
PRODUCTIVITY ORIENTED PROGRAMMING FRAMEWORK

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ÇANKAYA UNIVERSITY

BY

OZAN ALİ KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JULY 2009

ABSTRACT

PRODUCTIVITY ORIENTED PROGRAMMING FRAMEWORK

Kaya, Ozan Ali

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Mehmet R. Tolun

July 2009, 43 pages

In this thesis, the basic problems that are faced during software application development are

mentioned and the a�ects of these problems over the productivity of software developers are

discussed.

The infrastructure that is needed to provide productivity is implemented with the framework

called Productivity Oriented Programming Framework, which makes it possible for develop-

ers to produce qualified products faster and more e�ectively with no extra e�ort.

Keywords: Productivity, Productivity Oriented Programming, Service, Service Oriented Ar-

chitecture

iv

ÖZ

ÜRETKENLİĞE YÖNELİK PROGRAMLAMA UYGULAMA ÇATISI

Kaya, Ozan Ali

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mehmet R. Tolun

Temmuz 2009, 43 sayfa

Bu tez çalışmasında, yazılım ürünlerinin hazırlanmasında karşılaşılan temel sorunlar belirtilmiş

ve bu sorunların yazılım geliştiricilerde üretkenliği nasıl etkilediği tartışılmıştır.

Üretkenliğin sağlanması için gerekli altyapı, Üretkenliğe Yönelik Programlama Uygulama

Çatısı adı verilen örnek yapı tasarlanarak gerçekleştirilmiştir. Bu altyapı kullanılarak hızlı ve

kaliteli ürün hazırlamaya olanak sağlanmıştır.

Anahtar Kelimeler: Üretkenlik, Üretkenliğe Yönelik Programlama, Servis, Servis Tabanlı

Mimari

v

ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisor Prof. Dr. Mehmet R. TOLUN for

his supports and suggestions.

I would also like to thank my love, Esra for her labour and self-sacrifice throughout the years.

vi

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM PAGE . iii

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . ix

CHAPTERS

1 INTRODUCTION . 1

2 PRODUCTIVITY IN SOFTWARE . 4

2.1 Persistency . 4

2.2 Reporting . 5

2.3 Logging . 5

2.4 Organization and Authentication 5

2.5 Workflow . 6

2.6 Scheduling . 6

2.7 Date, Time and Exchange Rate Operations 6

2.8 Multilanguage Support . 7

2.9 Cache System . 7

2.10 File Server . 7

2.11 Third Party Application Integration 7

vii

3 CURRENT STUDIES USING JAVAANNOTATIONS TO INCREASE PRO-

DUCTIVITY . 9

3.1 jpa2web . 9

3.2 OpenXava . 10

3.3 Seahorse . 10

3.4 Stripes . 10

3.5 Spring Framework . 11

3.6 JBoss Seam . 11

4 ARCHITECTURE AND CORE LAYER OF POPF 12

4.1 POPF Implementation : Business Server 14

4.1.1 Service Production . 15

4.1.2 Report Preparation . 21

5 SAMPLE REQUIREMENT LAYER FOR POPF: ORGANIZATION AND

AUTHORIZATION SYSTEM . 32

6 CONCLUSION . 41

6.1 Future Works . 41

REFERENCES .������

viii

LIST OF FIGURES

Figure 4.1 POPF Architecture . 13

Figure 4.2 IReport, Compiler Settings . 25

Figure 4.3 IReport, Classpath Settings . 25

Figure 4.4 IReport, Master Report Sample . 26

Figure 4.5 IReport, Master Report, Fields . 26

Figure 4.6 IReport, Master Report, Parameters . 27

Figure 4.7 IReport, Master Report, Adding Subreport 27

Figure 4.8 IReport, Master Report, Subreport Settings 28

Figure 4.9 IReport, Master Report, Common View 28

Figure 4.10 IReport, Subreport, Fields . 29

Figure 4.11 IReport, Subreport, Parameters . 29

Figure 4.12 IReport, Subreport, Adding Subreport . 30

Figure 4.13 IReport, Subreport, Subreport Settings 30

Figure 4.14 IReport, Subreport, Common View . 30

Figure 4.15 IReport, Subreport’s Subreport, Fields . 31

Figure 4.16 IReport, Subreport’s Subreport, Parameters 31

Figure 5.1 Organization and Authorization System, ER Diagram 33

Figure 5.2 Organization and Authorization System, Login 34

Figure 5.3 Organization and Authorization System, Services Info 34

Figure 5.4 Organization and Authorization System, Reports Info 35

Figure 5.5 Organization and Authorization System, Deployment 35

Figure 5.6 Organization and Authorization System, Unit Type Definition 35

Figure 5.7 Organization and Authorization System, Unit Definition 36

ix

Figure 5.8 Organization and Authorization System, Mission Type Definition 36

Figure 5.9 Organization and Authorization System, Menu Definition 36

Figure 5.10 Organization and Authorization System, Role Definition 37

Figure 5.11 Organization and Authorization System, Add Menu to Role 37

Figure 5.12 Organization and Authorization System, Add Service to Role 38

Figure 5.13 Organization and Authorization System, Add Report to Role 38

Figure 5.14 Organization and Authorization System, User Definition 39

Figure 5.15 Organization and Authorization System, User Search 39

Figure 5.16 Organization and Authorization System, User Info Listing 40

Figure 5.17 Organization and Authorization System, Add Role to User 40

x

LIST OF ABBREVIATIONS

DVO

Data Value Object

EJB

Enterprise Java Beans

EJB-QL

EJB Query Language

ER

Entity Relationship

ERP

Enterprise Resource Planning

GUI

Graphical User Interface

HQL

Hibernate Query Language

IDE

Integrated Development Environment

JAXB

Java Architecture for XML Binding

JBPM

Jboss Business Process Management

JDO

Java Data Object

JPA

Java Persistence API

JSF

Java Server Faces

MVC

Model View Controller

ORM

Object Relational Mapping

O2R

Object to Relational

PDF

Portable Document Format

POJO

Plain Old Java Object

POPF

Productivity Oriented Programming

Framework

RDBMS

Relational Database Management

System

SOA

Service Oriented Architecture

SQL

Structured Query Language

XML

Extensible Markup Language

xi

CHAPTER 1

INTRODUCTION

Great shortage of software industry is the di�culty of the updates of the technologies invested.

