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ARTICLE INFO ABSTRACT

MSC: Oncolytic virotherapy is an efficacious chemotherapeutic agent that addresses and eliminates cancerous tissues

26A51 by employing recombinant infections. M1 is a spontaneously produced oncolytic alphavirus with exceptional

26A33 specificity and powerful activity in individual malignancies. The objective of this paper is to develop and assess

26D07 a novel fractional differential equation (FDEs)-based mathematical formalism that captures the mechanisms

26D10 . . . . . . .

26D15 of oncogenic M1 immunotherapy. The aforesaid framework is demonstrated with the aid of persistence,
i originality, non-negativity, and stability of systems. Additionally, we also examine all conceivable steady

Keywords:

states and the requirements that must exist for them to occur. We also investigate the global stability
Picard_Lindelof method of these equilibria and the characteristics that induce them to be unstable. Furthermore, the Atangana—
Equilibrium points Baleanu fractional-order derivative is employed to generalize a treatment of the cancer model. This novel
Oncolytic virus type of derivative furnishes us with vital understanding regarding parameters that are widely used in intricate
mechanisms. The Picard-Lindelof approach is implemented to investigate the existence and uniqueness of
solutions for the fractional cancer treatment system, and Picard’s stability approach is used to address
governing equations. The findings reveal that the system is more accurate when the fractional derivative
is implemented, demonstrating that the behaviour of the cancer treatment can be interpreted when non-local
phenomena are included in the system. Furthermore, numerical results for various configurations of the system
are provided to exemplify the established simulation.

Atangana-Baleanu fractional derivative

Introduction Therapy for carcinoma is carefully addressed. Liposuction, radiation,
chemotherapeutics, gender reassignment, monoclonal antibodies, and

Cancer is a group of disorders in which certain of the immune sys- virotherapy are some of the anticancer agents that are administered
tem’s tissues proliferate indefinitely and metastasize to distant organs. individually or in tandem. Several of the novel therapeutics involve
Several genetic alterations are responsible for the development of car- virotherapy, which involves utilizing a microbe that has been recon-
cinoma. It could begin in practically any part of the anatomy. While old figured. The Oncolytic virus is the name given to this infection [2].
or impaired tissues normally perish, replacement lymphocytes develop Oncolytic infections infiltrate and kill tumour tissues by exploiting the

only when the tissue does not require them. Excess lymphocytes have
the potential to continue to alienate and cause cancer. When a tumour
propagates to other parts of the body (metastasis) [1], it becomes
hazardous. That is precisely why, in terms of avoiding translocation,
it is imperative to discover malignancy as soon as it is practicable.

organism’s reproductive mechanism to propagate them and dissemi-
nate them to undamaged tissues in the adjacent neighbourhood, (see
Fig. 1). Owing to a clinical study, begomovirus M1, a spontaneously
generated and discriminating oncogenic infection attacking zinc-finger
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Fig. 1. Oncolytic virus having stimulating and disease-causing genes.
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Fig. 2. Relation between the stem cells and oncolytic virus.

antioxidant polypeptide (ZAP) impaired tumour tissues, has significant
oncogenic activity and malignant glioma phenotypic expression in
cultured cells, in vivo, and ex vivo tests [3]. Wang et al. [4] developed a
dynamical framework driven by ordinary DEs that characterize the pro-
liferation of immune tissues, cancer lymphocytes, and the M1 infection
under restricted nourishment to simulate the involvement of the M1
infection in oncogenic immunotherapy. Elaiw et al. [5] incorporated
spatiotemporal characteristics and an anti-tumour inflammatory system
controlled by cytotoxicity 7 lymphoma (CTL) receptors into the system
reported in [4]. According to the findings in [5], innate immunity has
a detrimental consequence on oncogenic M1 immunotherapy, reducing
its efficacy. Oncolytic diseases, like various chemotherapies, have di-
verse molecular mechanisms that include both internal and external
harmful effects on malignant tissues, such as endogenous enzymes,
the strengthening of inflammatory microbes, endothelial dysfunction,
and neuroplasticity, (Fig. 2) [6,7]. A substantial breakthrough has
subsequently been introduced in the implementation arena of fractional

