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1. Introduction

Due to its broad relevance and propensity to incorporate many repercussions of actual concerns,
the idea of fractional calculus (FC) has garnered considerable prominence in previous decades.
Classical calculus has remained a small segment of FC, despite the fact that it can demonstrate
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numerous critical challenges and assist us in forecasting the behaviour of intricate occurrences in
impulsive integro-differential equations [1], neural networking [2], thermal energy [3],
non-Newtonian fluids [4] and heat flux [5]. Despite the fact that innovators offer numerous novel
concepts, several aspects should always be deduced in order to guarantee all categories of
phenomenon, that will be accomplished by conquering the restrictions posed by mathematicians and
scientists. This is highly pertinent when investigating of MHD electro-osmotically flow [6],
epidemics [7–9], stability and instability of special functions [10–13], inequalities [14–16] as well as
other disciplines. When it tends to arrive to the exploration of repercussions that assist in resolving
major difficulties (such as the current global challenges), there is always room for improvements,
innovation, creativeness, and extensions in analysis, and so many investigators have inferred
provoking outcomes with the assistance of FC, and by incorporating efficacious methodologies with
the assistance of underlying FC findings [17–19].

Numerical models investigation and analysis of corresponding features are often a high priority in
mathematical modeling when the relevant techniques are implemented. This is certainly pertinent in
epidemic research, bifurcation, thermodynamics, electrostatistics modeling, fluid flow, plasma
physics, and other fields. Several approaches, including N-solitons [20–23], solitary waves [24–27],
Tan-Cot function method [28], Adomian decomposition method [29], homotopy perturbation
method [30], q-homotopy analysis method [31], variation iteration method [32], collocation-shooting
method [33], G/G

′

expansion method [34], improved tan(φ(τ)/2)-expansion method [35], Lie
symmetry analysis method [36], wavelet method [37] have been employed and refined by researchers
to achieve the analytic, semi-analytic, and numerical solution of nonlinear PDEs. The Adomian
decomposition method [29, 38] is one of them, and it offers an efficient approach for exact-analytical
solutions across a broad and comprehensive domain of specific aspects that simulate real-world
issues. This strategy transforms a basic, incredibly straightforward problem into the complicated
problem under investigation, and when combined with Adomian components, it offers a tremendous
mathematical instrument. Numerous aspects of the Adomian decomposition method have also
received considerable focus recently.

In this analysis, we examine a nonlinear framework that explains powerful interactions between
interior disturbances in the water. The Korteweg de-Vries (KdV) equations are frequently utilized
to illustrate acoustic wave behaviour and its physical relevance. Due to the immense amplitude of
lengthy longitudinal waves and prolonged rotating impacts, we employ a modified KdV equation. We
now evaluate the following models using the isopycnic surface W(x, t), which dipicts the KdV and
modified KdV equations [39], respectively:

∂W(x, t)
∂t

+ a1W(x, t)
∂W(x, t)

∂x
+ a2W

2(x, t)
∂W(x, t)

∂x
+ b1

∂3W(x, t)
∂x3 = 0, (1.1)

where a1 and a2 signifies the quadratic and cubic non-linear coefficients, respectively. Also, the
coefficient of small-scale dispersion is denoted by b1. Here, a1 and a1 presents the proportional factors
associating in the aforsaid equation, and is due to the nonlinear hydrodynamic system, and it appears
classically, see [40, 41].

Furthermore, we compute the exact-analytical solution of nonlinear dispersive equations K(n, n) :

∂W(x, t)
∂t

+
∂

∂x
(
Wn) +

∂3

∂x3

(
Wn) = 0, n > 1. (1.2)
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Equation (1.2) is the evolutionary model for compactons. Compactons are characterized as solitons
with bounded wave lengths or solitons without exponential tails in solitary wave theory (Rosenau and
Hyma, 1993). Compactons are formed by the intricate coupling of nonlinear convection ∂

∂x

(
Wn) and

nonlinear dispersion ∂3

∂x3

(
Wn) in (1.2).

Amidst Gorge Adomian’s massive boost in 1980, the Adomian decomposition method introduced
a well-noted terminology. It has been intensively implemented for a diverse set of nonlinear PDEs, for
instance, the Korteweg-De Vries model [42], Fisher’s model [43], Zakharov–Kuznetsov equation [44]
and so on. The ADM was determined to be significantly related to a variety of integral transforms,
including Laplace, Swai, Mohand, Aboodh, Elzaki, and others. Humanity is continuously striving
to improve performance and minimizing the method’s intricacy through invention, modernity, and
experimentation. In connection with this, Jafari [45] propounded a well-known integral transform
which is known to generalized integral transform. The dominant feature of this transformation is that
it has the ability to recapture several existing transformations, see Remark 1.

Motivated by the above propensity, we aim to establish a semi-analytical approach by mingling the
Jafari transform with the Adomian decomposition method, namely the Jafari decompostion method
(JDM). With the assistance of fractional derivative operators, we constructed the
approximate-analytical solutions for KdV, MKdV, K(2,2) and K(3,3). The suggested methodology
helps us increase flexibility in determining the initial conditions, and its novelty is that it has a
straightforward solution technique. This approach is straightforward and encompasses all of JDM
accomplishments, as well as encouraging several scholars to investigate a broad spectrum of
applications and processes. The tool to overcome computational complexity without any constraints,
perturbations, or transformations from nonlinear to linear, or partial to ordinary differential equations,
is the distinctive characteristic of the proposed approach. Furthermore, it is connected to factors that
are extremely useful in bringing the findings to a favourable conclusion. It also is coupled to
well-posed transformation, which tries to diminish the technique’s intricacy while increasing its
application and dependability.

2. Preliminaries

In this section, we evoke some essential concepts, notions, and definitions concerning fractional
derivative operators depending on power and Mittag-Leffer as a kernel, along with the detailed
consequences of the Jafari transform.