The only money losing issue that is planned by the investors of a product -for what money

and time is spent, sta� are trained, coding and testing is done, and also is being operated-

is the maintenance of the product to satisfy the customers. However, the technology usually

improves faster than companies’ product development speed. It is a disaster to leave the

product in cold and start all over from the beginning with the knowledge that is obtained

throughout the past development experiences. Today even large companies are settling with

their old applications which are tested and proven. To be updated without interruption is a big

trouble for a running application. This process must be performed by a soft transition for the

continuity of success in software.

Most of the professional software companies have embarked preparation a framework to

transfer their experience from past projects to future ones. They have built flexible struc-

tures for the solutions to common problems that can be faced in all projects and created a

framework by integrating them. It can be said that in most cases this preparation is useful. It

is also clear that there are many examples which show great success in this study.

But over time, created frameworks dropped behind the technology, applications using these

frameworks have not satisfied customer demands. The customer faced with software man-

ufacturer with a new technology request and has continued to request a new one although

current one satisfies the needs. During this time, innovative solutions of newly established

firms has strained present products with their new technology advantage. Competitive market

started to weaken old products although they were proven.

1

Obvious thing to do each company, whose target is to earn money and sustainability, is to

constantly stay up-to-date. In doing so, to ensure re-use of previous work as much as possible

is an important factor to reduce cost and time. So, frameworks should have a structure that

allows them to be shaped according to the technological developments.

Being in a modular structure for prepared products is an important factor for reusability. The

software components which are doing a specified job and can be seen as a black box can

reduce software cost in most projects they joined by doing their job perfectly. However, the

package based on a certain infrastructure, only can be used in projects that use the same

infrastructure. To overcome this problem, the software brings a di�erent perspective and a

new approach called SOA which addresses the operations -that cannot be logically apart-

as services [1] has been developed. In this way, software services which have been devel-

oped by using di�erent technologies, create a protocol that can be counted as universal and

communicate over this protocol. Although this approach is the same as traditional program-

ming methods, it comes forward with the di�erences brought to the software development

approach. This issue will be addressed in Chapter 4.

In this study, especially the E-Government and ERP applications are considered. Because it

can be easily seen that these kinds of applications are the largest and comprehensive projects

of the IT sector. Although these projects have a very low complexity and the only works they

have done are create-read-update-delete operations, they either get the largest pay of the pie

or face a great failure. The reason why this happens should be examined.[2]

With regard to observations, it can be said that ensuring productivity is the basic problem. The

essential point of this discourse is that huge projects -which are managed by experienced sta�

according to various quality standards-, can result in failure. Besides, by giving the look at

the construction sector, it can be seen that a non-contractor who has not been educated about

techniques is able to draw up a project by the help of a civil engineer and an architect and build

a big building on time with the equivalent budget of a software project. For a contractor who

has constructed same kind of buildings, it can be said that his work is routine and he is using an

already succeeded design draft. But it is also important to note that the software industry has

a history for almost fifty years and there are many success stories. In fact, sharing information

and sharing of success stories seem to be much more e�ective in the software industry. Then

again, the reasons that a�ect the linear success should be re-examined.

2

Human factor is the clearest answer to give. The most important factor in productivity which

causes an obstacle is psychological status of developers. Routine coding developers can focus

to work in a format up to 4 hours a day. For the managers who try to repeat their own

success examples in the past, the door to success is the repetition of the behaviors of their past

employees. The performance of people, who are using framework to develop the application,

is seen as the necessary work to ensure the emergence of the product. This approach is true

in some cases because the facts of life are engaged. In a way, the gains are wanted to be

reused. But this means copying the past defects. A simple error of abstraction, a simple

dependence, an omission of a control that can be addressed at a common point or a wrong

established infrastructure approach come back as rules that the programmers have to obey

and unnecessary complexity. Moreover, such solutions do not fit into any generally accepted

technology; they raise also the obligation for the programmers to maintain the infrastructure.

As a result, army of programmers who work overtime and day and night without complaining

has been trying to overcome the same problems. It is being too late even this problem has

been wanted to be solved. A functional product is needed to be seen by the customers. Bad

code sets in, is written in hurry and the final product emerges at the end of overtime work.

The following day, another so called rule sets in: Working code should not be touched![3]

Cost calculation is essential for businesses. Of course, a product which cannot be sold will

not bring any return but let us assume a company which has good marketing skills, and a

specific position in the market. For the companies that have been doing business in crisis

environments, it is important to decrease cost and to know that every penny spent would

correspond at the development of the product. The main factor that increases the cost is to

resolve the same errors again and again and have non-reusable code by writing bad code.

Productivity increase is vital to keep the business standing. Technologically being up-to-date

has an important place in the market share protection.

The di�erence of this study compared to the others is that, it is prepared by taking into consid-

eration all the problems described. It can be thought that the competitors have more e�ective

solutions to specific problems. However, the benefits will come out when POPF is not con-

sidered just as a software infrastructure and its a�ect to the total benefit cost is taken into

count.

3

CHAPTER 2

PRODUCTIVITY IN SOFTWARE

In order to be able to talk about productivity based on government applications and ERP

based software applications, the factors a�ecting the productivity should be determined first.

The su�ciency of the environment, in which the product is developed, comes into promi-

nence when using such programming methods in development of these kinds of products.

Programmers are expected to find solution to all problems that pops up during the develop-

ment phase in such inconvenient environments, which in the later case leads to taking action

without doing any su�cient pre-study. This situation causes common problems to be handled

repetitively. As result, the quality of products lowers and maintenance gets more di�cult.

Moreover, products cannot reach a particular level of quality standard.

The following sections mention problems a�ecting the productivity in software:

2.1 Persistency

Stableness, which is a certain need for any application, should be handled with generally

accepted and portable methods. Even though DBMSs constitute the most common solution

for saving di�erent kinds of data, it should not be forgotten that it is not the only solution.

However, depending on the selected persistency for the product, the base used for saving the

data should be planned very well for operations like creating, reading, updating and deleting

related information from the system.

