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ABSTRACT

In a linear regression model of the type y ¼ �X þ e, it is often
assumed that the random error e is normally distributed. In
numerous situations, e.g., when y measures life times or reac-
tion times, e typically has a skew distribution. We consider
two important families of skew distributions, (a) Weibull with
support IR: ð0, 1Þ on the real line, and (b) generalised logistic
with support IR: ð�1, 1Þ. Since the maximum likelihood
estimators are intractable in these situations, we derive
modified likelihood estimators which have explicit algebraic
forms and are, therefore, easy to compute. We show that these
estimators are remarkably efficient, and robust. We develop
hypothesis testing procedures and give a real life example.
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Symmetric families of distributions, both long and short

tailed, will be considered in a future paper.

Key Words: Robustness; Maximum likelihood; Modified

maximum likelihood; Least squares; Weibull; Generalised

logistic

1. INTRODUCTION

In a linear regression model of the type

y ¼ �X þ e ð1:1Þ

it is usual practice to assume that the errors ei, 1 � i � n, are iid normal

Nð0, �2Þ. In practice, however, ei are often nonnormal. In this paper we

assume that ei have a skew distribution. For illustration we consider two

important skew distributions, (a) the Weibull with support IR: ð0, 1Þ, and

(b) generalised logistic with support IR: ð�1, 1Þ. The likelihood equa-

tions are, however, intractable and solving them by iteration can be prob-

lematic (Barnett [1], Lee et al. [2], Tiku et al. [3], Vaughan [4]). If the data

contains outliers, iterations with likelihood equations are often nonconver-

ging; see, for example, Puthenpura and Sinha [5]. These difficulties are

indeed debilitating. To alleviate these difficulties, we utilise the method

of modified likelihood (Tiku [6], [7], [8]; Tiku and Suresh [9]). Tan [10],

and Tan and Balakrishnan [11], give a Bayesian insight of this method.

The method first expresses the likelihood equations in terms of order

statistics and then linearizes the intractable terms. For estimating the loca-

tion (mean) and the scale (standard deviation) parameters of location-scale

distributions, the modified likelihood equations have explicit solutions

called MML (modified maximum likelihood) estimators. These estimators

are known to be asymptotically fully efficient under regularity conditions

(Bhattacharyya [12], Vaughan and Tiku [13]) and almost as efficient as the

ML (maximum likelihood) estimators for small sample sizes (Smith et al.

[14], Lee et al. [2], Tan [10]); see also Tiku et al. [3], Tiku and Suresh [9],

Vaughan [4], and Bian and Tiku [15], [16]. We extend this method to linear

models (1.1) and show that the MML estimators of � and �, �2 ¼ VðeÞ=�2,
are explicit and remarkably efficient, and robust. See also Tiku and Selc� uk
[17] and Tiku et al. [18], [19] who discuss applications of this method to

time series data.
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2. WEIBULL DISTRIBUTION

Consider in first place the linear model

yi ¼ �0 þ �1xi þ ei, 1 � i � n, ð2:1Þ

where ei are iid and have the Weibull distribution

Wð p, �Þ : ð p=� pÞep�1 exp �ðe=�Þp
� �

, 0<e<1: ð2:2Þ

Since �0 þ �1xþ EðeÞ will often be used as a predictor of the expected
response Eð yÞ, a model which can result in values of the probability

probf y 	 �0 þ �1xþ EðeÞg ¼ expf�½�ð1þ 1=pÞ�pg

substantially smaller or larger than 0.5 (say, � 0.4 or 	 0.6) is hardly of any
practical interest. If e has the Weibull distribution Wð p, �Þ, then the values
of this probability are

p ¼ 0.5 1.0 1.1 1.2 1.3 1.5 2.0 3.0 6.0
prob ¼ 0.24 0.37 0.38 0.39 0.41 0.42 0.46 0.49 0.53

In this paper, therefore, we are primarily interested in values of
p 	 1:3. See also Cohen and Whitten [20] who argue that in most applica-
tions p is greater than 1. Writing zi ¼ ei=� ¼ ðyi � �0 � �1xiÞ=�, 1 � i � n,
the likelihood equations @ lnL=@�0 ¼ 0, @ lnL=@�1 ¼ 0 and @ lnL=@� ¼ 0
are nonlinear functions and are expressions in terms of z�1i and z

p�1
i .

They have no explicit solutions and solving them by iteration is indeed
problematic; see also Smith [21], and Yildirim and Korasli [22]. To derive
modified likelihood equations which have explicit solutions, and are under
regularity conditions asymptotically equivalent to the likelihood equations,
we first order wi ¼ yi � �1xi (for a given �1) so that

wð1Þ � wð2Þ � 
 
 
 � wðnÞ; wðiÞ ¼ y½i� � �1x½i�: ð2:3Þ

We define the ordered variates zðiÞ ¼ fwðiÞ � �0g=�, 1 � i � n; ðy½i�, x½i�Þ may
be called concomitants of zðiÞ and is that pair of ðyj, xjÞ values which deter-
mines wðiÞ. Since complete sums are invariant to ordering, the likelihood
equations can be written in terms of zðiÞ:

@ lnL

@�0
¼ �

p� 1

�

Xn
i¼1

z�1ðiÞ þ
p

�

Xn
i¼1

z
p�1
ðiÞ ¼ 0 ð2:4Þ

@ lnL

@�1
¼ �

p� 1

�

Xn
i¼1

x½i�z
�1
ðiÞ þ

p

�

Xn
i¼1

x½i�z
p�1
ðiÞ ¼ 0 ð2:5Þ
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and

@ lnL

@�
¼ �

n

�
�
p� 1

�

Xn
i¼1

zðiÞz
�1
ðiÞ þ

p

�

Xn
i¼1

zðiÞz
p�1
ðiÞ ¼ 0: ð2:6Þ

Realise the difficulties which can arise if zð1Þ tends to zero in which case
(2.4)–(2.5) are not defined.

3. MODIFIED LIKELIHOOD

Write tðiÞ ¼ EfzðiÞg, 1 � i � n, and note that

EfzðiÞg ¼
n!

ði � 1Þ!ðn� iÞ!