Definition 2.1. ( [17]) The Caputo fractional derivative (CFD) is described as follows:

c
0Dλ

t =


1

Γ(r−λ)

t∫
0

W(r)(x)
(t−x)λ+1−r dx, r − 1 < λ < r,

dr

dtrW(t), λ = r.
(2.1)

Definition 2.2. ( [18]) The Atangana-Baleanu fractional derivative operator in the Caputo form (ABC)
is stated as follows:

ABC
η1

Dλ
t
(
W(t)

)
=
A(λ)
1 − λ

t∫
η1

W′(t)Eλ

[
−
λ(t − x)λ

1 − λ

]
dx, (2.2)
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whereW ∈ H1(a1, a2)(S obolev space), a1 < a2, λ ∈ [0, 1] andA(λ) signifies a normalization function
as A(λ) = A(0) = A(1) = 1.

Definition 2.3. ( [18]) The fractional integral of the ABC-operator is described as follows:

ABC
η1
Iλt

(
W(t)

)
=

1 − λ
A(λ)

W(t) +
λ

Γ(λ)A(λ)

t∫
η1

W(x)(t − x)λ−1dx. (2.3)

Definition 2.4. ( [45]) Consider an integrable mappingW(t) defined on a set P, then

P =
{
W(t) : ∃ M > 0, κ > 0,

∣∣∣W(t)
∣∣∣ < M exp(κt), i f t ≥ 0

}
. (2.4)

Definition 2.5. ( [45]) Suppose the mappings φ(s), ψ(s) : R+ 7→ R+ such that ϕ(s) , 0 ∀s ∈ R+. The
Jafari transform of the mappingW(t) presented by Q(s) is described as

J
{
W(t), s

}
= Q(s) = φ(s1)

∞∫
0

W(t) exp(−ψ(s)t)dt. (2.5)

Theorem 2.6. ( [45]) (Convolution property). For Jafari transform, the subsequent holds true:

J
{
W1 ∗W2

}
=

1
φ(s)

Q1(s) ∗Q2(s). (2.6)

Definition 2.7. The Jafari transform of the CFD operator is stated as follows:

J
{

c
0Dλ

t
(
W(t)

)
, s

}
= ψλ(s)Q(s1) − φ(s)

λ−1∑
κ=0

ψλ−κ−1(s1)W(κ)(0), r − 1 < λ < r, φ, ψ > 0. (2.7)

Remark 1. Definition 2.7 leads to the following conclusions:
1) Taking φ(s) = 1 and ψ(s) = s, then we acquire the Laplace transform [46].
2) Taking φ(s) 1

s
and ψ(s) = 1

s
, then we acquire the α-Laplace transform [47].

3) Taking φ(s) = 1
s

and ψ(s) = 1
s
, then we acquire the Sumudu transform [48].

4) Taking φ(s) = 1
s

and ψ(s) = 1, then we acquire the Aboodh transform [49].
5) Taking φ(s) = s and ψ(s) = s2, then we acquire the Pourreza transform [50, 51].
6) Taking φ(s) = s and ψ(s) = 1

s
, then we acquire the Elzaki transform [52].

7) Taking φ(s) = u2 and ψ(s) = s

u2
, then we acquire the Natural transform [53].

8) Taking φ(s) = s2 and ψ(s) = s, then we acquire the Mohand transform [54].
9) Taking φ(s) = 1

s2
and ψ(s) = 1

s
, then we acquire the Swai transform [55].

10) Taking φ(s) = 1 and ψ(s) = 1
s
, then we get the Kamal transform [56].

11) Taking φ(s) = sα and ψ(s) = 1
s
, then we acquire the G−transform [57, 58].

Definition 2.8. ( [59]) The Jafari transform of the ABC fractional derivative operator is described as:

J
{

ABC
0 Dλ

t
(
W(t)

)
, s

}
(λ) =

A(λ)ψλ(s)
λ + (1 − λ)ψλ(s)

(
Q(s) −

φ(s)
ψ(s)
W(0)

)
. (2.8)
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Remark 2. Definition 2.8 leads to the following conclusions:
1) Taking φ(s) = 1 and ψ(s) = s, then we acquire the Laplace transform of ABC fractional derivative
operator [60, 61].
2) Taking φ(s) = s and ψ(s) = 1

s
, then we acquire the Elzaki transform of ABC fractional derivative

operator [62].
3) Taking φ(s) = ψ(s) = 1

s
, then we get the Sumudu transform of ABC fractional derivative

operator [63].
4) Taking φ(s) = 1 and ψ(s) = s/u2, then we get the Shehu transform of ABC fractional derivative
operator [63].

Definition 2.9. ( [64]) The Mittag-Leffler function for single parameter is described as

Eλ(z) =

∞∑
κ=0

zκ1
Γ(κλ + 1)

, λ, z1 ∈ C, <(λ) ≥ 0. (2.9)

3. Description of the Jafari decomposition method involving singular and nonsingular kernels

Consider the generic fractional form of PDE:

Dλ
tW(x, t) + LW(x, t) + NW(x, t) = F (x, t), t > 0, 0 < λ ≤ 1 (3.1)

with ICs

W(x, 0) = G(x), (3.2)

where Dλ
t =

∂λW(x,t)
∂tλ symbolizes the Caputo and ABC fractional derivative of order λ ∈ (0, 1] while L

and N denotes the linear and nonlinear factors, respectively. Also, F (x, t) represents the source term.
Taking into account the Jafari transform to (3.1), and we acquire

J
[
Dλ

tW(x, t) + LW(x, t) + NW(x, t)
]

= J
[
F (x, t)

]
.

Firstly, applying the differentiation rule of Jafari transform with respect to CFD, then we apply the
ABC fractional derivativ operator as follows:

ψλ(s)U(x, s) = φ(s)
`−1∑
κ=0

ψλ−1−κ(s)W(κ)(0) + J
[
LW(x, t) + NW(x, t)

]
+ J

[
F (x, t)

]
, (3.3)

and

ψλ(s)A(λ)
λ + (1 − λ)ψλ(s)

U(x, s) =
φ(s)
ψ(s)

ψλ(s)A(λ)
λ + (1 − λ)ψλ(s)

W(0) + J
[
LW(x, t) + NW(x, t)

]
+ J

[
F (x, t)

]
.