If it is considered that the persistency environment is a database, the single entity operations

should certainly be feasible and software modules constituting the product should be designed

in a way so that they are not a�ected by a possible future change to be done in the access to

4

database or database server.

The method used in accessing to database should be defined clearly and supported by APIs

that are easy to use and e�ective.

2.2 Reporting

Reporting is generally handled after completion of the development phase. If the reporting

is planned in a well organized way, it eases the work considerably during the development

phase too.

It has been observed that many programmers create their own queries and save them in private

text files. If these queries can be saved at a common place and used later when writing product

report, the reporting can actually be done much more e�ciently. This would considerably ease

the amount of work and shorten the time spent for the reporting.

2.3 Logging

It is an obligation to have logging for observing the performance during the project develop-

ment. A well written log would positively a�ect the quality of code written by programmers.

Access to logs should be provided from all possible environments. Reporting should be able

to be done with the help of logging information, e.g., owner of the log or date of the log.

2.4 Organization and Authentication

In larger projects, people working in the project have often di�erent access rights to di�erent

application parts. Even if all data is saved in a common database, all taken steps and access

to critical data should be hierarchically appropriate. In today’s world, this problem has turned

to a system that is defined by generally accepted rules. All authentication and authorization

procedures should be designed based on organizational hierarchy. These procedures should

be able to be adapted in a flexible way according to customer needs. It should be su�cient

for the developer to have information about end user roles to make the product work properly

after the development phase.

5

2.5 Workflow

Workflow is a need that is directly connected to management of the organization. This need

pops up especially when a particular is to be done by more than one person. When considered

work steps, this is purely a matter of time course. During this period people from both inside

and outside of the organization may need to work. In some cases, some time critical processes

should automatically be triggered. All these problems should not be left to the programmer;

rather they should be handled under the concept of both Workflow and Organization princi-

ples. In addition to the Workflow list, an additional list that will help end users when using

the product should also be prepared.

2.6 Scheduling

When considered the whole system’s performance, requests that are not time critical should be

postponed, all requests should be scheduled according to priority levels, all requests should

be handled in time and the result should be returned to the client timely. If a system has

been developed according to service based architecture, it would not be possible to handle the

problem within the project itself. A scheduler that is responsible for observing the system and

storing all requests that will later be executed in the system should certainly be planned in the

system.

2.7 Date, Time and Exchange Rate Operations

When considering o�cial processes, it is not that easy to realize all date, time and exchange

rate calculations using a simple logic. Depending on the country or region where the system

will run, working hours and holidays sometimes di�er. These di�erences should be handled

in the system and when doing calculations the system should be able to ask itself some smart

questions, i.e., the number of working days between two dates, the di�erence in the exchange

rates for a particular currency from a particular date till today, etc.

6

2.8 Multilanguage Support

Global market companies are international in general. There are many examples that a par-

ticular implementation is used in many countries. It should be enabled for end users from

di�erent parts of the world to be able to use the system in a particular language. Adding a

new language support to the implementation should be able to be done without changing the

structure of the software product.

2.9 Cache System

Data that is often read but changed quite seldom should be saved in a cache that is convenient

for parallelism.

2.10 File Server

If a file is too large to save it in the database, it can then be saved in a file. For this purpose,

a file server to supply fast and parallel access should be prepared in the system. A system

supplying the possibility for indexing and file access authorization with fast access would be

helpful for many applications.

2.11 Third Party Application Integration

Today, there are not many applications running standalone. Many applications communicate

with some others. The base for being able to supply this communication and use other libraries

in this process should be established. The necessary plan should be ready to establish a new

communication protocol in case it is needed.

Most common problems a programmer can come across in his daily work have been listed

above. There are, for sure, many other reasons a�ecting the productivity besides programming

related ones. However, the reasons mentioned above constitute the ones that would certainly

help to improve the productivity. If these problems are solved in the software development

phase, it would be easier to focus on real design problems instead of losing time and energy

7

because of unexpected problems during the implementation of the product. If the programmer

can work e�ectively, successful results that he will get would make a certain positive e�ect in

his psychological health and make him much more productive.

Persistency, Reporting, Organization and Authentication, Multilanguage Support and Third

Party Application Integration requirements are implemented for reference implementation.

8

CHAPTER 3

CURRENT STUDIES USING JAVA ANNOTATIONS TO

INCREASE PRODUCTIVITY

Java annotations are simple specifications that do not have to comply with any pre-conditions.

Annotations have been used with Java 5.0 version and have rapidly come to a strong position

in the Java world. They have taken the place of config files through the advantage of their

simple structure and ease of implementation. They have increased the tracibility by the ’In-

line Definition’ feature. The fact - that powerful software frameworks, such as Hibernate,

Spring and Seam, becoming aware of annotations and giving support for that structure - has

an important place in the undeterred rise of annotations.

These annotations providing convenience for application developers, are also very important

for POPF. Therefore, the frameworks which goals productivity, uses Java annotations and can

be considered as competitors of POPF will be examined.

3.1 jpa2web

jpa2web[4][5] is a code generation application that builds a complete project by using the

annotations which JPA uses to define the relations between entities. jpa2web generates the

codes for web based pages on which create, read, update, delete operations are performed for

all the entities defined with annotations. These generated web based application can only be

used for data entries. But also, this application is draft for the project that the business logic

will be put on. But after the intervations done to generated code, regeneration can be needed.

So all the changes done to the project will be lost. This is why this framework cannot lead

to successful projects in real life. But besides these, this framework is a success in theory for

9

being a proof that shows how annotations turns simple pojos to strong components.

3.2 OpenXava

The OpenXava[6] framework is in e�ort to realize MVC pattern using POJOs that use JPA

annotations. OpenXava has relatively more mature infrastructure than jpa2web. Instead of

code generation approach, it has chosen to use code patterns that will work at runtime. The

framework has been made configurable with XML-based configuration files. It is not suitable

for very large projects. It is hard to shape the visual items. Performance seem to be not

enough. It is also not suitable to develop applications by modules. However, it is a continuing

project that may have future outputs.

3.3 Seahorse

Seahorse[7][8] is an annotation driven framework that aims to increase productivity and sim-

plify programming in Java. This framework is also in e�ort to realize MVC pattern. It is

similar to Spring Framework. The actual work done by this framework is at the model layer.

