
Research Article
Magnetic Field Effect on Heat and Momentum of Fractional
Maxwell Nanofluid within a Channel by Power Law Kernel Using
Finite Difference Method

Maha M. A. Lashin,1 Muhammad Usman,2 Muhammad Imran Asjad ,3 Arfan Ali,3

Fahd Jarad ,4,5,6 and Taseer Muhammad7

1Electrical Engineering Department, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh 11671, Saudi Arabia
2Department of Mathematics, National University of Modern Languages (NUML), Islamabad 44000, Pakistan
3Department of Mathematics, University of Management and Technology Lahore, Lahore, Pakistan
4Department of Mathematics, Cankaya University, Etimesgut, Ankara, Turkey
5Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
6Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
7Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia

Correspondence should be addressed to Fahd Jarad; fahd@cankaya.edu.tr

Received 11 January 2022; Revised 2 March 2022; Accepted 7 March 2022; Published 23 May 2022

Academic Editor: Jawad Ahmad

Copyright © 2022 Maha M. A. Lashin et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

(e mathematical model of physical problems interprets physical phenomena closely.(is research work is focused on numerical
solution of a nonlinear mathematical model of fractional Maxwell nanofluid with the finite difference element method. Addition
of nanoparticles in base fluids such as water, sodium alginate, kerosene oil, and engine oil is observed, and velocity profile and heat
transfer energy profile of solutions are investigated. (e finite difference method involving the discretization of time and distance
parameters is applied for numerical results by using the Caputo time fractional operator.(ese results are plotted against different
physical parameters under the effects of magnetic field. (ese results depicts that a slight decrease occurs for velocity for a high
value of Reynolds number, while a small value of Re provides more dominant effects on velocity and temperature profile. It is
observed that fractional parameters α and β show inverse behavior against u(y, t) and θ(y, t). An increase in volumetric fraction
of nanoparticles in base fluids decreases the temperature profile of fractional Maxwell nanofluids. Using mathematical software of
MAPLE, codes are developed and executed to obtain these results.

1. Introduction

Partial differential equations (PDEs) are the best way to
express physical phenomena mathematically. PDEs are
widely used in many fields of engineering like bioengi-
neering, chemical engineering, and oceanography. Few years
earlier, the main focus of researchers was the integral order
of these PDEs. But, for the last few decades, the fractional
order of PDEs is a hot topic among scientists. (is is because
the fractional modeling of natural phenomena gave a new

direction to solutions of real-world problems, including
diffusion, chaos, chemical reactions, dynamics, and visco-
elasticity [1–3]. Approximately, all the polymeric matters
have a viscoelastic behavior and conventional derivatives do
not interpret such trend. Most of the fractional fluid
problems are solved analytically due to the linearity of the
problems. But, for the nonlinear problem, analytical tech-
niques are complex to use. Fractional modeling of such
physical problems can describe the heredity aspects and
memory effect of problems. Nowadays, this idea of fractional
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modeling has been published in several articles of applied
mathematics, fluid dynamics, and thermal engineering.
(esemodels are formulated by using various differentiation
operators such as Caputo, Caputo-Fabrizio, and Atanga-
na–Baleanu derivatives [4, 5]. An analytical solution has
been obtained via Laplace transformation, and it is con-
cluded that fractional results are better rather than using
classical derivation for temperature and velocity profile
[6, 7]. (ese operators are used to investigate mass con-
centration, heat flow, and momentum along different ge-
ometries. (ese theories have been applied to various fluids
including Cassin fluids, Brickman type fluids, Oldroyd-B
fluids, and Maxwell fluids as well [8, 9]. Recently, the
Maxwell models have gained much attention from re-
searchers as it is the first and one of the simplest rate type
models (RTMs). (e Maxwell model is widely used to
represent the response of polymeric liquids. But, this model
does not express the typical relation between shear strain
and shear stress [10, 11]. (e research work which has al-
ready been done for fractional Maxwell fluid (FMF) mod-
eling (particularly on analytical side) has various bounds for
momentum transfer only [12–17]. An investigation has been
done for FMF flow, by introducing some suitable variables to
make the irregular boundary of the stretching sheet and the
regular one in [18]. It can be seen [19] that Brownianmotion,
mass concentration, and temperature profile as well are
studied for FMF flow near a moving plate by using L1-al-
gorithm i.e., numerically. By applying Laplace and Henkel
transformation jointly, flow of FMF was investigated in [20].
(e recent development in modeling of FMF rather than
that of simple Maxwell fluids may be seen in [21–23]. In
recent days, fractional modeling of Maxwell fluids with
nanomaterials is the hot issue in nanotechnology. Nano-
materials are the nanoparticles of size range from 1nm to
100 nm.(ese nanosized particles are helpful to enhance the
thermal conductivity of base fluids (water, sodium alginate,
kerosene oil, engine oil, etc.). (is idea was given for the first
time by Choi and Eastman in [24], and later on, the size and
shapes of different nanoparticles were investigated in a
square cavity in [25]. Since the addition of nanoparticles in
base fluids increases the surface area of the fluid, it conse-
quently enhances the heat conduction of the system, .i.e.,
control the entropy generation of heat. Analytical study has
been done using Laplace transform for Caputo time de-
rivatives of convective flow. Under the effects of magnetic
field, exact solutions were obtained in [26]. Shamushuddin
and Eid [27] examined heat transfer in water-based nano-
fluids containing ferromagnetic nanoparticles flowing be-
tween parallel stretchable spinning discs with variable
viscosity influences and variable conductivities through the
Chebyshev spectral collocation procedure. Unsteady flow
was investigated under the effect of pressure gradient and
magnetic field by using Laplace transformation as in [28].
Developing a fractional, coupled but linear PDEs model, the
results were plotted against different physical parameters in
[29, 30]. Similarly, it can be seen that solutions of many
PDEs models are obtained analytically. After many as-
sumptions, the models are turned into linear ones for
simplicity of the problems. In [31–33], the analytical