(3.4)

The inverse Jafari transform of (3.3) and (3.4) yields

W(x, t) = J−1
[
φ(s)

`−1∑
κ=0

ψ(s)λ−κ−1W(κ)(0) +
1

ψλ(s)
J
[
F (x, t)

]]
− J−1

[ 1
ψλ(s)

J
[
LW(x, t) + NW(x, t)

]]
.(3.5)
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and

W(x, t) = J−1
[
φ(s)
ψ(s)
W(0) +

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
F (x, t)

]]
− J−1

[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
LW(x, t) + NW(x, t)

]]
. (3.6)

The generalized decomposition method solution W(x, t) is represented by the following infinite
series

W(x, t) =

∞∑
`=0

W`(x, t). (3.7)

Thus, the nonlinear termN(x, t) can be evaluated by the Adomian decomposition method prescribed
as

NW(x, t) =

∞∑
`=0

Ã`(W0,W1, ...), ` = 0, 1, ... , (3.8)

where

Ã`(W0,W1, ...) =
1
`!

[ d`

dς`
N

( ∞∑
=0

ς W 

)]
ς=0
, ` > 0.

Inserting (3.7) and (3.8) into (3.5) and (3.6), respectively, we have

∞∑
`=0

W`(x, t) = G(x) + G̃(x) − J−1
[ 1
ψλ(s)

J
[
LW(x, t) +

∞∑
`=0

Ã`

]]
(3.9)

and

∞∑
`=0

W`(x, t) = G(x) + G̃(x) − J−1
[
λ + (1 − λ)ψλ(s)
A(λ)ψλ(s)

J
[
LW(x, t) +

∞∑
`=0

Ã`

]]
. (3.10)

Consequently, the recursive technique for (3.9) and (3.10) are established as:

W0(x, t) = G(x) + G̃(x), ` = 0,

W`+1(x, t) = −J−1
[ 1
ψλ(s)

J
[
L
(
W`(x, t)

)
+

∞∑
`=0

Ã`

]]
, ` ≥ 1,

W`+1(x, t) = −J−1
[
λ + (1 − λ)ψλ(s)
A(λ)ψλ(s)

J
[
L
(
W`(x, t)

)
+

∞∑
`=0

Ã`

]]
, ` ≥ 1. (3.11)

4. Physical interpretation of Jafari decomposition method

In what follows, we present the various kinds of partial differential equations with the CFD and
AB-frctional derivative operators, respectively.

AIMS Mathematics Volume 7, Issue 5, 7936–7963.
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4.1. Fractional KdV equation

Example 4.1. Assume that the time-fractional KdV equation

Dλ
tW(x, t) − 6WWx(x, t) +Wxxx(x, t) = 0, (4.1)

with IC:

W0(x, 0) = −2
σ2 exp(σx)

(1 + exp(σx))2 . (4.2)

Proof. Foremost, we provide the solution of (4.1) in two general cases.
Case I. Firstly, we apply the Caputo fractional derivative operator coupled with the Jafari transform
and Adomian decomposition method. Applying the Jafari transform to (4.1).

ψλ(s)U(x, s) − φ(s)
m−1∑
κ=0

ψλ−κ−1(s)W(κ)(0) = J
[
6WWx(x, t) −Wxxx(x, t)

]
.

(4.3)

Taking into consideration the IC given in (4.2), we have

U(x, s) =
φ(s)
ψ(s)
W(x, 0) +

1
ψλ(s)

J
[
6WWx(x, t) −Wxxx(x, t)

]
.

Employing the inverse Jafari transform, we obtain

W(x, t) = J−1
[
φ(s)
ψ(s)
W(x, 0) +

1
ψλ(s)

J
[
6WWx(x, t) −Wxxx(x, t)

]]
. (4.4)

Thanks to the JDM, we find

W0(x, t) = J−1
[φ(s)
ψ(s)
W(x, 0)

]
= −2J−1

[φ(s)
ψ(s)

σ2 exp(σx)
(1 + exp(σx))2

]
= −2

σ2 exp(σx)
(1 + exp(σx))2 .

Here, we surmise that the unknown functionW(x, t) can be written by an infinite series of the form

W(x, t) =

∞∑
`=0

W`(x, t).

Also, the non-linearity F (W) can be decomposed by an infinite series of polynomials represented by

F (W) =WWx =

∞∑
`=0

A`,

whereW`(x, t) will be evaluated recurrently, and A` is the so-called polynomial ofW0,W1, ...,W`

established by [65].

∞∑
`=0

W`+1(x, t) = J−1
[

1
ψλ(s)

J
[
6
∞∑
`=0

(A)` +

∞∑
`=0

(Wxxx)`
]]
, ` = 0, 1, 2, ... .
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The first few Adomian polynomials are presented as follows:

A`(WWx) =


W0W0x, ` = 0,
W0xW1 +W1xW0, ` = 1,
W2W0x +W1W1x +W0W2x, ` = 2,

(4.5)

For ` = 0, 1, 2, 3, ...

W1(x, t) = J−1
[

1
ψλ(s)

J
[
6A0 +W0xxx

]]
= −2

σ5 exp(σx)(exp(σx) − 1)
(1 + exp(σx1))3

tλ

Γ(λ + 1)
,

W2(x, t) = J−1
[

1
ψλ(s)

J
[
6A1 +W1xxx

]]
= −2

σ8 exp(σx)(exp(2σx) − 4 exp(σx) + 1)
(1 + exp(σx1))4

t2λ

Γ(2λ + 1)
,

....

The approximate solution for Example 4.1 is expressed as:

W(x, t) =W0(x, t) +W1(x, t) +W2(x, t) +W3(x, t) + ...,

= −2
σ2 exp(σx)

(1 + exp(σx))2 − 2
σ5 exp(σx)(exp(σx) − 1)

(1 + exp(σx1))3

tλ

Γ(λ + 1)

−2
σ8 exp(σx)(exp(2σx) − 4 exp(σx) + 1)

(1 + exp(σx1))4

t2λ

Γ(2λ + 1)
+ ... . (4.6)

Case II. Here, we surmise ABC fractional derivative operator coupled with the Jafari transform and
Adomian decomposition method. Applying the Jafari transform for Example 4.1.