Applications can be developed module by module. But this a new framework which has lots

of issues to solve. There is not a feature to support authentication system. It has commu-

nication problems with external systems because it is not a service based framework. This

framework can be suitable only for medium scaled projects. It is a project that has future.

3.4 Stripes

The Stripes[9] framework also uses Java annotations and targets the presentation layer of

MVC pattern. It has action handlers to handle incoming requests from presentation layer.

There are predefined structures to examine incoming requests’ validity. It’s easy to use with

provided taglib. It does not have an integrated authorization system yet, but it will not be hard

to add this system. It has a similar infrastructure with service-based architecture.

10

3.5 Spring Framework

The keywords that describes Spring[10] are advanced, high performance, designed with flex-

ible architecture, service-based and the industry standard Java application framework. The

success of this framework is proven with its capabilities. It is being used successfully in

many enterprise-scale projects. However, it has strict rules to identify services. It can be in-

tegrated with many security infrastructure with no trouble. It has been a�ected from Aspect

Oriented Programming on its architecture. This feature provides flexibility in many issues,

but also restricts the tracebility. Nevertheless, it’s the most ambitious framework between the

service-based application frameworks.

3.6 JBoss Seam

It is an integration application with the slogan ’seamless’. Its feature called ’Configuration

By Exception’ provides convenience for ordinary applications. It fulfills all kind of require-

ments for the Java World. All required arrangements are done for Spring, JSF, EJB 3.0, JPA,

Java Annotations, Web Beans, JBPM, Drools, TestNG, etc... frameworks to be able to work

together. JBoss Seam[11] is the largest competitor with all these features to Microsoft’s .NET

platform. However, the high hardware requirements is the greatest problem. It has almost

everything for easy and fast application development.

11

CHAPTER 4

ARCHITECTURE AND CORE LAYER OF POPF

Productivity is a concept that is concerned with software development environment attributes,

software system product attributes and project sta� attributes[12]. POPF tries to reach the

target product in the shortest time and with the minimum cost; abstracts developers’ work

at the highest layer; reduces technical problems; eases to focus on the parts where domain

knowledge is required. High-quality software is the absolute product for POPF.

POPF is a framework that simplifies the work of developers who are untrained in terms of

technology but well informed about domain knowledge and also is a framework that aims the

advanced programming features to be used as standard by any developer.

Basically this framework is independent from the requirement analysis and design stages of

software development lifecycle. So application developers have waited to learn about busi-

ness rules, make general and detailed design for application and specify the user interfaces

before using POPF. Then, at the development phase POPF which is a framework that allows

reusability and fast development comes into prominence.

A structure which can expand unlimitedly has been designed in the light of the principles that

have been specified to set up the framework which targets productivity. It’s flexible, because it

does not depend on any product or technologies except Java. It is easy to scale and is focused

on manageable and modular software development. It has an approach that handles software

as services in terms of providing reusability. However, all these features are integrated with

the e�ort of trying not to recreate the wheel. POPF does not target to specify new approaches

to problems which require expertise. On the contrary, it targets to integrate best solutions

of these problems. By the means of these features, software can be kept consistently up-to-

date and it will be cheaper to maintain. It is simple and does not contain unnecessary detail.

12

But, any detail can be added easily if required. It is in an e�ort to associate developers to its

approach even if they don’t know a clue about SOA. It plays a role as integrator for software

applications designed using di�erent technologies with its encapsulation feature.

To be able to include the mentioned features, some features of software infrastructures have

been sacrificed.

For example, POPF accepts that it is impossible to satisfy customers’ visual requirements.

Because, requests of end users are endless at the GUI layer of software and to meet these

needs are mandatory. In contrary to the GUI part, exaggerated requests are not usually come

across at business-specific code part (business rules). However critical sections which can

cause bottleneck are usually in this part. Therefore, any definitions are not done for GUI

layer. This also means that regardless of client technology, the technology and the design

of the server-side services do not change. It can work in collaboration with the services

of di�erent platforms by preparing an adapter layer among. Thereby, it is possible for any

application to be accessed by both mobile devices and network based clients without making

any change at service layer.

After POPF application developers make their database and user interface design, they can

call the services of their modules by using the communication infrastructure provided by

POPF Server (Business Server).

Figure 4.1: POPF Architecture

13

4.1 POPF Implementation : Business Server

A variety of Java technology and design approaches are used while implementing Business

Server. In this part of the thesis, all steps from the server startup to message transmission

between client and server are examined.

For the persistence layer of the system JPA [13] is preferred. JPA is a specification that stands

over ORM tools. It is a free API that exists in Java. Actually JPA does not perform any O2R

mapping process. JPA is a specification that is used to access ORM tools like Hibernate [14]

or Toplink [15]. All kinds of database operations can be performed at the time of coding with

this API. At runtime, the prepared configuration files and the libraries of the actual ORM tool

are wrapped together to achieve communication with the database.

The powerful and comprehensive API and making applications independent from ORM tools

are among the advantages of JPA. There are many ORM tools such as Hibernate, Toplink and

JDO [16] which show di�erent performances on di�erent platforms. To have the chance to

make a choice between these tools according to platform that our product will run on provides

a big advantage at the competition with other products.

MySQL [17] RDBMS is used as the database product. This product is chosen because it is a

free product and has high performance. Also correctness of this choice is proven with the ease

of access of the documents over the Internet and the popularity of this product on forums.

Since MySQL is selected as database, Hibernate which is also free and known as a successful

coworker of MySQL is selected as O2R mapping tool.

Messages between server and client are done by xml formatted texts. Xml is a file format

which is easy to parse and is supported by all technological platforms.

The message is a Java object inside the server. The client creates the message as a message

object and this object is converted to xml before sending it to server. When the server receives

the message, the xml message is converted to the object again. JAXB [18] API is used to

perform these object to xml conversions in a fast and e�ective way. The JAXB API is a

specification just like JPA so Apache JaxMe [19] library is used as the implementation of this

API.