approach is used to find the solutions of mathematical
models. Also, mostly results are driven by analytical tech-
nique by many assumptions to make the model a linear one
for simplicity.

(e research work which has already been discussed has
various research gaps in the field of nanofluids. As numerical
study had not been performed, fractional behavior of
mathematical models was not discussed properly with the
basic tensor form. (erefore, this article deals with nu-
merical solutions of unsteady flow of MHD-based fractional
Maxwell nanofluids. (is will provide the basis for further
in-depth study while investigating the dynamics of FMF
within a bounded channel instead of other geometric
properties. Rather than the analytical technique, the strong
numerical technique of the finite difference method FDM is
applied to obtain solution of the FMF which involves dis-
cretization of spatial and time derivatives. (e velocity
profile and temperature profile have been plotted against
various physical parameters by using MAPLE software. By
developing and executing MAPLE coding against different
physical parameters, results are obtained graphically.

2. Mathematical Modeling

(e boundary layer flow within a channel is considered in this
article, taking water-based nanofluids (Cu and Al2O3) in a
vertical channel. Both the plates are separated by a distance d.
One of the plates is fixed along the x-axis, vertically upward,
i.e., x-axis is parallel to the plates and y-axis is normal to the
plates, with B0 strength of magnetic field. At the start, for
t � 0, plates as well as fluids are supposed to have temperature
θd. For some time t> 0, the temperature is raised to θ0,
causing the free convection flow as illustrated in Figure 1.

Hence, the velocity field is of the form
V(x, y, t) � V[u(y, t), 0, 0]. Considering the unsteady flow
of water-based nanofluid in this vertical channel, the as-
sumptions for the mathematical formulation of PDEs of the
coupled and nonlinear fractional Maxwell nanofluid model
is as follows:

(i) Flow is incompressible, viscoelastic, and nonlinear
(ii) Flow is unsteady
(iii) Pressure gradient is neglected, i.e., zP/zx � 0
(iv) A uniform magnetic field is applied along the

vertical direction (alongy − direction), neglecting
induced magnetic field

(v) Viscous dissipation is absent

We know that the tensor for the Maxwell fluid given in
[34] is

T � − pI + S,

S + λ1
δS
δt

� μA1,

(1)

where S, I, p,T, λ1, andA1 are the extra stress tensor, identity
tensor (matrix tensor), dynamic pressure, Cauchy stress
tensor, time relaxation, and first Rivlin–Ericksen tensor, re-
spectively. And, DS/Dt is given in [35] and defined as
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δS
δt

�
DS
Dt

− LS − SLT
, (2)

where D/Dt is the material time derivative and A1 is the first
Rivlin–Ericksen tensor defined as

A1 � gradV +(gradV)
T

. (3)

Using all of the above-discussed results, the constitutive
relation for Maxwell fluid model is obtained [15].