Xi�1
j¼0

ð�1Þj
i � 1
j

� �
�ð1þ 1=pÞ

ðn� i þ j þ 1Þð pþ1Þ=p
: ð3:1Þ

The computation of (3.1) is rather cumbersome for large n (say, n 	 10). For
n 	 10, however, the approximate values of tðiÞ are used and obtained from
the equations Z tðiÞ

0

pzp�1 expð�zpÞ dz ¼
i

nþ 1

which gives

tðiÞ ¼ � lnf1� i=ðnþ 1Þg½ �
1=p, 1 � i � n: ð3:2Þ

Since z
p�1
ðiÞ is almost linear in small intervals around zðiÞ, we linearize z

p�1
ðiÞ by

using the first two terms of a Taylor series expansion (Tiku [6], [7]; Tiku and
Suresh [9]):

z
p�1
ðiÞ ffi �i þ �izðiÞ; �i ¼ ð2� pÞt

p�1
ðiÞ and �i ¼ ðp� 1Þt

p�2
ðiÞ ð1� i � nÞ:

ð3:3Þ

Similarly,

z�1ðiÞ ffi �i0 � �i0zðiÞ; �i0 ¼ 2t�1ðiÞ and �i0 ¼ t�2ðiÞ ð1 � i � nÞ: ð3:4Þ

Incorporating (3.3)–(3.4) in (2.4)–(2.6), we get the modified likelihood equa-
tions @ lnL�=@�0 ¼ 0, @ lnL�=@�1 ¼ 0 and @ lnL�=@� ¼ 0: The solutions of
these equations are the MML estimators:

�̂�0 ¼ �yy½:� � �̂�1 �xx½:� � ð�=mÞ�̂� ð3:5Þ
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�̂�1 ¼ K �D�̂� ð3:6Þ

and

�̂� ¼ �Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 þ 4nCÞ

q	 
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fnðn� 2Þg

p
ð3:7Þ

where

	i ¼ ð p� 1Þ�i0 þ p�i, �i ¼ ð p� 1Þ�i0 � p�i;

m ¼
Xn
i¼1

	i, � ¼
Xn
i¼1

�i;

�yy½:� ¼ ð1=mÞ
Xn
i¼1

	iy½i�, �xx½:� ¼ ð1=mÞ
Xn
i¼1

	ix½i�;

K ¼
Xn
i¼1

	iðx½i� � �xx½:�Þy½i�
Xn
i¼1

,
	iðx½i� � �xx½:�Þ

2,

D ¼
Xn
i¼1

�iðx½i� � �xx½:�Þ
Xn
i¼1

	iðx½i� � �xx½:�Þ
2

,
;

B ¼
Xn
i¼1

�ify½i� � �yy½:� � Kðx½i� � �xx½:�Þg,

C ¼
Xn
i¼1

	ify½i� � �yy½:� � Kðx½i� � �xx½:�Þg
2

¼
Xn
i¼1

	iðy½i� � �yy½:�Þ
2
� K

Xn
i¼1

	iðx½i� � �xx½:�Þy½i�:

ð3:8Þ

Note that 	i > 0 for all p > 1. The ML estimator of � can cease to be real or
positive (see, for example, Lawless [23] (Chapter 6)), but the MML estima-
tor �̂� is always real and positive.

Remark: It is not difficult to prove that (see, for example, Vaughan and Tiku
[13]) asymptotically ( p > 2)

1

n

@ lnL

@�0
�
@ lnL�

@�0

	 

¼ 0,

1

n

@ lnL

@�1
�
@ lnL�

@�1

	 

¼ 0,

and
1

n

@ lnL

@�
�
@ lnL�

@�

	 

¼ 0;

ð3:9Þ

see also the Appendix. Thus, the MML estimators �̂�0, �̂�1 and �̂� are asymp-
totically equivalent to the ML (maximum likelihood) estimators for p > 2.
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Note that p > 2 is a necessary regularity condition for the Fisher informa-
tion matrix to exist.

Computations: The computations are carried out in two iterations. In the
first iteration, wðiÞ are obtained by ordering wi ¼ yi � ~��1xi ð1 � i � nÞ
in ascending order, where ~��1 ¼

Pn
i¼1ðxi � �xxÞyi=

Pn
i¼1ðxi � �xxÞ2 is the LS

(least squares) estimator of �1. Then, �̂�1 is calculated from (3.6)–(3.7). In

the second iteration, wðiÞ are obtained by ordering wi ¼ yi � �̂�1xi, 1 � i � n:
The resulting concomitants are used to compute the MML estimators from
(3.5)–(3.7). In all our computations, only two iterations were needed for the
estimates to stabilise sufficiently enough. The reason perhaps is that the
MML estimators only depend on the concomitants (y[i ], x[i]) and the con-
comitant indices are determined by the relative magnitudes, not necessarily
the true values, of wi ð1 � i � nÞ.

4. ASYMPTOTIC EFFICIENCY

Again, it is not difficult to prove that (Vaughan and Tiku [13]
(Appendix A)) asymptotically ð p > 2Þ

E
1

n

Xn
i¼1

z
p�1
ðiÞ � ð�i þ �izðiÞÞ

n o
�i

" #
¼ 0 and

E
1

n

Xn
i¼1

z�1ðiÞ � ð�i0 þ �i0zðiÞÞ
� �

�i

" #
¼ 0

ð4:1Þ

for �i ¼ 1, �i ¼ x½i� or �i ¼ zðiÞ: As a consequence of this, the expected
values of all the first order and the second order derivatives of lnL� are
exactly the same (asymptotically) as the corresponding values for lnL: As a
consequence of this, the following result is true; see also the Appendix. See
also Vaughan and Tiku [13] (Appendix A).

Theorem 1: For p > 2, the MML estimators �̂�0, �̂�1 and �̂� are asymptotically
fully efficient, i.e., they are asymptotically unbiased and their covariance
matrix is I�1ð�0, �1, �Þ, where

I ¼
np2

�2

1�
1

p

� �2

� 1�
2

p

� �
1�

1

p

� �2

� 1�
2

p

� �P
xi=n � 2�

1

p

� �

1�
1

p

� �2

� 1�
2

p

� �P
x2i =n � 2�

1

p

� �P
xi=n

1

2
666664

3
777775

ð4:2Þ
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is the Fisher information matrix. Note that if
Pn

i¼1 xi ¼ 0 (e.g., a symmetric
design in the interval –1 to 1), �̂�1 is uncorrelated with �̂�0 and �̂�.

Comment: The values calculated from (4.2) provide close approximations to
the true values even for moderate sample sizes and may be used for all
n > 50 ð p 	 2:5Þ, at any rate for �̂�1 and �̂�. Given in Table 1 are the values
calculated from the diagonal elements of I�1, namely,

Vð�̂�0Þ ¼
�2

nð p� 1Þ2
1

�ð1� 2=pÞ � �2ð1� 1=pÞ
þ

n �xx2

�ð1� 2=pÞ
P

ðxi � �xxÞ2

( )

Vð�̂�1Þ ¼
�2

ð p� 1Þ2�ð1� 2=pÞ
P

ðxi � �xxÞ2
, ð4:3Þ

Vð�̂�Þ ¼
�ð1� 2=pÞ�2

np2 �ð1� 2=pÞ � �2ð1� 1=pÞ
� � ,

and give the asymptotic variances. Also given are the corresponding simu-
lated values based on N ¼ ½10,0000=n� Monte Carlo runs. A set of design
points xi, 1 � i � n, was randomly generated from a Uniform (0, 1) distri-
bution and was common to all the N number of random samples
ð y1, y2, . . . , ynÞ generated from the Weibull Wð p, �Þ. Without loss of gen-
erality �0, �1 and � are in the rest of the paper taken to be equal to 0, 1 and 1,
respectively. For brevity, the values of the covariances are not reproduced
but there is close agreement between their simulated values and the values
calculated from I�1.