14

During the development of the service infrastructure of the system, the definition of methods

that represents the services is done by an unusual method - byte code engineering- instead

of the Java Reflection API which is commonly used to solve this problem. This method is

used to provide speed and flexibility while defining and calling services. After search, it is

seen that the best library that implements this API is JavaAssist [20]. Another library called

Scannotation [21] and JavaAssist is used together and the services are defined as they are

classes of the system. Some features were added to these defined services to eliminate some

requirements like service searching.

While designing the system, it is aimed to cover the reporting needs as a basic feature of the

system. Therefore, Jasper Reports[22] which is a proven reporting tools that is able satisfy the

needs of large-scale projects is embedded to system core. The data sources of the reports can

be prepared as services. So, software developers can design generic services that can be used

by both reports and user interfaces. This method reduces the amount of work that is done by

developers.

When all these choices come together, the application developers are only responsible for

developing their services and reports in a regular way.

4.1.1 Service Production

1. Definitions

Any sort of atomic operations defined on Business Server is handled as a service defi-

nition. At this part of the documentation, the rules that a developer should follow while

defining a service will be explained.

To define a service, a regular POJO is defined and this POJO has methods with the

signature

������ ��	���
���	�� �
���	�� ����	�� ������ �������

������ ��������

and the annotation ’@Service’. There is no need to make any other identification.

��	�����������������
������

�������������������� �������!"�#
��

15

������ ������$	�� %��&���

'

%����� �	����(

%�����)�����)�$	��� **(

 	�	�+, ����� 	�	����)�$	��� '-(

 	�	�+, ������ 	�	����)�$	��� '-(

-

If examined, it will be seen that the only mandatory attribute is ’name’. That’s because,

it is possible for a service not to have any input or output parameters. On the side,

although ’desc’ (description) attribute is not mandatory, it’s recommended to fill that

field because this description is viewed at developer support web site. In the picture

below, the details of ’@Param’ annotation are given:

��	�����������������
������

�������������������� �������!"�#
��

������ ������$	�� 	�	�

'

%����� �	����(

��	�� ������(

%�����)�����)�$	��� **(

�����	� �	�.�"�����)�$	��� $	���(

�����	� �	�.��������)�$	��� $	���(

%����� ����������	��"	����)�$	��� **(

 	�	����	��+,)��	�����)�$	��� '-(

-

It’s shown that a parameter should have ’name’ and ’type’ attributes but the ’desc’,

’canBeNull’ and ’canBeEmpty’ attributes are left optional.

At Service Oriented Architecture, the end user parameters of service requests are not

trustworthy. Therefore, it’s an obligation to check every input parameter in the service

code. This requirement means that same logical control codes will be used repetitively.

An attribute is added to service definitions to overcome this issue. ’canBeNull’ attribute

defines if the value can be sent to server as null or not. When the service request comes,

an automatic control is done according to service definition. In case of noncompliance,

16

related error messages are returned.

A ’false’ value in ’canBeNull’ attribute means that the parameter should always have

a value. But in some cases it comes to mind that there can be parameters which are

logically blank but can not have null values.

A ’false’ value in ’canBeEmpty’ attributes means that the parameter can neither have a

null value nor be blank. The meaning of this control di�ers from one data type to other.

For example, for String data type the empty value expressed by ”” and for array-type

variable, zero sized array means blank.

’canBeNull’ and ’canBeEmpty’ attributes are false by default. So, all parameters must

have a value as long as the direct opposite is indicated.

As an example, a simple service is examined:

�%��&���

�

�	��/*��01"#21%3�"�14
�"!4�5�
1"#40!"��55�*6

)���/*
��7� �����	��8����)�9� ��� ���7�):��	�:�: �7��������*6

����� 	�	��/

'

� 	�	���	��/*����#���#)*6 ����/5������	���6

� 	�	���	��/*	�	
���#���#)*6 ����/5������	���6

� 	�	���	��/*����#����*6 ����/%��������	��6

�	�.�"���/����6 �	�.������/�����6

-

�

������ ��	���
���	�� ���	��;	����)	
�������	��0�������

�
���	�� ����	��6 ������ ������� ������ ��������

'

5��� ����#���#) / ����	������5��� 	�	��*����#���#)*�(

5��� 	�	
���#���#) / ����	������5��� 	�	��*	�	
���#���#)*�(

���

The ’Message’ object wraps requests from outside the world. The most important vari-

ables of Message class are specified below:

�<�������������

�<��1������������<��1����������=#�5��

17

������ ��	��
���	��

'

������ ����
�%%10�4�3 � '%��>#��6 �� ���-(

������ ���� %�1�!% '%!���%%6 �����6 ?1�"#"06 %3"�4�����-(

������ ���� �� ���4�!� !�4�3 � '@� �#"�6 �=6 ?���6 �<��56 �<�-(

���&	��
�%%10�4�3 � ����	������(

���&	�� %�1�!% ��	���(

���&	�� %����� ��	���
���	��(

���&	�� �� ���4�!� !�4�3 � ����������������(

���&	�� ����+, �������������(

���&	�� %����� ��)���"	��(

���&	�� %����� ��A����"	��(

���&	�� %�������	�	 ��������	�	(

���

-

There are two types of messages: ’service’ or ’report’. The reporting system is designed

at the core layer with the same architecture of services that’s why ’report’ is one of

message types. Through this way, a service providing data to client-side interface is

also able to be used to provide data to a report.

In the case of message type being ’report’, the output file format of the report should

be specified. This specification is done by the help of a parameter named ’REPORT

OUTPUT TYPE’ whose type is PDF by default. Other possible output formats are

Word, Excel, TXT and JRPrint. JRPrint which is the native output format of Jasper

Reports is supported to make possible if the client needs Jasper Reports Embedded

Viewer (JRViewer) in his application. As understood JRViewer can only work with

Jasper’s native format.

The ’status’ attribute is meaningful in case of message returns. If status is ’ERROR’,

there happened an error on the server side during the service execution and the trans-

action started for this service is rolled back. But if the status is ’WARNING’ or ’SUC-

CESS’, this means the transaction is successfully completed and a commit operation is

performed. For all cases, the related message of the status is sent within the attribute

’statusMessage’.

In traditional service name mapping, methods are called by appending module names

18

in front of service names. But this method makes the structure of name switching

mechanisms complex and slows down the service method search. To overcome this

problem, a di�erent way is followed at POPF. Each service is kept in relation with the

java archive file (JAR) that it is deployed in. A module definition is done with one jar

file. All services under this module are meaningful with the name of this module. The

reports of the module are defined in the same way. The reason of this approach is to

enlarge the namespace and reduce name conflicts.