1 + λα1D
α
t( Sxy � μ

zu

zy
with 0< α< 1, (4)

where Sxy is the nonzero component of extra stress tensor, μ
is the coefficient of viscosity, λ1 is the time relaxation, andDα

t

is Caputo time fractional differentiation operator of order α,
defined in [36].

C
0 D

α
t f(t) �

1
Γ(1 − α)


t

0
(t − η)

− α zf(η)

zη
dη, 0< α< 1, (5)

where Γ(.) is the Gamma function defined in [36].

Γ(z) �  ηz− 1
e

− ηdη, zϵC, Re(z)> 0. (6)

Under the aforementioned assumptions, the mathe-
matical model of this problem is as follows. (e equation of
continuity [37] is

zρ
zt

+ ρ(∇.V) � 0, (7)

where ρ is the density, ∇ is the gradient operator, and V is a
velocity field.

Here, we neglect v component of velocity along
y − direction, in both momentum and energy equations.
Also, taking into account the Boussinesq approximation, the
momentum equation is given as in [38]

ρnf

zu

zt
�

zSxy

zy
+ g ρβθ( nf θ − θ0(  − σnfB

2
0u, (8)

where ρnf is the dynamic viscosity of the nanofluid and
g, (βθ)nf, σnf, andB0 are acceleration due to gravity, coef-
ficient of thermal expansion of nanofluid, and coefficient of
electrical conductivity for nanofluids, and magnetic field
strength, respectively.

Multiplying (1 + λα1Dα
t ) on both sides of (7),

1 + λα1D
α
t( ρnf

zu

zt
� 1 + λα1D

α
t( 

zSxy

zy
+ g ρβθ( nf 1 + λα1D

α
t(  θ − θ0(  − σnfB

2
0 1 + λα1D

α
t( u. (9)

Using (1 + λα1Dα
t )Sxy � μnfzu/zy, the constitutive rela-

tion for Maxwell fluid in [39] is

1 + λα1D
α
t( ρnf

zu

zt
� μnf

z
2
u

zy
2 + 1 + λα1D

α
t( g ρβθ( nf θ − θ0(  − 1 + λα1D

α
t( σnfB

2
0u. (10)
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Figure 1: Geometry of the problem.
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Also, the energy equation in the presence of Joule’s
heating effect in [38] is

ρCp 
nf

zθ
zt

  � −
zq

zy
+ σnfB

2
0u

2
. (11)

Applying (1 + λβ2D
β
t ) on both sides of (10),

1 + λβ2D
β
t  ρCp 

nf

zθ
zt

  � −
z

zy
1 + λβ2D

β
t q + σnfB

2
0 1 + λβ2D

β
t u

2
. (12)

But, by fractional Cattaneo’s Law [40],

1 + λβ2D
β
t q � − knf

zθ
zy

. (13)

Hence, (11) becomes

1 + λβ2D
β
t  ρCp 

nf

zθ
zt

  � knf

zθ2

zy
2 + σnfB

2
0 1 + λβ2D

β
t u

2
.

(14)

It has the following initial and boundary conditions:

u(y, 0) � 0,

u(0, t) � 0,

u(d, t) � 0,

θ(y, 0) � θ0,

θ(0, t) � θ0,

θ(d, t) � θd.

(15)

Employ the following transformation for the channel
flow:

u
∗

�
d

]f

u,

x
∗

�
x

d
,

t
∗

�
]f

d
2 t,

θ∗ �
θ − θ0
θd − θ0

,

λ∗1 �
]f

d
2λ1,

λ∗2 �
]f

d
2λ2,

y
∗

�
y

d
,

M
∗

�
σfB

2
0]f

ρCp 
f
θd − θ0( 

,

Ha
2

� M �
d
2σfB

2
0

μf

,

Pr �
μCp 

f

Kf

,

Gr �
d
3
g βθ( f θd − θ0( 

]2f
,

1
Re

�
μ

ρU0d
.