ψλ(s)A(λ)
λ + (1 − λ)ψλ(s)

U(x, s) − φ(s)
m−1∑
κ=0

ψλ−κ−1(s)W(κ)(0) = J
[
6WWx(x, t) −Wxxx(x, t)

]
.

(4.7)

Taking into consideration the IC given in (4.2), we have

U(x, s) =
φ(s)
ψ(s)
W(x, 0) +

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
6WWx(x, t) −Wxxx(x, t)

]
.

Employing the inverse Jafari transform, we obtain

W(x, t) = J−1
[
φ(s)
ψ(s)
W(x, 0) +

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
6WWx(x, t) −Wxxx(x, t)

]]
. (4.8)

Thanks to the JDM, we find

W0(x, t) = J−1
[φ(s)
ψ(s)
W(x, 0)

]
= −2J−1

[ψ(s1)
φ(s)

σ2 exp(σx)
(1 + exp(σx))2

]
AIMS Mathematics Volume 7, Issue 5, 7936–7963.
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= −2
σ2 exp(σx)

(1 + exp(σx))2 .

Here, we surmise that the unknown functionW(x, t) can be written by an infinite series of the form

W(x, t) =

∞∑
`=0

W`(x, t).

Also, the non-linearity F1(W) can be decomposed by an infinite series of polynomials represented by

F1(W) =WWx =

∞∑
`=0

A`,

whereW`(x, t) will be evaluated recurrently, and A` is the so-called polynomial ofW0,W1, ...,W`

defined in (4.5). Then, we have
For ` = 0, 1, 2, 3, ...

W1(x, t) = J−1
[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
6A0 +W0xxx

]]
= −

2
A(λ)

σ5 exp(σx)(exp(σx) − 1)
(1 + exp(σx1))3

[
λtλ

Γ(λ + 1)
+ (1 − λ)

]
,

W2(x, t) = J−1
[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
6A1 +W1xxx

]]
= −

2
A2(λ)

σ8 exp(σx)(exp(2σx) − 4 exp(σx) + 1)
(1 + exp(σx1))4

[
λ2t2λ

Γ(2λ + 1)
+ 2λ(1 − λ)

tλ

Γ(λ + 1)
+ (1 − λ)2

]
,

....

The approximate solution for Example 4.1 is expressed as:

W(x, t) =W0(x, t) +W1(x, t) +W2(x, t) +W3(x, t) + ...,

= −2
σ2 exp(σx)

(1 + exp(σx))2 − 2
σ5 exp(σx)(exp(σx) − 1)
A(λ)(1 + exp(σx1))3

[
λtλ

Γ(λ + 1)
+ (1 − λ)

]
−2

σ8 exp(σx)(exp(2σx) − 4 exp(σx) + 1)
A2(λ)(1 + exp(σx1))4

[
λ2t2λ

Γ(2λ + 1)
+ 2λ(1 − λ)

tλ

Γ(λ + 1)
+ (1 − λ)2

]
+ ... .(4.9)

For λ = 1, we obtained the exact solution of Example 4.1 as

W(x, t) = −
σ2

2
sec h2σ

2
(x − σ2t).

Figure 1 shows the evolutionary outcomes for the explicit and approximate solutions of Example 4.1
for the particular instance λ = 1. The result generated by the proposed technique is remarkably similar
to the exact solution, as shown in Figure 1.

Then, by considering only the first few elements of the linear equations features are integrated,
we can deduce that we have accomplished a reasonable estimation with the numerical solutions of
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the problem. It is obvious that by adding additional components to the decomposition series (4.6)
and (4.9), the cumulative error can be diminished.

Analogously, we demonstrate the two-dimensional view of the change in fractional values of the
order. We depict the response in Figure 2. It is remarkable that pairwise collisions of particle-like
phenomena (including solitary waves and breathers) are fundamental mechanisms in the production of
condensed soliton gas dynamics. Deep water waves, shallow groundwater waves, internally waves in
a segmented sea, and fibre optics are all manifestations of these waves. �

(a) (b)

Figure 1. Three-dimensional illustration of the exact and approximate solution of
Example 4.1 when λ = 1, and σ = 0.05.

(a) (b)

Figure 2. Three-dimensional illustration of the absolute error plot and 2D-approximations
of Example 4.1 when λ = 1, σ = 0.05 = 0, and t = 0.5.

AIMS Mathematics Volume 7, Issue 5, 7936–7963.
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Remark 3. It is remarkable that equivalent version of the KdV equation is presented as

Dλ
tW(x, t) + 6WWx(x, t) +Wxxx(x, t) = 0,

with IC:

W0(x, 0) = −2
σ2 exp(σx)

(1 + exp(σx))2 .

has the solitary wave solution, when λ = 1, then

W(x, t) =
σ2

2
sec h2σ

2
(x − σ2t).

4.2. Fractional modified KdV equation

Example 4.2. Assume that the time-fractional modified KdV equation

Dλ
tW(x, t) + 6W2Wx(x, t) +Wxxx(x, t) = 0, (4.10)

with IC:

W0(x, 0) = 2
σ exp(σx)

1 + exp(2σx)
. (4.11)

Proof. Foremost, we provide the solution of (4.10) in two general cases.
Case I. Firstly, we apply the Caputo fractional derivative operator coupled with the Jafari transform
and Adomian decomposition method.
Applying the Jafari transform to (4.10).

ψλ(s)U(x, s) − φ(s)
m−1∑
κ=0

ψλ−κ−1(s)W(κ)(0) = −J
[
6W2Wx(x, t) +Wxxx(x, t)

]
.

(4.12)

Taking into consideration the IC given in (4.11), we have

U(x, s) =
φ(s)
ψ(s)
W(x, 0) −

1
ψλ(s)

J
[
6W2Wx(x, t) +Wxxx(x, t)

]
.