In ’sessionData’ attribute, language choice and access rights of a client are specified.

Business Server assumes the web applications will build their own session manage-

ment. By this way, all requests come to Business Server are from secure context. The

only problem of this case is the need of control if the client has access right to reach the

resource. The ’sessionData’ attribute is essential to do these authorization controls and

keep access logs reports.

2. Persistence

For each module, database definitions must be done by a configuration file named

META-INF�persistence.xml. In this file the entities which were once called as DVO

are defined. Each entity corresponds for a database table. In fact an entity is a simple

POJO. A simple persistence.xml file looks like:

BC�� &������/*D�E* ����)���/*!�=FG*CH

B����������� &������/*D�E*

����/*����IJJK	&	��������J��J��J�����������*

����I��/*����IJJ�����L����JMEEDJ<
5%����	F����	���*

��I�����	5��	����/*����IJJK	&	��������J��J��J�����������

����IJJK	&	��������J��J��J�����������J�����������4D4E��)*H

B�����������F���� �	��/*5�����*

��	��	�����F����/*��%�!���45��15*H

B��	��H����������������	��������������������BJ��	��H

B��	��H����������������	���������������	������BJ��	��H

BJ�����������F����H

BJ�����������H

Stored procedures or native SQL sentences are not used at the preparation of services.

Rather than this, the EJB-QL [23] which has a similar syntax with HQL [24] is used by

19

JPA.

An Interface named EntityManager is used to find, add, update and delete the Entity

classes. Business Server handles a transaction per request. But this does not mean the

transactions are service based. Because one request can contain more than one service.

EntityManager interface consists of required transaction handling methods. Developers

don’t need to think about the transaction management. But the system is designed to

make possible for the modules to be deployed separately. This feature will be useful

for distributed deployment strategies. If service request has di�erent services which are

deployed in di�erent modules, one transaction is created per each module change.

EntityManager access is done via ’context’ object. Client message is automatically sent

to service with context object. An example of this is as follows:

N���� A / ������	��"	��)N�����*������MO	��	9�$��).��������	*�(

A���� 	�	������*�# *6 ����(

A���� 	�	������*��54#�*6 ���#)�(

A���� 	�	������*��0��*6)�����(

���

'

������ �������MO	��	9�A����%�������������(

-

�	����"��������������� ��

'

���

All entity objects are marked with @Entity annotation. @Service and @Report anno-

tations are special to POPF. However, @Entity is a JPA’s annotation.

���������	�� / *��04��5*�

������ ��	�� ������ ���������� %���	��;	���

'

��	���0����	�����	��/* O4��04��5*6 �	���/* O40�"��1���*6

	����	����%�;�/D�

�0����	��)>	�������	����/0����	����������1.5�6

�����	��� / * O4��04��5*�

�#)

20

���������	�� / *#�*6 ����	��� / $	����

���&	�� 5��� #)(

���������	�� / *1�*6 ����	��� / $	����

���&	�� %�����)(

���������	�� / *1�#O51
1*�

���&	�� %����� 	��9�	�	(

�
	����
	����	��)� / �	��)������ ��%#%��

�@����	�����	�� / *��04��54M4��5*6

K���������� / '�@�����������	�� / *1"14��54=O*�-6

��&����@���������� / '�@�����������	�� / *15�4��54=O*�-�

���&	�� 5���B������H ������ / ��� 1��	�5���B������H��(

������ ��������'-

������ 5��� ���#)��' ������ #)(-

������ &��) ���#)�5��� �)�' #) / �)(-

������ %����� ���1)��' ������)(-

������ &��) ���1)�%�����)�' �����) /)(-

������ %����� ���1��9�	�	��' ������ 	��9�	�	(-

������ &��) ���1��9�	�	�%����� 	��9�	�	�' �����	��9�	�	 / 	��9�	�	(-

������ 5���B������H �����������' ������ ������(-

������ &��) ����������5���B������H �������' ����������� / ������(-

-

4.1.2 Report Preparation

There are rules to follow during preparation of a report using Jasper Reports. These rules will

be reviewed on a sample report, respectively.

Reports are not prepared via embedding SQL sentences into report templates. Report tem-

plates are prepared independent from data sources. Data sources are Java classes which are

defined like services.

Writing database queries of a sub report of a master report is the starting point to create a

report. After the templates and data sources of a sub report are prepared, the master report is

prepared to integrate the subs.

21

After examining the class below, the use of @Report annotation will take attention. This

annotation is used to mark the definition of the report to introduce it to the system. Report

name, description, master or sub report info and template file path information are specified

by this annotation. This class defining Report also has to implement the ’JRDataSource’

interface. The methods of this interface are used during filling the template file with data. So,

report data must be prepared at the time of class construction. The database is not the only

source to produce data for report. A Service, an xml file or a web service can also be used as

report data source.

���������	��/*
34%!.�� ���4D*6

����"	��/*.���� .������ 	��F�	�����*6

)���/*������ �	���� F
3 ��������� D 	�8:9�	�	�:*6

�	����������/$	���6

�����	�� 	��/*��J���J�������J���J������J������J����������K	����*6

�	�	��/

'

� 	�	���	��/*)���4�)*6 ����/#���������	��6)���/*���	���	� ���	�	�:*�

-�

������ ��	��
�%��������D ���������� @��	�	%�����

'

���&	�� 5���B��������H)	�	(

���&	�� #���	���B��������H ����	���(

���&	�� �������� �������(

������
�%��������D�
���	�� ����	��6 ������ �������

'

������
	�	��� ������
	�	��� / ����������������
	�	�����(

%����� A����%�����/*%�5��� � =��
 ����������������	��������������������*P

* � ?���� ��)���4�) / CD*(

N���� A���� / ������
	�	�������	��N�����A����%������(

A�������� 	�	������D6 ����	������#������ 	�	��*)���4�)*��(

�����)	�	 / A��������������5�����(

���������	��� / �����)	�	�����	�����(

-

��&����)�

22

������ �����	� ����� ������ @���������

'