The small difference between the two sets of values in Table 1 clearly
indicate that the MML estimators are remarkably efficient for large n. Since
MVB (minimum variance bound) estimators do not exist, all estimators will
have their variances greater than the MVB; see also Smith et al. [14], Tan
[10] and Vaughan [4].

NONNORMAL REGRESSION. I 999

Table 1. Values of n�(Variance) of the MML Estimators

�̂�0 �̂�1 �̂�

n p Asymp Simul Asymp Simul Asymp Simul

50 2.5 0.565 0.832 1.201 1.607 0.310 0.406
3.0 0.659 0.786 1.158 1.267 0.352 0.431
4.0 0.655 0.701 0.778 0.780 0.409 0.435

100 2.5 0.494 0.651 1.179 1.425 0.310 0.394

3.0 0.591 0.673 1.137 1.233 0.352 0.402
4.0 0.609 0.657 0.764 0.787 0.409 0.434
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5. RELATIVE EFFICIENCY

We have already established the fact that for p > 2 the MML estima-
tors �̂�0, �̂�1 and �̂� are asymptotically fully efficient. To have an idea about
their efficiencies relative to some of the commonly used estimators, e.g., the
LS (least squares) estimators which when corrected for bias are (see also
Cohen and Whitten [20])

~��0 ¼ �yy� ~��1 �xx� �ð1þ 1=pÞ ~��, ~��1 ¼
Xn
i¼1

ðxi � �xxÞyi

,Xn
i¼1

ðxi � �xxÞ2

and

~�� ¼
Xn
i¼1

½yi � �yy� ~��1ðxi � �xxÞ�2=ðn� 2Þ½�ð1þ 2=pÞ � �2
ð1þ 1=pÞ�

( )1=2

;

ð5:1Þ

�yy ¼ ð1=nÞ
Pn

i¼1 yi and �xx ¼ ð1=nÞ
Pn

i¼1 xi: It is easy to show thatEð ~��1Þ ¼ �1 and

Vð ~��1Þ ¼ �ð1þ 2=pÞ � �2
ð1þ 1=pÞ

� �
�2

Xn
i¼1

ðxi � �xxÞ2:

,
ð5:2Þ

The values of the asymptotic relative efficiency of ~��1, i.e., 100Vð�̂�1Þ=Vð ~��1Þ,
are 67, 88, 91 and 81 percent for p ¼ 2.5, 3.0, 6.0 and 10.0, respectively.
Clearly, the LS estimator ~��1 is considerably less efficient than the MML
estimator �̂�1.

It is very difficult to find the expected values and variances of ~��0 and ~��
(and, of course, the covariances between ~��0, ~��1 and ~��) even asymptotically.
To compare the efficiencies of the LS and the MML estimators, therefore,
we simulated their means and variances. The bias in all these estimators
were found to be negligible, although the bias in �̂�0 for small n is a little
larger than that of ~��0. For n¼ 20 and 100, for example, we have the
following values of the means:

Simulated values of the Means; �0 ¼ 0, �1 ¼ 1, � ¼ 1.

p¼ 1.5 p¼ 3.0

n ~��0 �̂�0 ~��1 �̂�1 ~�� �̂� ~��0 �̂�0 ~��1 �̂�1 ~�� �̂�

20 0.02 0.15 1.00 0.99 0.98 0.94 0.01 0.04 1.00 1.00 0.98 0.96
100 �0.00 0.04 1.01 1.00 0.99 0.98 0.00 0.02 1.00 1.00 1.00 0.99
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The MML estimators are, however, considerably more efficient. Given
in Table 2 are the simulated values of the variances of the MML estimators
and the relative efficiencies

E1 ¼ 100fVð�̂�0Þ=Vð ~��0Þg, E2 ¼ 100fVð�̂�1Þ=Vð ~��1Þg,

E3 ¼ 100fVð�̂�Þ=Vð ~��Þg
ð5:3Þ

of the LS estimators. The LS estimators have a disconcerting feature,
namely, their relative efficiencies decrease as n increases and stabilise at
values considerably less than 100%, especially for smaller values of p.

Remark:We also calculated means and variances of the estimators for other
designs, e.g., xi ð1 � i � nÞ generated from normal Nð0, 1Þ. The biases were

NONNORMAL REGRESSION. I 1001

Table 2. Variances of the MML Estimators and the Relative Efficiencies of the LS

Estimators: (1)¼ nVð�̂�0Þ, (2)¼ nVð�̂�1Þ, (3)¼ nVð�̂�Þ

n (1) E1 (2) E2 (3) E3

p¼ 1.3

10 1.54 97 5.55 109 0.637 61

20 1.83 79 5.11 94 0.602 58
30 1.86 77 5.19 94 0.581 58
50 1.83 70 5.40 81 0.615 57

100 1.52 70 4.68 75 0.574 56

p¼ 1.5

10 0.801 61 2.63 69 0.597 70

20 0.907 52 2.26 56 0.537 64
30 0.876 45 1.96 47 0.541 65
50 0.776 40 1.92 40 0.510 59

100 0.473 30 1.47 34 0.495 61

p¼ 2.0

10 0.706 76 21.774 86 0.533 79
20 0.856 75 1.800 79 0.454 78

30 0.851 68 1.646 72 0.451 77
50 0.829 64 1.818 67 0.420 73
100 0.569 55 1.608 60 0.389 67

p¼ 6.0

10 0.651 95 0.295 94 0.564 92
20 0.646 96 0.324 94 0.517 94

30 0.642 96 0.321 93 0.497 94
50 0.652 96 0.381 93 0.479 93
100 0.624 93 0.376 91 0.470 92
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negligible, and the relative efficiencies E1, E2 and E3 of the LS estimators
turned out to be essentially the same as in Table 2.

6. ROBUSTNESS

In practice the shape parameter p inWð p, �Þ (eq. 2.2) might be some-
what misspecified or the sample might contain outliers. From a practical
point of view, therefore, it is very important for an estimator to have effi-
ciency robustness; see, for example, Huber [24], Tiku et al. [3], and Tan and
Tiku [25]. Such an estimator is fully efficient (or nearly so) for an assumed
model but maintains high efficiency for plausible alternatives to the assumed
model. We assume the model to be Wð p, �Þ with p¼ 2, the scale � being
unknown. The value p¼ 2 is chosen for illustration but, of course, any other
value of p can be chosen with similar results. The alternatives to this model
are called sample models. Out of a large number of plausible sample models,
we choose a representative few as follows. These models represent different
types of distributions which, like the assumed Weibull Wð2, �Þ, have the
longer tail on the right hand side.

(a) The Weibull Wð p, �Þ: (1) p ¼ 1:3, (2) p ¼ 2:0, (3) Exponential
ð1=�Þ expð�e=�Þ, 0<e<1, i.e., Wð1, �Þ.

(b) Dixon’s single outlier model: (4) e1, e2, . . . , ei�1, eiþ1, . . . , en are
ðn� 1Þ random deviates from Wð2, �Þ but ei (for some i) is from
Wð2, ��Þ, � ¼ 4:

(c) Tiku’s single outlier model (Hawkins [26], Tiku [27]): (5) eð1Þ,
eð2Þ, . . . , eðn�1Þ are the first ðn� 1Þ order statistics of a random
sample of size n fromWð2, �Þ and eðnÞ is the largest order statistic
of this sample plus ��, � ¼ 4:

(d) Contamination model: (6) 0:90Wð2, �Þ þ 0:10Wð1:3, �Þ:

Both outlier models (b) and (c) extend to more than one outlier (Tiku [28],
Mann [29]) which are not considered here for brevity. The models (b)–(d)
are very important from a practical point of view. In fact, Huber [24] stated
that the occurrence of five to ten percent outliers in a sample is a rule not an
exception.

Realise that the sample model (2) is also the assumed population
model. Therefore, the tðiÞ values (and 	i and �i coefficients) are calculated
from (3.1) or (3.2) with p¼ 2 and used for all the sample models (a)–(d).
Note, however, that ~��0 and �̂�0 are not location and scale invariant and it is
difficult to figure out the parameter they are estimating under a sample
model other than model (2) in which case they both estimate �0. For that
reason we are not reporting their means and variances in Table 3, although
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Table 3. Simulated Means and Variances of the LS and the MML Estimators of
�1 and �; �1 ¼ 1, � ¼ 1

Mean n (Variance)

n ~��1 �̂�1 ~�� �̂� ~��1 �̂�1 ~�� �̂�

Model (1), �¼ 1.547

20 1.00 0.99 1.50 1.35 5.49 3.04 2.40 1.56
30 0.99 0.99 1.52 1.36 5.60 2.81 2.50 1.58
50 1.00 1.00 1.52 1.35 6.60 3.09 2.47 1.48
100 0.99 1.00 1.54 1.36 6.17 2.91 2.50 1.44

Model (2), �¼ 1

20 1.00 0.99 0.98 0.94 2.28 1.80 0.58 0.45

30 1.00 0.99 0.99 0.96 2.28 1.65 0.58 0.45
50 1.00 1.00 0.99 0.97 2.71 1.82 0.57 0.42
100 1.00 1.00 1.00 0.98 2.70 1.61 0.58 0.49

Model (3), �¼ 2.159

20 1.00 0.99 2.06 1.78 10.7 5.00 7.39 4.55
30 0.99 0.99 2.09 1.79 10.9 4.82 7.96 4.74
50 1.00 1.00 2.10 1.77 12.8 6.07 8.04 4.54

100 0.98 0.99 2.14 1.78 12.1 8.12 8.33 4.50

Model (4), �¼ *

20 0.20 0.54 1.62 1.42 8.08 3.70 7.80 4.30
30 0.42 0.69 1.48 1.30 6.58 3.08 7.21 3.52
50 0.64 0.82 1.33 1.18 6.12 2.90 6.70 2.82
100 0.83 0.92 1.20 1.09 3.79 1.92 5.13 1.78

Model (5), �¼ **

20 0.99 1.00 2.57 2.03 15.1 5.78 0.63 0.37

30 0.99 0.99 2.20 1.74 11.4 4.49 0.56 0.36
50 1.01 1.01 1.84 1.47 9.08 3.80 0.52 0.35
100 0.99 1.00 1.50 1.25 5.77 2.32 0.54 0.36

Model (6), �¼ 1.068

20 1.00 0.99 1.32 1.18 4.34 2.45 2.88 1.72
30 0.99 0.99 1.34 1.19 4.45 2.34 3.02 1.74

50 1.00 1.00 1.35 1.20 5.26 2.56 2.94 1.60
100 0.99 1.00 1.37 1.21 4.90 2.18 3.04 1.56

*The values of � are 1.32, 1.22, 1.14, and 1.07 for n¼ 20, 30, 50, and 100, respectively.

**The values of � are 1.58, 1.36, 1.15, and 0.94 for n¼ 20, 30, 50, and 100,
respectively.
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the variances of �̂�0 are considerably smaller than those of ~��0. The estimators
~�� and �̂� are both estimating ��ð� > 0Þ, where � is the ratio of the standard
deviation of the sample model to the standard deviation of the population
model. The values of � are given in Table 3. Note that � has absolutely
no role to play in the computation of the LS or the MML estimators. Its
values are given only for mean square error calculations. The estimators
~��1 and �̂�1 are location invariant and both are estimating �1 under all the
models above. The simulated values of the mean and variance are given
in Table 3.

Under Dixon’s outlier model both ~��1 and �̂�1 develop bias for small n,
but �̂�1 has considerably smaller bias. Under Tiku’s outlier model, however,
they have hardly any bias and that is a very interesting finding for one of the
authors of this paper. For all the models above, the MML estimators �̂�1 and
�̂� not only have smaller bias than the LS estimators ~��1 and ~��, but they also
have much smaller variances (and mean square errors). Besides, �̂�1 and �̂� are
remarkably efficient (Table 1) for the assumed population model, i.e., the
sample model (2) above. Thus, the MML estimators �̂�1 and �̂� are robust.
The reason for their robustness is that D and B=

ffiffiffiffiffiffi
nC

p
in equations (3.8) are

small and, as a consequence, the MML estimators �̂�0, �̂�1, and �̂� are essen-
tially the solutions of the equations

@ lnL�

@�0
ffi �

1

�

Xn
i¼1

	izðiÞ ¼ 0,
@ lnL�

@�1
ffi �

1

�

Xn
i¼1

x½i��1ð	izðiÞÞ ¼ 0, and

ð6:1Þ

@ lnL�

@�
ffi �

n

�
þ
1

�

Xn
i¼1

	iz
2
ðiÞ ¼ 0: ð6:2Þ

It is clear from these equations that the ordered residuals eðiÞ ¼ �zðiÞ (and
their squares e2ðiÞ) are assigned the weight 	i. But for the Weibull Wð2, �Þ,
	i have half-umbrella ordering, that is, 	i ð1 � i � nÞ is a decreasing sequence
of positive numbers. For n¼ 20 ( p¼ 2), for example,

	i ¼ 22.50, 11.99, 8.49, 6.73, 5.68, 4.97, 4.47, 4.08, 3.79, 3.55, 3.35, 3.18,
3.04, 2.91, 2.80, 2.70, 2.60, 2.51, 2.42, 2.33.

Consequently, the extreme ordered residuals eðiÞ on the right hand side
(and their squares e2ðiÞ) are assigned small weights. Thus, the influence of long
tails or outliers (on the right hand side) is automatically depleted. This gives
the MML estimators the feature of robustness to plausible deviations
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from the assumed model. On the other hand, the LS estimators are the
solutions of (6.1)–(6.2) with 	i ð1 � i � nÞ equal to 1. Thus, all ordered
residuals eðiÞ (and their squares) are assigned the same weight. This exposes
the LS estimators to the dominant influence of long tails or outliers resulting
in their considerably larger variances (mean square errors), as illustrated in
Table 3.

7. HYPOTHESIS TESTING

Testing the null hypothesis H0 : �1¼ 0 is of great practical interest. In
that regard, we have the following result.

Lemma 1: Conditionally (� known), �̂�1(�) is asymptotically the MVB
estimator and is normally distributed with mean �1 and variance
�2=

Pn
i¼1 	iðx½i� � �xx½:�Þ

2, p>2.

Proof: The result follows from the fact that @ lnL�=@�1 ¼ 0 can, in view of
@ lnL�=@�0 ¼ 0, be put in the form

@ lnL�

@�1
¼

Pn
i¼1 	iðx½i� � �xx½:�Þ

2

�2
K �D�ð Þ � �1

� �
¼ 0: ð7:1Þ

The result then follows from the fact that the modified likelihood equation
@ lnL�=@�1 ¼ 0 is asymptotically equivalent to the likelihood equation
@ lnL=@�1 ¼ 0 ð p > 2Þ, and the third and higher derivatives of @ lnL�=@�1
are zero (Bartlett [30]); see also Kendall and Stuart [31] (Chapter 18).

Lemma 2: Conditionally (�1 known), �̂�(�1) is asymptotically the
MVB estimator of � and ðn� 1Þ�̂�2ð�1Þ is distributed as a multiple of
chi-square.

Proof: The modified likelihood equation @ lnL�=@� ¼ 0 can, in view of
@ lnL�=@�0 ¼ 0, be put in the form

@ lnL�

@�
¼�

n

�3
�B0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2

0 þ 4nC0

q	 
�
2n� �

� �

� �B0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2

0 þ 4nC0

q	 
�
2n� �

� �
ð7:2Þ
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where

B0 ¼
Xn
i¼1

�ify½i� � �yy½:� � �1ðx½i� � �xx½:�Þg and

C0 ¼
Xn
i¼1

	ify½i� � �yy½:� � �1ðx½i� � �xx½:�Þg
2:

Since the only admissible root of (7.2) is

�̂�ð�1Þ ¼ �B0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2

0 þ 4nC0Þ

q	 
�
2n ð7:3Þ

the result follows; see, for example, Bartlett [30] and Kendall and Stuart [31]
(p. 52).

Now, B0=
ffiffiffiffiffiffiffiffi
nC0

p
ffi 0 for large n. Consequently,

@ lnL�=@� ffi ðn=�3ÞfðC0=nÞ � �2g: ð7:4Þ

Therefore, �̂�2ð�1Þ ffi C0/(n� 1) is the MVB estimator of �2. It also follows
from (7.4) that for large n, ðn� 1Þ�̂�2ð�1Þ/�

2 is a chi-square with n� 1 degrees
of freedom; see, for example, Tiku [32] (p. 626). Consequently, ðn� 2Þ�̂�2/�2

is for large n referred to a chi-square distribution with n� 2 degrees of
freedom.

Testing �1 ¼ 0: To test H0 : �1¼ 0 against the alternatives H0 : �1>0, we
define the statistic

T ¼ �̂�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 	iðx½i� � �xx½:�Þ

2
� �q �

�̂�: ð7:5Þ

Large values of T lead to the rejection of H0 in favour of H1. Since �̂�
converges to � as n tends to infinity, in view of Lemma 1, the null distribu-
tion of T is asymptotically normal Nð0, 1Þ. For n > 20, in fact, the
Nð0, 1Þ distribution provides close approximations to the percentage
points (Table 4) for all p 	 1:4, in spite of the fact that for the regu-
larity conditions to hold p has to be greater than 2. For n � 20, the null
distribution of T is referred to Student’s t with n� 2 degrees of freedom;
this essentially is a consequence of Lemmas 1 and 2.

Power Function: The asymptotic power function of the T-test is given by

P Z 	 z� � ð�1=�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 	iðx½i� � �xx½:�Þ
2

q	 

, ð7:6Þ
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where Z is normal Nð0, 1Þ and z� is its 100ð1� �Þ% point. Simulations
reveal that (7.6) gives accurate approximations for all n > 20. For n � 20,
the power function is adequately approximated by a noncentral t distribu-
tion but we do not pursue it in any detail. The power of the T-test increases
to 1 very rapidly. We do not give details for conciseness.

Robustness: A test is said to have criterion robustness if its Type I error for
plausible alternatives is not substantially higher than that attained under an
assumed model. The test is said to have efficiency robustness if its power is
high; see, for example, Tiku et al. [3], Preface. Consider the above T-test
and, for comparison, the analogous test based on the LS estimators ~��1 and
~��, namely,

G ¼ ~��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � �xxÞ2

q �
�ð1þ 2=pÞ � �2

ð1þ 1=pÞ
� �

~��2
� �1=2

: ð7:7Þ

Large values of G lead to the rejection of H0 in favour of H1. In absence of
any readily available distributional results, the null distribution of G is
referred to normal Nð0, 1Þ for large n. For n � 20, the null distribution of
G is referred to Student’s t with n� 2 degrees of freedom. The assumed
model is the Weibull Wð2, �Þ, and the alternatives are the following for
illustration (� unknown):

ðIÞ Wð1, �Þ, ðIIÞ Wð1:3, �Þ, ðIIIÞ Wð3, �Þ,

ðIVÞ Contamination 0:90Wð2, �Þ þ 0:10Wð1:3, �Þ:

The random deviates generated from the models (I) to (IV) were divided by
�¼ 1.356, 1.198, 0.85, and 1.022, respectively, to equalise the variances. This
is important for power comparison. The simulated values of the power are
given in Table 5. It can be seen that the T-test is robust. This is essentially
due to the half-umbrella ordering of the 	i ð1 � i � nÞ coefficients as
explained earlier. The G-test is clearly yielding poor results: This is partly
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Table 4. Simulated Type I Errors, Presumed Value is 0.05

p

n 1.3 1.4 1.5 2.0 2.5 3.0 4.0 6.0

10 0.057 0.044 0.039 0.041 0.051 0.049 0.050 0.054
20 0.083 0.039 0.038 0.038 0.047 0.049 0.054 0.051

30 0.110 0.049 0.032 0.044 0.048 0.052 0.059 0.049
50 0.154 0.059 0.034 0.045 0.051 0.056 0.052 0.054
100 0.144 0.054 0.031 0.043 0.042 0.049 0.049 0.055
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due to the inadequacy of the normal approximation (Tiku [33] (p. 146)) but
mainly due to the fact that the LS estimator ~��1 is much less efficient than the
MML estimator �̂�1. Since for a given model the relative efficiency
E ¼ Vð�̂�1Þ=Vð ~��1Þ of the LS estimator is less than 1 and is the same under
both H0 as well asH1, the T-test is bound to be more powerful; see Sundrum
[34]. As can be seen from Table 5, the power of the G-test declines sharply
when the sample model deviates from the population model. The G-test is
clearly nonrobust.

Example: Consider the following data (Johnson and Johnson [35]) which
represent the ordered survival times (the number of days/1000) of 43
patients suffering from granulocytic leukemia:

eðiÞ: 0.007, 0.047, 0.058, 0.074, 0.177, 0.232, 0.273, 0.285, 0.317,
0.429, 0.440, 0.445, 0.455, 0.468, 0.495, 0.497, 0.532, 0.571,
0.579, 0.581, 0.650, 0.702, 0.715, 0.779, 0.881, 0.900, 0.930,
0.968, 1.077, 1.109, 1.314, 1.334, 1.367, 1.534, 1.712, 1.784,
1.877, 1.886, 2.045, 2.056, 2.260, 2.429, 2.509

To verify whether this data is genuinely from a Weibull distribution,
we utilize the goodness-of-fit statistic ZW (Tiku [36], Tiku and Singh [37])
based on sample spacings. The statistic is location and scale invariant and,
therefore, no parameter estimation is required in its computation.

For a given p, let

Di ¼ ðn� iÞ e
p
ðiþ1Þ � e

p
ðiÞ

n o
, i ¼ 1, 2, . . . , n� 1, ð7:8Þ
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Table 5. Power of the G and T tests, n¼ 20. True Model Wð2, �Þ, � ¼ 1

Model I II Wð2, �Þ III IV

�1 G T G T G T G T G T

0.0 0.005 0.014 0.006 0.021 0.008 0.033 0.007 0.051 0.005 0.024
0.2 0.02 0.06 0.02 0.08 0.03 0.12 0.04 0.17 0.02 0.09

0.4 0.05 0.18 0.07 0.23 0.10 0.32 0.15 0.39 0.07 0.24
0.6 0.12 0.38 0.16 0.46 0.24 0.57 0.34 0.65 0.16 0.45
0.8 0.21 0.59 0.28 0.68 0.42 0.79 0.60 0.85 0.29 0.66

1.0 0.32 0.76 0.44 0.85 0.65 0.92 0.82 0.96 0.45 0.82
1.2 0.46 0.86 0.59 0.93 0.81 0.97 0.94 0.99 0.58 0.90
1.4 0.59 0.93 0.73 0.97 0.92 1.00 0.99 1.00 0.71 0.96
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be the sample spacings. Calculate the statistic

ZW ¼ 2
Xn�1
i¼1

ðn� 1� iÞDi

.
ðn� 2Þ

Xn�1
i¼1

Di:

Small and large values of ZW lead to the rejection of Weibull (for a given p).
The null distribution of ZW=2 is the same as the distribution of the mean of
n� 2 iid Uniform (0, 1) variates (Tiku [36]). For n 	 7, therefore, the null
distribution of

Z ¼ ðZW � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn� 2Þ

p
ð7:9Þ

is referred to N(0, 1). For testing exponentiality, the ZW test is known to be
the most powerful test overall (Dyer and Harbin [38]).

We calculated Z for various values of p. One of the authors of this
paper was very pleased to notice that Z monotonically decreases from posi-
tive to negative values as p increases. It attains the value zero when
p¼ 1.314. The Weibull Wð1:314, �Þ is, therefore, the most plausible model
for the data above. A Q-Q plot of eðiÞ against tðiÞ, calculated from (3.2) with
p ¼ 1.314 yields ‘‘close to a straight line’’ pattern and, therefore, supports
the Weibull model.

We introduced a design variable xi by taking yi ¼ xi þ ei. The values
of xi (generated from a Uniform distribution) are given below:

0.00, 0.08, 0.60, 0.89, 0.97, 0.19, 0.52, 0.40, 0.26, 0.74, 0.09, 0.56, 0.58,
0.81, 0.59, 0.51, 0.88, 0.99, 0.73, 0.97, 0.30, 0.43, 0.90, 0.65, 0.90, 0.96,
0.16, 0.86, 0.91, 0.29, 0.94, 0.42, 0.31, 0.52, 0.40, 0.79, 0.69, 0.54, 0.59,
0.09, 0.61, 0.43, 0.60.

The model (2.1) is now applicable with p in Wð p, �Þ estimated by
1.314. We assume, of course, that �0, �1 and � are not known. The LS
and the MML estimates of �1 and their standard errors (calculated from
the equations above) are

Estimate Standard Error

LS 0.99 � 0.39
MML 0.97 � 0.22

Both the estimates are close to the population value (�1¼ 1) but the
MML estimate has considerably smaller standard error, as expected.

Remark: For the model (2.1), it will be yi (not ei) that will be known. The
spacings Di, therefore, are calculated by replacing eðiÞ by êeðiÞ, (1� i � n),
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where êeðiÞ are the order statistics of yi � �̂�0 � �̂�1xi. The Z-test above is then
applied. A Q-Q plot obtained by plotting êeðiÞ against tðiÞ, ð1 � i � nÞ, pro-
vides corroborative evidence; see also Tiku and Vaughan [39] and Tiku et al.
[17] who show that such a procedure yields good results since the MML
estimators are robust.

8. GENERALISED LOGISTIC

In model (2.1), suppose ei have the generalised logistic distribution

GLðb, �Þ ¼
b

�

expð�e=�Þ

1þ expð�e=�Þ
� �bþ1 , �1<e<1: ð8:1Þ

The values of b that are of interest are 0:4 � b � 8, for the probability

prob y 	 �0 þ �1xþ EðeÞ
� �

¼ 1þ e�c
� �b

ð8:2Þ

to have values between 0.4 and 0.6.
The likelihood equations for estimating �0, �1 and � can be written in

terms of the ordered variates zðiÞ, 1 � i � n, as in (2.4)–(2.6), and are expres-
sion in terms of the awkward functions

gðzÞ ¼ e�z=ð1þ e�zÞ; z ¼ zðiÞ ¼ ðwðiÞ � �0Þ=�,

wðiÞ ¼ y½i� � �1x½i� ð1 � i � nÞ:
ð8:3Þ

Since gfzðiÞg is linear (almost) in the vicinity of zðiÞ, we have as in (3.3),

gfzðiÞg ffi �i � �izðiÞ, 1 � i � n, ð8:4Þ

where (t¼ t(i))

�i ¼ ð1þ et þ tetÞ=ð1þ etÞ2 and �i ¼ et=ð1þ etÞ2;

tðiÞ ¼ � ln q�1=bi � 1
� �

, qi ¼ i=ðnþ 1Þ:

MML Estimators: Incorporating (8.4) in the likelihood equations, we obtain
the modified likelihood equations. The solutions of these equations are the
MML estimators:

�̂�0 ¼ �yy½:� � �̂�1 �xx½:� � ð�=mÞ�̂� ð8:5Þ

�̂�1 ¼ K �D�̂�, and �̂� ¼ �Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 þ 4nCÞ

q	 
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fnðn� 2Þg

p
,

ð8:6Þ
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where

m ¼
Xn
i¼1

�i; �i ¼ �i � ðbþ 1Þ�1; � ¼
Xn
i¼1

�i;

�yy½:� ¼ ð1=mÞ
Xn
i¼1

�iy½i�, �xx½:� ¼ ð1=mÞ
Xn
i¼1

�ix½i�;

K ¼
Xn
i¼1

�iðx½i� � �xx½:�Þy½i�

,Xn
i¼1

�iðx½i� � �xx½:�Þ
2,

D ¼
Xn
i¼1

�iðx½i� � �xx½:�Þ

, Xn
i¼1

�iðx½i� � �xx½:�Þ
2;

B ¼ ðbþ 1Þ
Xn
i¼1

�ify½i� � �yy½:� � Kðx½i� � �xx½:�Þg,

C ¼ ðbþ 1Þ
Xn
i¼1

�ify½i� � �yy½:� � Kðx½i� � �xx½:�Þg
2

¼ ðbþ 1Þ
Xn
i¼1

�iðy½i� � �yy½:�Þ
2
� K

Xn
i¼1

�iðx½i� � �xx½:�Þy½i�

( )
:

ð8:7Þ

Realise that �i > 0 and, hence, m > 0.
The estimators are computed in two iterations, exactly the same way

as before. Note that for b ¼ 1 (logistic distribution), � ¼ 0 for all n.

9. RELATIVE EFFICIENCY

The Fisher information matrix is given in the Appendix. The variances
and covariances of the MML estimators for large n (n>50) may be
obtained from this matrix. The LS estimators corrected for bias are

~��0 ¼ �yy� ~��1 �xx� f’ðbÞ � ’ð1Þg ~��, ~�� ¼
Xn
i¼1

ðxi � �xxÞyi

, Xn
i¼1

ðxi � �xxÞ2,

and ~�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 fyi � �yy� ~��1ðxi � �xxÞg2=ðn� 2Þf’0ðbÞ þ ’0ð1Þg

q
;

ð9:1Þ

�yy ¼ ð1=nÞ
Pn

i¼1 yi and �xx ¼ ð1=nÞ
Pn

i¼1 xi: The expression of the ’-function
’ðuÞ and its derivatives ’0ðuÞ are given in Abramowitz and Stegun
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[40]. Their values are given in Tiku et al. [18] (Appendix) for several values

of b.

To compare the efficiencies of the MML estimators with the LS esti-

mators, we simulated their means and variances for several values of b. The

biases in both the MML and the LS estimators were found to be negligible

and are not, therefore, reported. Given in Table 6 are the simulated values

of the variances of the MML estimators �̂�0, �̂�1 and �̂� and the relative

efficiencies E1, E2 and E3 (defined earlier) of the LS estimators ~��0, ~��1 and
~��, respectively. Without loss of generality, �0, �1 and � were taken to be

equal to 0, 1 and 1, respectively. The design points xi, 1 � i � n, were
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Table 6. Variances of the MML Estimators and the Relative Efficiencies of the LS
Estimators: ð1Þ nVð�̂�0Þ, ð2Þ nVð�̂�1Þ, ð3Þ nVð�̂�Þ

n (1) E1 (2) E2 (3) E3

b¼ 0.5

10 17.04 88 53.86 85 0.970 98
20 23.85 85 56.80 82 0.856 85
30 26.14 81 57.09 79 0.842 80

50 25.29 82 63.67 79 0.844 78
100 20.37 79 57.65 75 0.711 65

b¼ 2.0

10 6.72 95 20.48 93 0.841 100
20 9.26 91 21.56 89 0.729 92
30 9.98 93 22.16 91 0.709 89

50 10.09 90 25.30 89 0.707 87
100 8.48 90 24.85 88 0.678 83

b¼ 4.0

10 6.00 87 16.27 86 0.804 91
20 7.74 82 16.60 81 0.724 81
30 7.86 78 16.16 77 0.662 73

50 8.37 79 19.26 79 0.675 75
100 7.53 78 20.30 79 0.663 70

b¼ 8.0

10 6.65 80 13.55 78 0.799 88
20 7.95 73 13.82 74 0.667 75
30 8.34 70 14.31 74 0.673 67

50 7.76 68 15.07 72 0.634 68
100 7.34 70 14.86 70 0.653 68
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generated from a Uniform ð0, 1Þ as before and were common to all the
N¼ [100,000 / n] random samples ðy1, y2, . . . , ynÞ generated from the general-
ised logistic. It can be seen that the MML estimators are considerably more
efficient. Note again the disconcerting feature of the LS estimators, i.e., their
relative efficiencies decrease as the sample size n increases.

Testing �1¼ 0: As in Section 7, it is easy to show that �̂�1ð�Þ is condition-
ally the MVB estimator (asymptotically) and is normally distributed with
variance

�2=fðbþ 1Þ
Xn
i¼1

�iðx½i� � �xx½:�Þ
2
g: ð9:2Þ

To test H0, therefore, the statistic

T ¼ �̂�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 1Þ

Pn
i¼1 �iðx½i� � �xx½:�Þ

2
� �q �

�̂� ð9:3Þ

can be used. Large values of T lead to the rejection of H0 in favour of
H1 : �1>0. The null distribution of T is referred to Student’s t with n� 2
degrees of freedom for n� 20, and to normal N(0, 1) for n>20. These
distributions give accurate approximations for the probabilities and the
percentage points of T. The simulated values of the Type I errors, for
example, are given in Table 7.

The T-test is considerably more powerful than the analogous G-test
based on the LS estimators, as expected (Sundrum [34]). We omit details for
conciseness.

Robustness: The T test is robust to reasonable deviations in the values of b in
(8.1), and to outlier and mixture models. This is due to the fact that the
coefficients �i which correspond to largest ordered residuals jêeðiÞj in the
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Table 7. Simulated Values of the Type I Error of the T Test, Presumed Value is 0.05

b

n 0.2 0.5 1.0 2.0 4.0 6.0 8.0

10 0.062 0.051 0.052 0.051 0.049 0.055 0.051

20 0.066 0.050 0.051 0.046 0.046 0.046 0.045
30 0.064 0.062 0.053 0.049 0.053 0.051 0.051
50 0.060 0.058 0.060 0.051 0.049 0.045 0.052
100 0.045 0.041 0.055 0.056 0.061 0.056 0.048
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direction of the long tail are small. Thus, the effect of long tails and outliers
is automatically depleted.