Employing the inverse Jafari transform, we obtain

W(x, t) = J−1
[
φ(s)
ψ(s)
W(x, 0) −

1
ψλ(s)

J
[
6W2Wx(x, t) +Wxxx(x, t)

]]
. (4.13)

Thanks to the JDM, we find

W0(x, t) = J−1
[φ(s)
ψ(s)
W(x, 0)

]
= 2J−1

[φ(s)
ψ(s)

σ exp(σx)
1 + exp(2σx)

]
= 2

σ exp(σx)
1 + exp(2σx)

.
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Here, we surmise that the unknown functionW(x, t) can be written by an infinite series of the form

W(x, t) =

∞∑
`=0

W`(x, t).

Also, the non-linearity F (W) can be decomposed by an infinite series of polynomials represented by

F (W) =W2Wx =

∞∑
`=0

B`,

where W`(x, t) will be evaluated recurrently, and B` is the so-called polynomial of W0,W1, ...,W`

established by [65].

∞∑
`=0

W`+1(x, t) = −J−1
[

1
ψλ(s)

J
[
6
∞∑
`=0

(B)` +

∞∑
`=0

(Wxxx)`
]]
, ` = 0, 1, 2, ... .

The first few Adomian polynomials are presented as follows:

B`(W2Wx) =


W2

0W0x, ` = 0,
W0x(2W0W1) +W1xW

2
0, ` = 1,

(2W2W0 +W2
1)W0x + (2W0W1)W1x +W2

0W2x, ` = 2,

(4.14)

For ` = 0, 1, 2, 3, ...

W1(x, t) = −J−1
[

1
ψλ(s)

J
[
6B0 +W0xxx

]]
= −2

σ4 exp(σx)(1 − exp(2σx))
(1 + exp(2σx1))2

tλ

Γ(λ + 1)
,

W2(x, t) = −J−1
[

1
ψλ(s)

J
[
6B1 +W1xxx

]]
= 2

σ7 exp(σx)(1 − 6 exp(2σx) + exp(4σx))
(1 + exp(2σx1))3

t2λ

Γ(2λ + 1)
,

....

The approximate solution for Example 4.2 is expressed as:

W(x, t) =W0(x, t) +W1(x, t) +W2(x, t) +W3(x, t) + ...,

= 2
σ exp(σx)

1 + exp(2σx)
− 2

σ4 exp(σx)(1 − exp(2σx))
(1 + exp(2σx1)2

tλ

Γ(λ + 1)

+2
σ7 exp(σx)(1 − 6 exp(2σx) + exp(4σx))

(1 + exp(2σx1)3

t2λ

Γ(2λ + 1)
+ ... . (4.15)
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Case II. Here, we surmise ABC fractional derivative operator coupled with the Jafari transform and
Adomian decomposition method.
Applying the Jafari transform on (4.10).

ψλ(s)A(λ)
λ + (1 − λ)ψλ(s)

U(x, s) − φ(s)
m−1∑
κ=0

ψλ−κ−1(s)W(κ)(0)

= −J
[
6W2Wx(x, t) +Wxxx(x, t)

]
.

(4.16)

Taking into consideration the IC given in (4.11), we have

U(x, s) =
φ(s)
ψ(s)
W(x, 0) −

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
6W2Wx(x, t) +Wxxx(x, t)

]
.

Employing the inverse Jafari transform, we obtain

W(x, t) = J−1
[
φ(s)
ψ(s)
W(x, 0) −

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
6W2Wx(x, t) +Wxxx(x, t)

]]
. (4.17)

Thanks to the JDM, we find

W0(x, t) = J−1
[φ(s)
ψ(s)
W(x, 0)

]
= 2J−1

[ψ(s1)
φ(s)

σ exp(σx)
1 + exp(2σx)

]
=

σ exp(σx)
1 + exp(2σx)

.

Here, we surmise that the unknown functionW(x, t) can be written by an infinite series of the form

W(x, t) =

∞∑
`=0

W`(x, t).

Also, the non-linearity F (W), can be decomposed by an infinite series of polynomials represented by

F1(W) =W2Wx =

∞∑
`=0

B`,

where W`(x, t) will be evaluated recurrently, and B` is the so-called polynomial of W0,W1, ...,W`

defined in (4.14).
For ` = 0, 1, 2, 3, ...

W1(x, t) = −J−1
[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
6B0 +W0xxx

]]
= −

2
A(λ)

σ4 exp(σx)(1 − exp(2σx))
(1 + exp(2σx1)2

[
λtλ

Γ(λ + 1)
+ (1 − λ)

]
,

W2(x, t) = J−1
[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
6A1 +W1xxx

]]
AIMS Mathematics Volume 7, Issue 5, 7936–7963.
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=
2
A2(λ)

σ7 exp(σx)(1 − 6 exp(2σx) + exp(4σx))
(1 + exp(2σx1))3

×

[
λ2t2λ

Γ(2λ + 1)
+ 2λ(1 − λ)

tλ

Γ(λ + 1)
+ (1 − λ)2

]
,

....

The approximate solution for Example 4.2 is expressed as:

W(x, t) =W0(x, t) +W1(x, t) +W2(x, t) +W3(x, t) + ...,

=
σ exp(σx)

1 + exp(2σx)
− 2

σ4 exp(σx)(1 − exp(2σx))
A(λ)(1 + exp(2σx1))2

[
λtλ

Γ(λ + 1)
+ (1 − λ)

]
+2

σ7 exp(σx)(1 − 6 exp(2σx) + exp(4σx))
A2(λ)(1 + exp(2σx1))3

×

[
λ2t2λ

Γ(2λ + 1)
+ 2λ(1 − λ)

tλ

Γ(λ + 1)
+ (1 − λ)2

]
+ ... . (4.18)

For λ = 1, we obtained the exact solution of Example 4.2 as

W(x, t) = ±σ sec hσ(x − σ2t).

Figure 3 shows the evolutionary outcomes for the explicit and approximate solutions of Example 4.2
for the particular instance λ = 1. The result generated by the proposed technique is remarkably similar
to the exact solution, as shown in Figure 3.

Then, by considering only the first few elements of the nonlinear equations features are integrated,
we can deduce that we have accomplished a reasonable estimation with the numerical solutions of
the problem. It is obvious that by adding additional components to the decomposition series (4.15)
and (4.18), the cumulative error can be diminished.