�$�����	�����	�"�����

'

������������ / ��������������	���������(

������ ����(

-

������������ / ����(

������ $	���(

-

��&����)�

������ ��K��� ���=���)>	����@�=���) $���)� ������ @���������

'

�$������������� // �����

����� ��� @����������*�	�	Q 57��$�� ����� ����)��� 9������ �)���; Q*�(

�$�$���)����"	������A�	���*���4�)*��

������ �������������������4�)��(

���� �$�$���)����"	������A�	���*)���4�)*��

������ ��������������������4�)��(

���� �$�$���)����"	������A�	���*$�	��*��

������ ����������������=�	����(

���� �$�$���)����"	������A�	���*��	��4)	��*��

������ ����������������%�	��4)	����(

������ ����(

-

-

��	������������������3 ��

�������������������� �������!"�#
��

������ ������$	�� ������

'

%����� �	����(

%�����)�����)�$	��� **(

%����� ����"	����)�$	��� **(

23

�����	� �	������������(

%����� �����	�� 	����(

 	�	�+, �	�	����)�$	��� '-(

-

The next() method is used by Jasper Reports to check if a new row exists or not in the data

source which is used during data insertion to the report template. The getFieldValue (JR-

Field field) method is used to get the value of the column specified by the parameter. While

implementing Data Source class, these methods must be handled by developer.

The following definitions were made to be used in the example:

���������	��/*
34%!.�� ���4M*6

����"	��/*.���� �9���� 	��F�	�����*6

�	����������/$	���6

�����	�� 	��/*��J���J�������J���J������J������J���������D�K	����*�

������ ��	��
�%��������M ���������� @��	�	%�����

���������	��/*
34=#�%�4�� ���*6

����"	��/*.���� 4#�9 �	�����*6

�	����������/����6

�����	�� 	��/*��J���J�������J���J������J������J�	�����������K	����*�

������ ��	��
�=���������� ���������� @��	�	%�����

The next step is the preparation of the report template using iReport tool. First of all, iReport

tool is needed to be configured. These settings are done to make it possible for the compiled

versions of report templates to be saved in the directory where report template exists.

24

Figure 4.2: IReport, Compiler Settings

Besides these settings, two system libraries which make parameter passing to the report tem-

plates possible must be at the classpath during this operation:

Figure 4.3: IReport, Classpath Settings

The master and the sub reports will be prepared respectively. An example master report is

seen below:

25

Figure 4.4: IReport, Master Report Sample

DataSource class of the sample master report supplies two columns of fake data. At the report

template, the definition of these fields is done as below:

Figure 4.5: IReport, Master Report, Fields

The ’message’ and ’context’ parameters are passed into the constructor of DataSource class

automatically. However, these parameters should be defined in the report template to be able

to be used. But there is no need to define these parameters if no sub-report exists.

26

Figure 4.6: IReport, Master Report, Parameters

After right-clicking on the report template and selecting the properties menu step, the screen

below appears. From this step, ’Use data source expression’ step must be selected and the

definitions of the sub-report and parameter must be done like image below. To be able to

do all operations in one source code line, the ’add’ and ’set’ methods of Message class are

designed to return a reference of its own.

Figure 4.7: IReport, Master Report, Adding Subreport

At the next tab, the sub-report template is specified. Here, the ’Subreport Expression Class’

field must be selected as ’net.sf.jasperreports.engine.JasperReport’. If a new sub-report will

be defined in the current sub-report, the message and context parameters should be passed

27

to new sub-report in ’Sub-report parameters’ section. If requested, some extra parameters

can also be defined here for visual purposes. If not required, the message parameter can be

undefined. But for all cases, if there is a sub-report, the context parameter is needed.

Figure 4.8: IReport, Master Report, Subreport Settings

The following image shows the first-level sub-reports:

Figure 4.9: IReport, Master Report, Common View

Here, the column names which are used in DataSource class should be defined:

28

Figure 4.10: IReport, Subreport, Fields

The ’message’ and ’context parameters required to define a sub-report are as follows:

Figure 4.11: IReport, Subreport, Parameters

The definitions required to define second level sub-report on this sub-report:

29

Figure 4.12: IReport, Subreport, Adding Subreport

Figure 4.13: IReport, Subreport, Subreport Settings

The second level sub-report looks like as below:

Figure 4.14: IReport, Subreport, Common View

30

Figure 4.15: IReport, Subreport’s Subreport, Fields

In this example, ’message’ and ’context’ parameters are not defined because there is sub-

report defined. However, the input parameters from the higher level must be specified.

Figure 4.16: IReport, Subreport’s Subreport, Parameters

So, what happens in the core layer is described. By using this core, other layers that have

specialized missions to implement the POPF requirements have been added. The next chapter

will examine a sample layer.

31

CHAPTER 5

SAMPLE REQUIREMENT LAYER FOR POPF:

ORGANIZATION AND AUTHORIZATION SYSTEM

It has been decided to develop Authorization System to sample the implemention of the re-

quirements that were set for Business Server. However, some organization definitions have

been needed to be made for the authentication process to be carried out. By generalizating

this need, Organization System was designed and it has been decided for this system to be

integrated with Authorization System.

In POPF specification, it was specified that any description of the GUI parts would be done.

However, while implementing the GUI layer, the need to prepare the menu will be formed.

The menu to be formed should be prepared specific to user and this can be done only done

by using authentication system. For this reason, the menu structure should be managed by

Business Server like application services.

During the establishment of authorization system, the organizational structure is expected to

be fully implemented according to the system working formally. However, a di�erent way

will be followed with POPF .

Users will be created without any connection to the institution units that they are working for.

Then the assignment records will be created and associated with users. By this way it will

be possible for users to work for more than one unit and it would become easy for users to

represent their colleagues during a temporary duration.

Unit type definitions and the hierarchical structure between the units are defined. Each as-

signment record is composed of the related user, the related unit and the related assignment

type.

32

The roles are designed in a way that they may contain other roles. So the hierarchical role

definitions can be specified.

Each role has Resources which will be included to the authentication. These resources can be

in the type of a Service, a Report or a Menu.

The roles are not assigned to users, they are meant to te be assigned to assignments. Each task

can have multiple roles.