(16)

Here, Ha � M, Pr, M∗, and Gr given in [41] are the
square of Hartmann number, Prandtl number, Joule’s
heating parameter, and Grashof number, respectively. (e
following governing equations for velocity and temperature
profile are obtained after omitting “∗” notation for the sack
of brevity of mathematical modeling:

1 + λα1D
α
t( 

zu

zt
  � b1

z
2
u

zy
2 + 1 + λα1D

α
t( b2Grθ − b3M 1 + λα1D

α
t( u, (17)

1 + λβ2D
β
t 

zθ
zt

  � b4
1

Pr

z
2θ

zy
2 + b5M

∗ 1 + λβ2D
β
t u

2
. (18)

Here, b1 � a3/a1, b2 � a2/a1, b3 � a6/a1, b4 � a5/
a4, and b5 � a6/a4. But, thermophysical properties for
nanofluids in [42, 43] are known.
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ρnf

ρf

� a1 � (1 − ϕ) + ϕ
ρs

ρf

 ,
ρβθ( nf

ρβθ( f

� a2 � (1 − ϕ) + ϕ
ρβθ( s

ρβθ( f

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

μnf

μf

� a3 �
1

(1 − ϕ)
2.5,

ρCp 
nf

ρCp 
f

� a4 � (1 − ϕ) + ϕ
ρCp 

s

ρCp 
f

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

knf

kf

� a5 �
ks + 2kf  − 2ϕ kf − ks 

ks + 2kf  + ϕ kf − ks 
,

(σ)nf

(σ)f

� a6 � 1 +
3 σs/σf − 1 ϕ

σs/σf − 2  − σs/σf − 1 ϕ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (19)

By using nondimensional parameters, the initial and
boundary conditions are as follows:

u(y, 0) � 0,

u(0, t) � 0,

u(1, t) � 0,

(20)

θ(y, 0) � 0,

θ(0, t) � 0,

θ(1, t) � 1.

(21)

(us, governing equations (17) and (18) for the velocity
and temperature profile of fractional Maxwell nanofluid
with initial and boundary conditions represented in (20)-
(21) express the physical phenomena of the coupled non-
linear model. Also, physical properties of nanoparticles
presented in (17) with some thermophysical properties of
base fluids and nanoparticles given in Table 1 are used for
numerical results.

3. Skin Friction and Nusselt Number

For measuring shear stress and heat transfer effects in an
ordinary integer order system, local skin friction and Nusselt
number are defined in [44] as follows:

Cf �
μ

ρU
2
0

zu

zy
 

y�0
,

Nu �
− kd

θw − θ0

zθ
zy

 
y�0

.

(22)

(e skin friction coefficient and local Nusselt number for
(FMF) can be written by using (3) that is the fractional stress
tensor for Maxwell fluid on the plate with fractional time
Caputo derivative (details can be seen in [45]).

Cf + λα1
z
α
Sf

zt
α �

μ
ρU

2
0

zu

zy
 

y�0
, (23)

Nu + λβ1
z
β
Nu

zt
β � −

kd
θd − θ0

zθ
zy

 
y�0

. (24)

(e nondimensional form of (23)-(24) is given as

Cf + λα1
z
α
Sf

zt
α �

1
Re

2
zu

zy
 

y�0
. (25)

Nu + λβ1
z
β
Nu

zt
β � −

knf

kf

zθ
zy

 
y�0

. (26)

4. Numerical Procedure

(e discretization of the method for fractional-order model,
C
0 Dα

t u, C
0 D1+α

t u when 0< α≤ 1, ut and uyy, is specified as
follows:

C
0 D

α
tj+1

u yi, tj+1  �
λα1t

− α

Γ(2 − α)
u

j+1
i − u

j
i  +

λα1t
− α

Γ(2 − α)


j

l�1
u

j− l+1
i − u

j− l
i dαl , (27)

C
0 D

1+α
tj+1

u yi, tj+1  �
λα1t

− (1+α)

Γ(2 − α)
u

j+1
i − 2u

j
i + u

j− 1
i  +

λα1t
− (1+α)

Γ(2 − α)
× 

j

l�1
u

j− l+1
i − 2u

j− l
i + u

j− l− 1
i dαl , (28)
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z

zt
u yi, tj+1 |t�tj+1

�
1
Δt

u
j+1
i − u

j
i ,

z2

zy2 u yi+1, tj |y�yi+1
�

1
Δy2 u

j+1
i+1 − 2u

j+1
i + u

j+1
i− 1 .