Analogously, we demonstrate the two-dimensional view of the change in fractional values of the
order. Figure 4 depicts the response for exact CFD and AB fractional derivative operators. It is
remarkable that pairwise collisions of particle-like phenomena (including solitary waves and
breathers) are fundamental mechanisms in the production of condensed soliton gas dynamics. Deep
water waves, shallow groundwater waves, internally waves in a segmented sea, and fibre optics are all
manifestations of these waves. �
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(a) (b)

Figure 3. Three-dimensional illustration of the exact and approximate solution of
Example 4.2 when λ = 1, and σ = 0.5.

(a) (b)

Figure 4. Two-dimensional illustration for change in fractional values of the order of
Example 4.2 when σ = 0.05 and t = 0.5.

4.3. Fractional K(2,2) equation

Example 4.3. Assume that the time-fractional K(2,2) equation

Dλ
tW(x, t) + (W2)x(x, t) + (W2)xxx(x, t) = 0, (4.19)

with IC:

W0(x, 0) =
4
3
σ cos2

( x
4

)
. (4.20)
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Proof. Foremost, we provide the solution of (4.19) in two general cases.
Case I. Firstly, we apply the Caputo fractional derivative operator coupled with the Jafari transform
and Adomian decomposition method.
Applying the Jafari transform on (4.19).

ψλ(s)U(x, s) − φ(s)
m−1∑
κ=0

ψλ−κ−1(s)W(κ)(0) = −J
[
(W2)x(x, t) + (W2)xxx(x, t)

]
.

(4.21)

Taking into consideration the IC given in (4.20), we have

U(x, s) =
φ(s)
ψ(s)
W(x, 0) −

1
ψλ(s)

J
[
(W2)x(x, t) + (W2)xxx(x, t)

]
.

Employing the inverse Jafari transform, we obtain

W(x, t) = J−1
[
φ(s)
ψ(s)
W(x, 0) −

1
ψλ(s)

J
[
(W2)x(x, t) + (W2)xxx(x, t)

]]
. (4.22)

Thanks to the JDM, we find

W0(x, t) = J−1
[φ(s)
ψ(s)

4
3
σ cos2

( x
4

)]
= 2J−1

[φ(s)
ψ(s)

4
3
σ cos2

( x
4

)]
=

4
3
σ cos2

( x
4

)
.

Here, we surmise that the unknown functionW(x, t) can be written by an infinite series of the form

W(x, t) =

∞∑
`=0

W`(x, t).

Also, the non-linearities F1(W) and F2(W) can be decomposed by an infinite series of polynomials
represented by

F1(W) = (W2)x =

∞∑
`=0

D`, F2(W) = (W2)xxx =

∞∑
`=0

E`,

where W`(x, t) will be evaluated recurrently, and D` and E` are the so-called polynomial of
W0,W1, ...,W` established by [65].

∞∑
`=0

W`+1(x, t) = −J−1
[

1
ψλ(s)

J
[ ∞∑
`=0

(D)` +

∞∑
`=0

(E)`
]]
, ` = 0, 1, 2, ... .

The first few Adomian polynomials are presented as follows:

D`((W2)x) =


W2

0x, ` = 0,
(2W0W1)x, ` = 1,
(2W2W0 +W2

1)x, ` = 2,
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E`((W2)xxx) =


W2

0xxx, ` = 0,
(2W0W1)xxx, ` = 1,
(2W2W0 +W2

1)xxx, ` = 2,

(4.23)

For ` = 0, 1, 2, 3, ...

W1(x, t) = −J−1
[

1
ψλ(s)

J
[
D0 + E0

]]
=
σ2

3
sin

( x
2

) tλ

Γ(λ + 1)
,

W2(x, t) = −J−1
[

1
ψλ(s)

J
[
D1 + E1

]]
= −

σ3

6
sin

( x
2

) t2λ

Γ(2λ + 1)
,

W3(x, t) = −J−1
[

1
ψλ(s)

J
[
D2 + E2

]]
= −

σ4

12
sin

( x
2

) t3λ

Γ(3λ + 1)
....

The approximate solution for Example 4.3 is expressed as:

W(x, t) =W0(x, t) +W1(x, t) +W2(x, t) +W3(x, t) + ...,

=
4
3
σ cos2

( x
4

)
+
σ2

3
sin

( x
2

) tλ

Γ(λ + 1)

−
σ3

6
sin

( x
2

) t2λ

Γ(2λ + 1)
−
σ4

12
sin

( x
2

) t3λ

Γ(3λ + 1)
+ ... . (4.24)

Case II. Here, we surmise ABC fractional derivative operator coupled with the Jafari transform and
Adomian decomposition method. Applying the Jafari transform for Example 4.19.

ψλ(s)A(λ)
λ + (1 − λ)ψλ(s)

U(x, s) − φ(s)
m−1∑
κ=0

ψλ−κ−1(s)W(κ)(0)

= −J
[
(W2)x(x, t) + (W2)xxx(x, t)

]
.

(4.25)

Taking into consideration the IC given in (4.20), we have

U(x, s) =
φ(s)
ψ(s)
W(x, 0) −

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
(W2)x(x, t) + (W2)xxx(x, t)

]
.

Employing the inverse Jafari transform, we obtain

W(x, t) = J−1
[
φ(s)
ψ(s)
W(x, 0) −

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
(W2)x(x, t) + (W2)xxx(x, t)

]]
. (4.26)

Thanks to the JDM, we find

W0(x, t) = J−1
[φ(s)
ψ(s)
W(x, 0)

]
= 2J−1

[ψ(s1)
φ(s)

4
3
σ cos2

( x
4

)]
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=
4
3
σ cos2

( x
4

)
.

Here, we surmise that the unknown functionW(x, t) can be written by an infinite series of the form

W(x, t) =

∞∑
`=0

W`(x, t).