Figure 5.1: Organization and Authorization System, ER Diagram

33

The view of the Organization and the Authorization System which was prepared appropriate

to definitions, will be examined. During this examination, the user interfaces which were

prepared to manage the service definitions and the reports will be reviewed.

1. The User logins to system with a user name and password.

Figure 5.2: Organization and Authorization System, Login

2. At the menu step Information � Services, description and parameters (input and output)

of all services are displayed grouped by modules.

Figure 5.3: Organization and Authorization System, Services Info

3. At the menu step Information � Reports, description and required parameters of all

reports are displayed grouped by modules.

34

Figure 5.4: Organization and Authorization System, Reports Info

4. At the menu step Developer � Deployment, a new version of any library file can be

uploaded to the system or any library file which is being used in the current version of

system can be downloaded.

Figure 5.5: Organization and Authorization System, Deployment

5. At the menu step Organization � Unit Type, unit types can be managed in a hierarchical

structure.

Figure 5.6: Organization and Authorization System, Unit Type Definition

6. At the menu step Organization � Unit, units can be managed in the hierarchy of unit

types.

35

Figure 5.7: Organization and Authorization System, Unit Definition

7. At the menu step Organization � Assignment Type, assignment types can be managed in

a hierarchical structure.

Figure 5.8: Organization and Authorization System, Mission Type Definition

8. At the menu step Organization � Menu, menu steps can be managed in a hierarchical

structure. Menu definitions have all the details that the system which will implement

the GUI layer can need.

Figure 5.9: Organization and Authorization System, Menu Definition

36

9. At the menu step Organization � Role, roles can be managed. Roles can contain other

roles. TO create a sub role, dragging the role and dropping it under other role is enough.

Parent role is meant to include all access rights of sub-role.

Figure 5.10: Organization and Authorization System, Role Definition

Resource can be added to the role selected. For associating a resource with a role, the

resource type which can be Menu, Service or Report is marked and added to the role.

Figure 5.11: Organization and Authorization System, Add Menu to Role

37

Figure 5.12: Organization and Authorization System, Add Service to Role

Figure 5.13: Organization and Authorization System, Add Report to Role

10. At the menu step Organization � User , system user definitions are managed. A new

user can be defined, assignments can be added to user and roles can be added to these

assignments. All user management capabilities are gathered at this menu step.

38

Figure 5.14: Organization and Authorization System, User Definition

In the user definition screen, the fields used to define a user are also the filter fields for

search. If the user wants to perform a search, these fields should be filled according

to the criteria and Search button should be pressed. Then the results will be listed as a

table.

Figure 5.15: Organization and Authorization System, User Search

39

Figure 5.16: Organization and Authorization System, User Info Listing

After selecting any assignment of the user, Role Creation menu becomes active.

Figure 5.17: Organization and Authorization System, Add Role to User

40

CHAPTER 6

CONCLUSION

In this thesis, the role of productivity in creation of software products was examined. It has

been addressed both what the impact of the productivity on the cost of software products is

and how the success of the software companies in dealing with productivity increases.

Productivity, is not only the result of the correct application of the technique but also a re-

quirement to keep the software up to date and cheap.

In the case of software development methodology, Productivity Oriented Programming is sim-

ilar to Agile Programming. Product-oriented approach, however, is agile and aims sustainable

success. With this aspect, POP is thought to be the correct choice for software companies.

POPF is intended to be used by non-qualified programmers. A complex project’s sample

module is designed and implemented with POPF by a couple of non-qualified programmers

within a week. Thus, simple structure of POPF simplified the adaptation of newly hired

developers to the software team. The time spent is nearly the quarter of the time for regular

methods.

6.1 Future Works

The continuation of this work is considered as the implementation of the requirements which

were specified but not implemented. In addition,the rule based operating segments which are

meant to ease the coding will be designed to deal with the domain knowledge. With this way,

it is aimed to increase the managebility and the quality of the source code of applications.

Defining rules is the common way to describe domain knowledge in algorithms. If rule struc-

41

ture can be simplified as to be viewed and managed in user interfaces then it will be possible

for the domain experts act like developers. By the time, rules change with requirements and

the application normalizes. Performance of the application depends on your infrastructure

team’s success. So, software companies stop educating their developers as domain experts.

Rule based coding does not need to be deployed. All system modules of POPF should be

written in pure Java. But if domain codes written in rules, that would be great support for

non-stop application execution aim of POPF.

Hardware requirements of software companies are really great. If POPF had a web-based

GUI to be used as IDE, developers would develop their rule-based services over the web with

cheap computers. Location problem of developers would also be solved by this way.

42

REFERENCES

[1] http:��en.wikipedia.org�wiki�Service-oriented architecture

[2] Arifoğlu A. (2004), e-Dönüşüm: Yol Haritası, Türkiye, Dünya, Sas Bilişim, Ankara

[3] Brooks F. (1995), The Mythical Man-Month: Essays on Software Engineering, Addison-

Wesley

[4] http:��jpa2web.sourceforge.net�

[5] http:��www.ibm.com�developerworks�web�library�wa-aj-jpa2web�

[6] http:��www.gestion400.com�web�guest�home

[7] http:��sourceforge.net�projects�jseahorse�

[8] http:��seyhanbasmaci.blogspot.com�

[9] http:��stripesframework.org�display�stripes�Home

[10] http:��www.springsource.org�

[11] http:��seamframework.org�

[12] http:��www.ics.uci.edu� wscacchi�Presentations�Process�Software-Productivity.ppt

[13] http:��java.sun.com�developer�technicalArticles�J2EE�jpa�

[14] https:��www.hibernate.org�

[15] http:��www.oracle.com�technology�products�ias�toplink�index.html

[16] http:��java.sun.com�jdo�index.jsp

[17] http:��www.mysql.com

[18] https:��jaxb.dev.java.net

[19] http:��ws.apache.org�jaxme

[20] http:��www.csg.is.titech.ac.jp� chiba�javassist�

[21] http:��scannotation.sourceforge.net

[22] http:��jasperforge.org�

[23] http:��java.sun.com�j2ee�tutorial�1 3-fcs�doc�EJBQL.html

[24] http:��docs.jboss.org�hibernate�stable�core�reference�en�html�queryhql.html

��

