding to small and large values of time. It is
noted that a decay in mass profile occurs while increasing the values of Schmidt number.

Figures 10–12 were plotted to analyze the behavior of α, β, and γ on a velocity contour
along with the slip and no slip conditions against two dissimilar values of time. It is
depicted from these graphs that velocity profile decreases due to enhanced values of
fractional parameters. Further, it is notable that the graph of fluid velocity without slip
condition is higher as compared to the graph of fluid velocity with slip conditions.

Figure 13 displayed the impact of Prandtl number Pr over the velocity field by taking
the various values of Pr at two different levels of time. It is noted that decay in velocity
profile occurs while increasing the values of Prandtl number for both slip and no slip
conditions. Physically, when the values of Pr increase, then the thermal boundary layer
thickness decreases rapidly which causes a decrease in the momentum profile.

Figure 9. Graphical representations of concentration profile by taking distinct values of Sc at two
different levels of time, when α = 0.5, ℘ = 0.4, β = 0.3, and γ = 0.5..
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Figure 10. Graphical representations of velocity profile in the presence of slip and no slip conditions
by taking the dissimilar values of α at two different levels of time, when Gr = 5, Gm = 3.5, ℘ = 0.4,
Pr = 12, ω = 0.5, Sc = 9, γ = 0.3, and β = 0.5.

Figure 11. Graphical representations of velocity profile in the presence of slip and no slip conditions
by taking the dissimilar values of β at two different levels of time, when Gr = 5, Gm = 3.5, ℘ = 0.4,
Pr = 12, ω = 0.5, Sc = 9, γ = 0.3, and α = 0.5.

Figure 12. Graphical representations of velocity profile in the presence of slip and no slip conditions
by taking the dissimilar values of γ at two different levels of time, when Gr = 5, Gm = 3.5, ℘ = 0.4,
Pr = 12, ω = 0.5, Sc = 9, β = 0.3, and α = 0.5.
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Figures 14 and 15 exemplify the velocity graphs to interpret the impact of thermal
and mass Grashof numbers Gr and Gm, respectively. An increase in the velocity curve
appeared due to a boost in the values of Gr and Gm.

Figure 16 represented the influence of Schmidt number Sc over the velocity profile
by taking the various values of Sc corresponding to small and large values of time by
considering the cases with slip and no slip conditions. We detected a decline in the
velocity profile while increasing the values of the Schmidt number for both slip and no
slip conditions.

Figure 13. Graphical representations of velocity profile in the presence of slip and no slip conditions
by taking the dissimilar values of Pr at two different levels of time, when Gr = 5, Gm = 3.5, ℘ = 0.4,
ω = 0.5, Sc = 9,α = 0.5 β = 0.3, and γ = 0.4.

Figure 14. Graphical representations of velocity profile in the presence of slip and no slip conditions
by taking the dissimilar values of Gr at two different levels of time, when Pr = 12, Gm = 3.5, ℘ = 0.4,
ω = 0.5, Sc = 9,α = 0.5 β = 0.3, and γ = 0.4.
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Figure 15. Graphical representations of velocity profile in the presence of slip and no slip conditions
by taking the dissimilar values of Gm at two different levels of time, when Gr = 5, Pr = 11, ℘ = 0.4,
ω = 0.5, Sc = 9,α = 0.5 β = 0.3, and γ = 0.4.

Figure 16. Graphical representations of velocity profile in the presence of slip and no slip conditions
by taking the dissimilar values of Sc at two different levels of time, when Gr = 5, Gm = 3.5, ℘ = 0.4,
ω = 0.5, Pr = 9,α = 0.5 β = 0.3, and γ = 0.4.

Figures 17 and 18 were plotted to compare different fluids such as the fractional
Maxwell, classical Maxwell, fractional viscous, and classical viscous fluid models, along
with and without slip conditions at the boundary for two distinct levels of time. It is
eminent to point out that the movement of the Maxwell fluids for both fractional and
classical cases are faster as compared to viscous fluids for ordinary as well as fractional
cases. Furthermore, from these graphs, it is visualized that ordinary Maxwell fluid and
ordinary viscous fluid have relatively higher velocity as compared to fractional Maxwell
fluid and fractional viscous fluid. Additionally, it is important to mention that, for classical
and fractional models, the velocity field perceives identical behavior for the cases of both
slip and zero slip conditions.
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Figure 17. Comparison of velocity profile for the fractional viscous, fractional Maxwell, classical
viscous, and classical Maxwell fluids in the presence of slip conditions at two different levels of time,
when Pr = 12, Gr = 5, ℘ = 0.4, Gm = 3.5, ω = 0.5, Sc = 9,α = 0.5 β = 0.3, and γ = 0.4.