Also, the non-linearity F (W),  = 1, 2 can be decomposed by an infinite series of polynomials
represented by

F1(W) = (W2)x =

∞∑
`=0

D`, F2(W) = (W2)xxx =

∞∑
`=0

E`,

where W`(x, t) will be evaluated recurrently, and D` and E` are the so-called polynomial of
W0,W1, ...,W` established defined in (4.23). Then, we have
For ` = 0, 1, 2, 3, ...

W1(x, t) = −J−1
[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
D0 + E0

]]
=

σ2

3A(λ)
sin

( x
2

)[ λtλ

Γ(λ + 1)
+ (1 − λ)

]
,

W2(x, t) = J−1
[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
D1 + E1

]]
= −

σ3

6A2(λ)
sin

( x
2

)[ λ2t2λ

Γ(2λ + 1)
+ 2λ(1 − λ)

tλ

Γ(λ + 1)
+ (1 − λ)2

]
,

....

The approximate solution for Example 4.3 is expressed as:

W(x, t) =W0(x, t) +W1(x, t) +W2(x, t) +W3(x, t) + ...,

=
4
3
σ cos2

( x
4

)
+

σ2

3A(λ)
sin

( x
2

)[ λtλ

Γ(λ + 1)
+ (1 − λ)

]
−

σ3

6A2(λ)
sin

( x
2

)[ λ2t2λ

Γ(2λ + 1)
+ 2λ(1 − λ)

tλ

Γ(λ + 1)
+ (1 − λ)2

]
+ ... . (4.27)

For λ = 1, we obtained the closed form solution of Example 4.3 as

W(x, t) =

 4
3σ cos2

(
x−σt

4

)
, |x − σt| ≤ 2π,

0, otherwise.
.

Figure 5 shows the evolutionary outcomes for the explicit and approximate solutions of Example 4.3
for the particular instance λ = 1. The result generated by the proposed technique is remarkably similar
to the exact solution, as shown in Figure 5.
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Then, by considering only the first few elements of the nonlinear equations features are integrated,
we can deduce that we have accomplished a reasonable estimation with the numerical solutions of
the problem. It is obvious that by adding additional components to the decomposition series (4.24)
and (4.27), the cumulative error can be diminished.

Analogously, we demonstrate the two-dimensional view of the change in fractional values of the
order. Figure 6 depicts the response for exact CFD and AB fractional derivative operators.
For a variation of the K(2,2) equation, constrained traveling-wave solutions are achieved. We acquire
hump-shaped and valley-shaped solitary-wave solutions, as well as some periodic solutions, for the
focusing branch. It is worth noting that optimal focusing provides the aggregate of the frequency and
amplitude of the originating waves in the engaging phase, as illustrated in reference [66]. �

(a) (b)

Figure 5. Three-dimensional illustration of the exact and approximate solution of
Example 4.3 when λ = 1 and σ = 0.05.

(a) (b)

Figure 6. Two-dimensional illustration of the exact and approximate solution for the change
in fractional values of the order of Example 4.3 when λ = 1, σ = 0.05 and t = 0.5.
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4.4. Fractional K(3,3) equation

Example 4.4. Assume that the time-fractional K(3,3) equation

Dλ
tW(x, t) + (W3)x(x, t) + (W3)xxx(x, t) = 0, (4.28)

with IC:

W0(x, 0) =

√
3σ
2

cos
( x
3

)
. (4.29)

Proof. Foremost, we provide the solution of (4.28) in two general cases.
Case I. Firstly, we apply the Caputo fractional derivative operator coupled with the Jafari transform
and Adomian decomposition method.
Applying the Jafari transform on (4.28).

ψλ(s)U(x, s) − φ(s)
m−1∑
κ=0

ψλ−κ−1(s)W(κ)(0) = −J
[
(W3)x(x, t) + (W3)xxx(x, t)

]
.

(4.30)

Taking into consideration the IC given in (4.29), we have

U(x, s) =
φ(s)
ψ(s)
W(x, 0) −

1
ψλ(s)

J
[
(W3)x(x, t) + (W3)xxx(x, t)

]
.

Employing the inverse Jafari transform, we obtain

W(x, t) = J−1
[
φ(s)
ψ(s)
W(x, 0) −

1
ψλ(s)

J
[
(W3)x(x, t) + (W3)xxx(x, t)

]]
. (4.31)

Thanks to the JDM, we find

W0(x, t) = J−1
[φ(s)
ψ(s)

√
3σ
2

cos
( x
3

)]
= 2J−1

[φ(s)
ψ(s)

√
3σ
2

cos
( x
3

)]
=

√
3σ
2

cos
( x
3

)
.

Here, we surmise that the unknown functionW(x, t) can be written by an infinite series of the form

W(x, t) =

∞∑
`=0

W`(x, t).

Also, the non-linearities F1(W) and F2(W) can be decomposed by an infinite series of polynomials
represented by

F1(W) = (W3)x =

∞∑
`=0

G`, F2(W) = (W3)xxx =

∞∑
`=0

H`,
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where W`(x, t) will be evaluated recurrently, and G` and H` are the so-called polynomial of
W0,W1, ...,W` established by [65].

∞∑
`=0

W`+1(x, t) = −J−1
[

1
ψλ(s)

J
[ ∞∑
`=0

(G)` +

∞∑
`=0

(H)`
]]
, ` = 0, 1, 2, ... .

The first few Adomian polynomials are presented as follows:

G`((W3)x) =


W3

0x, ` = 0,
(3W2

0W1)x, ` = 1,
(3W2W

2
0 + 3W2

1W0)x, ` = 2,

E`((W3)xxx) =


W2

0xxx, ` = 0,
(3W2

0W1)xxx, ` = 1,
(3W2W

2
0 + 3W2

1W0)xxx, ` = 2,

(4.32)

For ` = 0, 1, 2, 3, ...

W1(x, t) = −J−1
[

1
ψλ(s)

J
[
G0 +H0

]]
=

√
6σ3

6
sin

( x
3

) tλ

Γ(λ + 1)
,

W2(x, t) = −J−1
[

1
ψλ(s)

J
[
G1 +H1

]]
= −

√
6σ5

18
sin

( x
3

) t2λ

Γ(2λ + 1)
,

W3(x, t) = −J−1
[

1
ψλ(s)

J
[
G2 +H2

]]
= −

√
6σ7

54
sin

( x
3

) t3λ

Γ(3λ + 1)
....