(29)

(e nonlinear term is approximated by means of the fol-
lowing concept:

u
2

yi, tj  � u yi, tj+1 u yi, tj . (30)

In (27)-(28), dαl � − l1− α + (1 + l)1− α when l � 1, 2, 3,

. . . , j. A rectilinear grid is considered for investigating the
numerical solution of the deliberated fluid model through

grid spacing Δt> 0 and Δy> 0 in time and space directions
separately; here, Δy � L/M and Δt � T/N where
Δy,Δt ∈ Z+. (e inner grid points (yi, tj) in the considered
domain Ω � [0, T] × [0, L] are defined as iΔy � yi and
jΔt � tj. Discretization of the discussed problem at each
inner grid point is given as

1/Δt u
j+1
i − u

j

i  +
λα1Δt

− (1+α)

Γ(2 − α)
u

j+1
i − 2u

j

i + u
j− 1
i  +

λα1Δt
− (1+α)

Γ(2 − α)

× 

j

l�1
u

j− l+1
i − 2u

j− l
i + u

j− l− 1
i b

α
l �

b1

Δy2 u
j+1
i+1 − 2u

j+1
i + u

j+1
i− 1  + b2Grθj+1

i

+
b2GrΔt− α

Γ(2 − α)
θj+1

i − θj

i  +
b2GrΔt− α

Γ(2 − α)


j

l�1
θj− l+1

i − θj− l

i b
α
l

−
b3Ha

2Δt− α

Γ(2 − α)
u

j+1
i − u

j
i  +

b3Ha
2Δt− α

Γ(2 − α)


j

l�1
u

j− l+1
i − u

j− l
i b

α
l .

(31)

Also,

1
Δt

θj+1
i − θj

i  +
λβ1Δt

− (1+β)

Γ(2 − β)
θj+1

i − 2θj
i + θj− 1

i 

+
λβ1Δt

− (1+β)

Γ(2 − β)


j

l�1
θj− l+1

i − 2θj− l
i + θj− l− 1

i b
β
l �

b4

PrΔy2 θj+1
i+1 − 2θj+1

i + θj+1
i− 1 

+ b5M
∗
u

j

i u
j+1
i +

λβ1Δt
− β

Γ(2 − β)
u

j+1
i − u

j

i − 

j

l�1
u

j− l+1
i − u

j− l

i b
α
l

⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(32)

for j � 1, 2, 3, . . . , N − 1 and i � 1, 2, 3, . . . , N − 1.
(e simplest form of the above discretization is given as

Table 1: (ermophysical properties of some base fluids and nanoparticles.

Materials ρ(kgm− 3) Cp(Jkg− 1k− 1) k(Wm− 1k− 1) β∗ 10− 5(k− 1) σ(Ωm)− 1

Water 997 4197 0.613 21 0.05
Copper 8933 385 400 1.67 5.96∗ 107
Alumina 3970 765 40 0.85 2.6∗ 106
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−
b1

Δy2u
j+1
i+1 +

1
Δt

−
λα1Δt

− 1− α

Γ(2 − α)
+
2b1

Δy2 +
b3Ha

2Δt− α

Γ(2 − α)
 u

j+1
i −

b1

Δy2u
j+1
i− 1

− b2Gr 1 +
Δt− α

Γ(2 − α)
 θj+1

i �
1
Δt

+
2λα1Δt

− 1− α

Γ(2 − α)
+

b3Ha
2Δt− α

Γ(2 − α)
 u

j

i −
b2GrΔt− α

Γ(2 − α)
θj

i

−
λα1Δt

− 1− α

Γ(2 − α)
u

j− 1
i � Fi,j,

−
b4

PrΔy2θ
j+1
i+1 +

1
Δt

+
λβ1Δt

− 1− β

Γ(2 − β)
+

2b4

PrΔy2
⎛⎝ ⎞⎠θj+1

i −
b4

PrΔy2θ
j+1
i− 1 � 1/Δt −

2λβ1Δt
− 1− β

Γ(2 − β)
⎛⎝ ⎞⎠θj

i

−
λβ1Δt

− 1− β

Γ(2 − β)
θj− 1

i + Gi,j + Ni,j,

(33)

with the following initial and boundary conditions

u
0
i � 0,

u
1
i � u

− 1
i ,

θ0i � 0,

θ1i � θ− 1
i , for i � 0, 1, 2, 3, . . . , M,

u
j
0 � 0,

u
j
M � 0,

θj
0 � 0,

θj

M � 1, for j � 0, 1, 2, 3, . . . , N − 1,

(34)

where

Fi,j � −
λα1Δt

− (1+α)

Γ(2 − α)


j

l�1
u

j− l+1
i − 2u

j− l
i + u

j− l− 1
i b

α
l +

b2GrΔt− α

Γ(2 − α)


j

l�1
θj− l+1

i − θj− l
i b

α
l +

b3Ha
2Δt− α

Γ(2 − α)


j

l�1
u

j− l+1
i − u

j− l
i b

α
l ,

Gi,j � −
λβ1Δt

− (1+β)

Γ(2 − β)


j

l�1
θj− l+1

i − 2θj− l

i + θj− l− 1
i b

β
l ,

Ni,j � b5M
∗
u

j
i u

j+1
i +

λβ1Δt
− β

Γ(2 − β)
u

j+1
i − u

j
i − 

j

l�1
u

j− l+1
i − u

j− l
i b

α
l

⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(35)

5. Numerical Analysis and Discussion

5.1. Test Problem. Consider the following problem:
C
0 D

α
t U(y, t) �

z
2

zy
2U(y, t) −

z

zy
U(y, t) + h(y, t). (36)

Here, the conditions are given as follows and source term
can be selected against the choice of fractional-order derivative:

U(y, 0) � U(0, t) � U(d, t) � 0. (37)

(e exact solution of this problem is U(y, t) � y(y −

t)t2. Various simulations have been performed to check
the accuracy of the proposed scheme. Figures 1(a) and
1(b) are plotted for maximum absolute error (MAE) and
computational order of convergence (COC) given as
follows when N � 10, 20, 40, 80, 160, 320, 640:
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MAE � max
1≤i≤M
1≤j≤N

U yi, tj  − U
j
i



,

COC � log
(MAE(k)/MAE(k + 1))

log(N(k + 1)/N(k))
.

(38)

It is noted that the scheme is convergent against the
selection of each fractional-order derivative and its con-
vergence order increases as α⟶ 1. Figures 2(c) and 2(b)
contain the L∞-norm between consecutive solutions, i.e.,
|Uj+1 − Uj|∞ and |Ui+1 − Ui|∞ when 0≤ i, j≤N, and
M� 500. Again, it is found that the proposed scheme is very
efficient, accurate, and reliable for this problem. It is also
demonstrated that the solution is stable against the selection
of fractional-order parameters and mesh parameters.

6. Results and Discussion

(is section of our research work deals with a detailed
overview of the key numerical findings and physical in-
terpretations of different emerging parameters such as
Pr, M, α, β, M∗, andϕ which are the Prandtl number, mag-
netic field parameter, fractional parameters, Joule’s heating
parameter, and volumetric fraction of nanoparticles, re-
spectively. (e behavior of the velocity profile u(y, t) and
temperature profile θ(y, t) and the effects of aforementioned
physical parameters are deliberated, as well as graphical
illustration is made via MAPLE. Discretization of time and
spatial derivatives is done using finite difference methods.
(e coupled, nonlinear, and fractional model has been
solved numerically by using finite difference method (FDM)
which is a dominant tool to deal with such kind of problems.

Results are obtained by solving (17)-(18) with initial and
boundary conditions illustrated in (20)-(21) and physical
properties of nanoparticle in (17) and Table 1. Various
suitable ranges of physical parameters (0.01≤ λα1 ≤ 0.5),

(0≤Ha � M≤ 5), (1≤Gr≤ 5) , (0.01≤ ϕ ≤ 0.2), and (0.2
≤ ]≤ 1) for dimensionless velocity profile and
(0.01≤ λβ1 ≤ 0.2), (0≤M∗ ≤ 2), (6.2 ≤Pr≤ 35), (0.01
≤ ϕ≤ 0.2), and (0.2≤ ]≤ 1) for heat transport are consid-
ered, and also particular exertion has been given on the
effects of these parameters on the velocity and temperature
profile.

Figure 3 depicts the impact of time relaxation parameter
λα1 on momentum u(y, t) of the fractional Maxwell fluids.
With increase in fractional parameter α, momentum and
thermal boundary layers decrease and even become their
thinnest for α � 1. (erefore, increasing relaxation param-
eters with range (0.01≤ λα1 ≤ 0.5) has inverse impact on the
velocity profile of the system, i.e., decrease occurs in the
velocity profile.

Figure 4 shows the influence of magnetic field Ha � M

(the square of Hartmann Number) parameters on velocity
profile u(y, t). Both are inversely related, i.e., increasing value
of Hartmann number Ha decreases the velocity profile. Since
the increase in magnetic field parameter (Ha) gives hype to a
well-known Lorentz force as this is the resistive force which

works against the flow direction, consequently it shows de-
crease in all the velocity components.