Figure 18. Comparison of velocity profile for the fractional viscous, fractional Maxwell, classical
viscous and classical Maxwell fluids in the presence of no slip conditions at two different levels of
time, when Pr = 12, Gr = 5, Gm = 3.5, ω = 0, ℘ = 0.4, Sc = 9,α = 0.5 β = 0.3, and γ = 0.4.

6. Conclusions

The prominent feature of this work is to introduce the time dependent, in-compressible,
natural convective flow of Maxwell fluid on an infinite, vertical isothermal plate with
generalized Mittag-Leffler. For the sake of generalized memory effects, a fractional model
was developed by applying the newly introduced Prabhakar fractional operator while
having a Mittag-Leffler kernel in the constitutive equations. The work presented in this
article is new. A fractionalized diffusion equation is introduced in this model by employing
Prabhakar’s fractional operator with generalized Fick’s law. This Prabhakar-like non
integer model has been solved analytically, and exact solutions for dimensionless velocity,
concentration, and energy equations are calculated in terms of Mittag-Leffler functions
by employing the Laplace transformation technique. The influence of the various system
parameters such as α, Pr, β, Sc, Gr, γ, and Gm are used to discuss the physical interpretation
of the derived results. Some essential findings obtained from graphs are given below:

• It is observed that the temperature profile in cases of slip and no slip conditions
decreases when the values of fractional parameters α, β, and γ are elevated.
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• It is seen that temperature and concentration graphs decline corresponding to large
values of Pr and Sc, respectively.

• It is detected that, when rising the values of fractional parameters α, β, and γ, the
concentration profile decreases.

• It is seen that the velocity field in the case of slip and no slip conditions decreases
corresponding to elevated the values of fractional parameters.

• The accumulative values of the parameters Sc and Pr decrease in the velocity field.
• The greater values of the Grashof numbers Gr and Gm stimulate the velocity contour.
• It is visualized that ordinary Maxwell fluid and ordinary viscous fluid have relatively

higher velocity as compared to fractional Maxwell fluid and fractional viscous fluid.
• It is noted that, for classical and fractional models, the velocity field perceived identical

behavior for the cases of both slip and zero slip conditions.
• The movement of the fluid in case of zero slip condition is relatively higher as com-

pared to slip conditions.
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Nomenclature
Symbol Quantity Units
α, β, γ Fractional parameters (−)
µ Dynamic viscosity (Kgm−1s−1)
υ Kinematic coefficient of viscosity (m2s−1)
g Acceleration due to gravity (m·s−2)
β1 Volumetric coefficient of thermal expansion (K−1)
β2 Volumetric coefficient of concentration expansion (K−1)
ρ Fluid density (Kgm−3)
σ Electrical conductivity (sm−1)
Cp Specific heat capacity of fluid (Jkg−1K−1)
ξ Laplace Transform parameter (−)
Q Heat generation/absorption (JK−1m−3s−1)
u Non-dimensional velocity (−)
T Dimensionless temperature (−)
Gr Thermal Grashof number (−)
Gm Mass Grashof number (−)
Cw Concentration of the fluid near the plate kgm−3)
C∞ Concentration of the fluid far away from the plate kgm−3

Tw Temperature of the plate (K)
T∞ Temperature of fluid far away from the plate (K)
λ Relaxation time (−)
Dm Mass diffusivity (m2s−1)
u0 Characteristic velocity (ms−1)
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Pr Prandtl number (−)
Sc Schmidt number (−)
B0 Imposed Magnetic field (Wm−2)
M Total Magnetic field (−)
k Thermal conductivity of the fluid (Wm−2K−1)
η Time (s)
P Pressure (N m−2)
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