The approximate solution for Example 4.4 is expressed as:

W(x, t) =W0(x, t) +W1(x, t) +W2(x, t) +W3(x, t) + ...,

=

√
3σ
2

cos
( x
3

)
+

√
6σ3

6
sin

( x
3

) tλ

Γ(λ + 1)

−

√
6σ5

18
sin

( x
3

) t2λ

Γ(2λ + 1)
−

√
6σ7

54
sin

( x
3

) t3λ

Γ(3λ + 1)
+ ... . (4.33)

Case II. Here, we surmise ABC fractional derivative operator coupled with the Jafari transform and
Adomian decomposition method. Applying the Jafari transform for Example 4.28.

ψλ(s)A(λ)
λ + (1 − λ)ψλ(s)

U(x, s) − φ(s)
m−1∑
κ=0

ψλ−κ−1(s)W(κ)(0)

= −J
[
(W3)x(x, t) + (W3)xxx(x, t)

]
.

(4.34)
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Taking into consideration the IC given in (4.29), we have

U(x, s) =
φ(s)
ψ(s)
W(x, 0) −

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
(W3)x(x, t) + (W3)xxx(x, t)

]
.

Employing the inverse Jafari transform, we obtain

W(x, t) = J−1
[
φ(s)
ψ(s)
W(x, 0) −

λ + (1 − λ)ψλ(s)
ψλ(s)A(λ)

J
[
(W3)x(x, t) + (W3)xxx(x, t)

]]
. (4.35)

Thanks to the JDM, we find

W0(x, t) = J−1
[φ(s)
ψ(s)
W(x, 0)

]
= 2J−1

[ψ(s1)
φ(s)

√
3σ
2

cos
( x
3

)]
=

√
3σ
2

cos
( x
3

)
.

Here, we surmise that the unknown functionW(x, t) can be written by an infinite series of the form

W(x, t) =

∞∑
`=0

W`(x, t).

Also, the non-linearity F (W),  = 1, 2 can be decomposed by an infinite series of polynomials
represented by

F1(W) = (W3)x =

∞∑
`=0

G`, F2(W) = (W3)xxx =

∞∑
`=0

H`,

where W`(x, t) will be evaluated recurrently, and D` and E` are the so-called polynomial of
W0,W1, ...,W` established defined in (4.32). Then, we have

For ` = 0, 1, 2, 3, ...

W1(x, t) = −J−1
[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
G0 +H0

]]
=

√
6σ3

6A(λ)
sin

( x
3

)[ λtλ

Γ(λ + 1)
+ (1 − λ)

]
,

W2(x, t) = J−1
[
λ + (1 − λ)ψλ(s)

ψλ(s)A(λ)
J
[
G1 +H1

]]
= −

√
6σ5

18A2(λ)
sin

( x
3

)[ λ2t2λ

Γ(2λ + 1)
+ 2λ(1 − λ)

tλ

Γ(λ + 1)
+ (1 − λ)2

]
,

....

The approximate solution for Example 4.4 is expressed as:

W(x, t) =W0(x, t) +W1(x, t) +W2(x, t) +W3(x, t) + ...,
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=

√
3σ
2

cos
( x
3

)
+

√
6σ3

6A(λ)
sin

( x
3

)[ λtλ

Γ(λ + 1)
+ (1 − λ)

]
−

√
6σ5

18A2(λ)
sin

( x
3

)[ λ2t2λ

Γ(2λ + 1)
+ 2λ(1 − λ)

tλ

Γ(λ + 1)
+ (1 − λ)2

]
+ ... . (4.36)

For λ = 1, we obtained the closed form solution of Example 4.4 as

W(x, t) =


√

6σ
2 σ cos

(
x−σt

3

)
, |x − σt| ≤ 3π

2 ,

0, otherwise.
.

Figure 7 shows the evolutionary outcomes for the explicit and approximate solutions of Example 4.4
for the particular instance λ = 1. The result generated by the proposed technique is remarkably similar
to the exact solution, as shown in Figure 7.

Then, by considering only the first few elements of the nonlinear equations features are integrated,
we can deduce that we have accomplished a reasonable estimation with the numerical solutions of
the problem. It is obvious that by adding additional components to the decomposition series (4.33)
and (4.36), the cumulative error can be diminished.

Analogously, we demonstrate the two-dimensional view of the change in fractional values of the
order. Figure 8 depicts the response for exact CFD and AB fractional derivative operators.

For a variation of the K(3,3) equation, constrained traveling-wave solutions are achieved. We
acquire hump-shaped and valley-shaped solitary-wave solutions, as well as some periodic solutions,
for the focusing branch. It is worth noting that optimal focusing provides the aggregate of the
frequency and amplitude of the originating waves in the engaging phase, as illustrated in
reference [66]. �

(a) (b)

Figure 7. Three-dimensional illustration of the exact and approximate solution of
Example 4.4 when λ = 1 and σ = 0.05.
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(a) (b)

Figure 8. Two-dimensional illustration of the exact and approximate solution of change in
fractional values of the order of Example 4.4 when λ = 1, σ = 0.5 and t = 0.5.

5. Conclusions

In this paper, we conducted a novel algorithm based on the Jafari transform and Adomin
decomposition method, known as the Jafari decomposition method. In the time-fractional technique,
we investigated several models such as KdV, mKdV, K (2,2), and K (3,3). To comprehend their
physical interpretation, we researched and examined several novel families of solutions and their
simulation studies, presented in two-dimensional and three-dimensional plots. The new discoveries
concerned the hyperbolic function, trigonometric function, exponential function, and constant
function. These new solutions and results might be appreciated in the laser, plasma sciences and wave
pattern. To summarise, the suggested method stated above was determined to solve this collection of
challenges by utilizing successive fast converging approximations without any limiting requirements
or manipulations that changed the physical attributes of the concerns. Also, increasing the recursive
procedure leads to the closed form solution of the governing equation.
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