Figure 5 displays the behavior of Grashof number Gr

on velocity profile u(y, t) of fractional Maxwell fluids
(FMFs) under the effects of magnetic field. Since Grashof
number Gr is the ratio of buoyancy force to viscous force
and is alsoknown as buoyancy parameter, motion is
resisted by the viscous force. So it was expected that an
increase in Gr leads to an increase in the velocity profile of
the bounded system, specifically near the wall of the
bounded channel.

In Figure 6, results are drawn for volumetric fraction of
nanoparticles against flow of fractional Maxwell fluids
(FMFs). Addition of nanoparticles in base fluids increases
their thickness (viscosity) which causes the internal resis-
tance between the layers of flowing fluids, consequently
decreasing the velocity u(y, t) of the fluid. (is is clearly
deliberated in Figure 6.

Finally, the velocity profile against α � β � ] (fractional
parameters) is plotted in Figure 7, and results are verified as
expected. (e consequences of fractional order on fluid
motion have an inverse relation. (at is, for increasing
values of fractional parameter α, the velocity profile de-
creases. However, u(y, t) decreases for increasing values of α
and attains its peak at α � 1.

(e heat transfer capability of the coupled and nonlinear
model is illustrated in Figure 8. Here, the results for the
temperature profile against time relaxation parameter λβ2 are
drawn and found as expected. Time relaxation is the key
parameter used for characterization of the viscoelastic fluids,
and it is the time in which a system relaxes under certain
external conditions. (erefore, by the increase in λβ2, there
results a decrease in the collision of particles within the
fluids. (is decreases the temperature profile θ(y, t) of
fractional Maxwell nanofluids.

Figure 9 displays that magnetic field parameter impacts
directly the temperature of the system because the en-
hancement in magnetic field parameter Ha � M∗ gives rise
to a Lorentz force.(is results in increase in the temperature
profile θ(y, t) of the system.

Since Prandtl number Pr is the dimensionless number
and is the ratio of momentum to thermal diffusivity. Since it
is a fluid property, it does not have any dependence on flow
type, as viscous forces exert a uniform effect on heat transfer
for the whole of location of the channel. So, increase in Pr

means heat transfer is favored to occur by momentum, not
conduction. (erefore, increase in Pr decreases the tem-
perature profile θ(y, t) of fractional Maxwell fluids (FMFs)
as expressed in Figure 10.

Figure 11 gives the graphical results for influence of
volume fraction of nanoparticles in base fluids on heat
transfer capability of the system. Addition of nanoparticles
in base fluids has a direct impact on enthalpy of the system.
(is results in entropy control of fluids during flow that is
enhancement of thermal conductivity of fluids. (e figure
shows that increasing volume fraction ϕ enhances the
thermal conductivity of the FMF with decrease in the
temperature profile θ(y, t).
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Finally, Figure 12 depicts the effect of (α � β � ]) on the
temperature profile of the fractional Maxwell fluids. (e frac-
tional-order parameter and temperature profile are inversely
proportional. It was expected and we obtained that increase in
(α � β � ]) decreases the heat transfer capability of the system.

(e variations of skin friction coefficient and local
Nusselt number are deliberated in Tables 2 and 3. It is noted

that the coefficient of skin friction increases with the increase
in the physical parameters Gr, λα1 , and ϕ . (e reverse be-
havior is observed against the variation of Hartmann
number. Nusselt number impact against Pr, M∗, λβ2, and ϕ
seems increasing. On the other hand, dominant impact of
the fractional-order parameters α � β � ] can be seen in
Tables 2 and 3.

N

CO
C

80 160 240 320 400 480 560 640
1.1

1.2

1.3

1.4

1.5

1.6

1.7

α=0.3
α=0.6
α=0.9

(a)

N
80 160 240 320 400 480 560 640

α=0.3
α=0.6
α=0.9

M
A

E

10-6

10-5

10-4

10-3

(b)

α=0.3
α=0.6
α=0.9

j

IU
j+
1 -
U
j I ∞

100 200 300 400 500

10-7

10-6

10-5

(c)

α=0.3
α=0.6
α=0.9

i

IU
i+
1-
U
iI ∞

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

10-6

10-5

10-4

(d)