Comment: One might argue that the shape parameters p and b in (2.2) and
(8.1), respectively, should also be estimated rather than their plausible
values located through Q-Q plots and goodness-of-fit tests as in the numer-
ical example above. It may be noted, however, that shape parameters are
very difficult to estimate and it takes a very large sample size to reduce their
bias and variance to desirable limits; see also Pearson and Hartley [41]
(p. 87–9). Using a strategically chosen value of a shape parameter leads to
more robust and efficient estimators of the parameters in models like (2.1)
than those based on their estimates obtained, for example, from the like-
lihood equations. This has been amply demonstrated in Tiku et al. [19]
(Section 8). See also Tiku and Vaughan [39].

10. GENERALISATION

The results above readily generalise to multiple linear regression
models

yi ¼ �0 þ �1x1i þ 
 
 
 þ �kxki þ ei, 1 � i � n: ð10:1Þ

Suppose ei are iid and have the Weibull distribution W( p, �). Let ðy½i�,
x1½i�, . . . , xk½i�Þ be the concomitants of eðiÞ, 1 � i � n. The MML estimator
of �0 is

�̂�0 ¼ �yy½:� � �̂�1 �xx1½:� � 
 
 
 � �̂�k �xxk½:� � ð�=mÞ�̂�: ð10:2Þ

Writing Y½i� ¼ y½i� � �yy½:�, X1½i� ¼ x1½i� � �xx1½:�, . . . ,Xk½i� ¼ xk½i� � �xxk½:�, the
MML estimators of �i ð1 � i � kÞ and � are

�̂� ¼ ðX 0�	XÞ
�1 X 0�	Y � �̂�X 0�

� �
ð10:3Þ

and

�̂� ¼ �Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 þ 4nCÞ

q	 
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fnðn� k� 1Þg

p
: ð10:4Þ
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Here,

Y ¼

Y½1�

Y½2�

..

.

Y½n�

2
66664

3
77775, X ¼

X1½1� X2½1� . . . Xk½1�

X1½2� X2½2� . . . Xk½2�

..

. ..
. ..

. ..
.

X1½n� X2½n� 
 
 
 Xk½n�

2
66664

3
77775;

�	 ¼

	1 0 
 
 
 0

0 	2 
 
 
 0

..

. ..
. ..

.
0

0 0 
 
 
 	n

2
66664

3
77775, � ¼

�1 0 
 
 
 0

0 �2 
 
 
 0

..

. ..
. ..

.
0

0 0 
 
 
 �n

2
66664

3
77775;

B ¼
Xn
i¼1

�ifY½i� � K1X1½i� � 
 
 
 � KkXk½i�

ð10:5Þ

and

C ¼
Xn
i¼1

f	iY
2
½i� � K1Q1 � 
 
 
 � KkQkg,

Qj ¼
Xn
i¼1

	iðXj½i� � �XXj½:�Þy½i�;

Ki ¼
Xn
i¼1

	iðxj½i� � �xxj½:�Þy½i�

,Xn
i¼1

	iðxj½i� � �xxj½:�Þ
2, ð1 � j � kÞ:

The coefficients 	i and �i are defined in (3.8). The estimators in (10.2)–(10.4)
have essentially the same efficiency and robustness properties as for the case
k¼ 1. We omit details for conciseness.

11. CONCLUDING REMARKS

It is widely recognised that nonnormal distributions, particularly
asymmetric, occur so frequently in practice. It is also recognised that sam-
ples often contain outliers. In such situations, the maximum likelihood
estimation can be problematic, rather debilitating (Puthenpura and Sinha
[5]). In this paper, we have used the method of modified likelihood for
estimating parameters in a linear model with asymmetric error distributions,
Weibull and generalised logistic for illustration. The resulting estimators,
called MML estimators, are explicit functions of sample observations and
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are, therefore, easy to compute. Being explicit functions, they are also amen-
able to analytic studies. We have shown that the MML estimators are
remarkably efficient and robust. In fact, they are asymptotically the MVB
estimators under general regularity conditions. We have also developed
hypothesis testing procedures and shown them to be robust and powerful.
We believe that the method developed in this paper can be successfully
adopted when the error distributions in linear models are symmetric, both
long and short tailed, e.g.,

f ðeÞ / ð1=�Þf1þ e2=k�2g�p, �1<e<1, ð11:1Þ

with k ¼ 2p� 3, p 	 2, and

f ðeÞ / ð1=�Þ½1þ e2=2ðr� aÞ�2�rf1þ e2=2k�2g�p, �1<e<1,

ð11:2Þ

with k ¼ p� 3=2, p > rþ 3=2, r > a and r is an integer. The family (11.1)
represents long tailed symmetric distributions with kurtosis greater than 3.
The family (11.2) was recently introduced by Tiku and Vaughan [42] and
represents short tailed symmetric distributions with kurtosis less than 3.

APPENDIX

A rigorous proof of the asymptotic equality, under regularity condi-
tions, of the expected values �Eðd lnL�=d�Þ and � Eðd2 lnL�=d�2Þ of a
modified likelihood equation d lnL�=d� ¼ 0 and the expected values
�Eðd lnL=d�Þ and �Eðd2 lnL=d�2Þ of the corresponding likelihood equa-
tion d lnL=d� ¼ 0, is given by Vaughan and Tiku [13] (Appendix A); see
also Bhattacharyya [12]. The proof is based on a result due to Hoeffding
[43], namely, if a function g is such that gð yÞ

    � hð yÞ for some non-negative
convex function h with finite expectation

R1

0 hð yÞ f ð yÞ dy, f ( y) being the
pdf of y, then

lim
n!1

1

n

Xn
i¼1

gðti : nÞ ¼

Z 1

0

gðzÞ f ðzÞ dz; ðA:1Þ

ti:n denotes the expected value of the ith order statistic in a random
sample of size n from f (z). A heuristic proof follows along the following
lines.

Consider for example, equation (8.4). Since g(z) is bounded and the
variance VfzðiÞg tends to zero as n tends to infinity, (8.4) is asymptotically an
equality since the differences gfzðiÞg � ð�i � �izðiÞÞ tend to zero. Thus the
differential coefficients with respect to �0, �1 and � on both sides of (8.4)
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are asymptotically equal. This immediately gives the result that the MML
estimators �̂�0, �̂�1 and �̂� are asymptotically unbiased and their covariance
matrix (asymptotic) is I�1, where I is the Fisher information matrix. For
the generalised logistic, the elements of I are

I11 ¼ nb=ðbþ 2Þ�2, I12 ¼ b
X

xi=ðbþ 2Þ�2,

I13 ¼ nbf’ðbþ 1Þ � ’ð2Þg=ðbþ 2Þ�2

I22 ¼ b
X

x2i =ðbþ 2Þ�2, I23 ¼ bf’ðbþ 1Þ � ’ð2Þg
X

xi=ðbþ 2Þ�2

I33 ¼ nbfðbþ 2Þ=bþ ½’0ðbþ 1Þ þ ’0ð2Þ� þ ½’ðbþ 1Þ � ’ð2Þ�2g=ðbþ 2Þ�2:

ðA:2Þ

The numerical values of ’ and ’0 functions are given in Tiku et al. [18]
(Appendix) for various values of b.
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