Figure 2: Code validation of the proposed scheme and varying time mesh sizes against (a) computational order of convergence (COC) and
(b) maximum absolute error (MAE) and varying mesh sizes for (c) time and (d) space against L∞-norm between consecutive solutions.
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Figure 3: Influence of λα1 on u when α � β � 1, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 4: Influence of Ha on u when α � β � 1, λα1 � 0.5, Gr � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 5: Influence of Gr on u when α � β � 1, λα1 � 0.5, Ha � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 6: Influence of ϕ on u when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, andM∗ � 0.5.
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Figure 7: Influence of α � β � ] on u when λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 8: Influence of λβ2 on θ when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 9: Influence of M∗ on θ when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, and ϕ � 0.1.
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Figure 10: Influence of Pr on θ when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, M∗ � 0.5, and ϕ � 0.1.
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Figure 11: Influence of ϕ on θ when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, andM∗ � 0.5.
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Figure 12: Influence of α � β � ] on θ when λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.

Table 2: Skin friction analysis against different physical parameters when λβ2 � 0.1, Pr � 6.8, M∗ � 0.5, andRe � 10.

Gr M λα1 ϕ ] � 0.4 ] � 0.7 ] � 1

0.1 10 0.5 0.1 0.0047 0.0051 0.0058
2 0.0934 0.1016 0.1160
5 0.2316 0.2519 0.2877

0 1.0966 0.6819 0.4058
2 1.0730 0.7047 0.4348
5 1.0600 0.7500 0.4882

0.1 0.4177 0.4119 0.4058
0.3 0.4513 0.4445 0.4348
0.5 0.5166 0.5044 0.4882

0.01 0.3642 0.4105 0.3778
0.15 0.3753 0.4429 0.4049
0.25 0.4063 0.4910 0.4304

Table 3: Nusselt number analysis against different physical parameters when λα1 � 0.5, M � 10, Gr � 5, andRe � 10.

Pr M∗ λβ2 ϕ ] � 0.4 ] � 0.7 ] � 1

3.94 0.5 0.1 0.1 0.9142 0.7511 0.2134
6.2 0.9710 0.8129 0.2105
15 0.9999 0.8817 0.2038
3.94 0.1 0.7087 0.6799 0.6384

2 0.7687 0.7363 0.6894
5 0.8458 0.8070 0.7505
0.5 0.01 0.7543 0.7024 0.6552

0.1 0.7601 0.7617 0.7558
0.2 0.7672 0.8374 1.3188

0.01 0.4582 0.7967 0.9335
0.15 0.4928 0.8582 0.9823
0.25 0.5854 0.9140 0.9957
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7. Conclusion

An unsteady flow and heat transfer for the coupled and
nonlinear model of fractional Maxwell fluids is solved by
using power law kernel. Findings are done under the
effects of magnetic fields within a channel. Codes are
developed and executed to obtain the numerical results by
applying the finite difference method for discretization of
spatial and time derivatives. Some key finding are illus-
trated as follows:

(a) Fractional-order parameters α and β have a direct
impact on velocity profile and inverse impact on
temperature profile.

(b) (e velocity and temperature are enhanced for a
high value of the unsteadiness parameter. Velocity is
slightly decreasing for higher values of Reynolds
number Re, while a smaller value of Reynolds
number has more prominent impact on velocity and
temperature.

(c) Addition of the nanoparticles to base fluids enhances
the thermal conductivity by increasing the surface.
Consequently, volumetric concentration of nano-
particles ϕ in base fluids results in decrease in the
temperature profile of the FMF.

(d) Finally, the chosen numerical technique of the finite
difference method shows stable results and gives new
direction to such investigation.

(e) (is method can be extended for more numerous
types of physical sciences with complex geometries.

(is simplified research problem can be generalized to
express the effects of viscosity (viscous dissipation), variable
thermal conductivity, and multidimensional MHD flow
regime and temperature profile of non-Newtonian nano-
fluids. Many opportunities for further investigation exist in
this direction for detailed study.

Abbreviations

u(m/s): Velocity
θ(K): Temperature
ρnf(kg/m3): Density
μnf(kg/ms): Dynamic viscosity
knf(W/mK): (ermal conductivity of nanofluid
βθ(K− 1): Volumetric thermal expansion coefficient
g(m/s2): Gravitational acceleration
(Cp)nf: Heat capacity of nanoparticles
σnf(S/m): Electrical conductivity of nanoparticles
]nf(m2/s): Kinematic viscosity of nanoparticles
ϕ: Volume fraction of nanoparticles.
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