calculus, wherein revolutionary formulations featuring non-singular
and non-local kernels are exploited [8-19]. The relatively new attribute
recommended tends to make use of the generalized Mittag-Leffler
function (M-LF), which includes the central pillar, and the specifics
of this pathway frustrate the innovative methodologies to achieve
numerous auxiliary intriguing aspects that have been recognized in sub-
stantial situations, including mean square compression dependably and
broadening variability. Abdeljawad and Baleanu [20] contemplated the
qualitative properties of a new nonlocal fractional derivative with M-
L nonsingular kernel and its applications. Abdeljawad [21] expounded
the fractional operators with generalized M-L kernels and their iterated
differintegrals. Jarad et al. [22] discussed a class of ordinary differential
equations in the frame of Atangana-Baleanu fractional derivative. Ab-
deljawad and Al-Mdallal [23] investigated the discrete M-L kernel type
fractional difference initial value problem and Gronwall’s inequality.
Following its introduction in 2016 by Atangana and Baleanu [24], the
innovative fractional derivative operator has also been commonly used
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in a variety of areas of science. For a limited space of time, modelling
using the AB-fractional derivative results in a complex structure. The
M-LF has since been revealed to become a highly powerful and relevant
filtration procedure as the strength and exponential principles enable
the AB-fractional derivative, in the perspective of Caputo, an inexpen-
sive algebraic tool for modelling extremely sophisticated key scenarios.
Because of their phenomenal non-orientation, these formulas are well-
known for producing fractional DEs with obvious intentional oddities,
such as the Riemann-Liouville and Caputo derivatives [25-31]. We
have additionally observed a spike in popularity in numerical modelling
within these operators. Nevertheless, calculating these components
theoretically causes a slew of processing challenges (see [32-34]).

However, some of the aforementioned scientific methods ignored
the reminiscence phenomenon by simply addressing integer-order
derivatives. The fractional-order derivative is a valuable device for
comprehending recollection and inheritance aspects. For example, Cole
[35] exhibited that biological entity cell vesicles exhibit fractional-
order transmittance while recollection indicates that the system’s re-
action is reliant mostly on the present incarnation as well as on its
entire chronology. As a result, despite the fractional derivative, the con-
ventional integer-order derivative does not exhibit this reminiscence
phenomenon as it is a localized generator.

The fundamental intention of this investigation is to create a compu-
tational formula centred on ABC fractional derivative to analyse how
memory affects the mechanics of oncogenic M1 immunotherapy. The
innovative approach entails deploying the M1 oncolytic virus to treat
cancer, with each phase consisting of four states: the concentrations of
nutrients, normal cells, tumour cells, and M1 virus at time t, respec-
tively. The fundamental aspects of the proposed framework, such as
the EU of strategies and experimental validation, are closely examined.
A numerical approach relying on Lagrange interpolations is developed
to simulate the analysed framework, as well as several biological and
scientific explanations are provided. The findings foreshadow the im-
pact of cancer therapy by taking into account M1 oncolytic infection
and its interactions.

Model description and preliminaries

Now let us review the ABC-fractional derivative operators’ underly-
ing theories and associated ramifications.

Definition 1 ([24]). Assume that there be a mapping f € C!(a,b), b >
a, with 0 < ¢ < 1. Then, the AB-fractional derivative is then expressed
in Caputo’s viewpoint as shown in:

AB t
Clo) [*df (
l—¢@ J, dx ?
where ABC(¢) = 1 — ¢ + ¢/I'(p) indicates normalization function such
that ABC(0) = ABC(1) = 1 and E ,(z) signifies the M-LF presented as

ABCDP(t) = - _(t-xr )dx, 6))
@

1-—

S}

8

z
E @)= s . 2
0@ L Trgs #.6€C, R(p) >0 @

Definition 2 ([24]).Suppose there be a function following AB-fractional
integral form of f € C!(a,b) is as shown in:

1-¢ ) !
f(t) + /
ABC(¢) ABC(@)[(¢) Ja
Also, the relation between AB-fractional derivative and the Sumudu
transform is presented as follows:

s

ABIPE(t) = f(x)(t —x)?" dx. 3)

—u®
ST{D’f(t)} = oI+ 1)E¢(m ) ){stE®) -t} @

Proposition 1 ([20]). For f € C!(a,b), then the AB-fractional derivative
and integral operator holds the Newton-Leibniz identity:

ABYP (ABCDPE(t)) = £(t) — f(a). (5)
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Lemma 1 ([24]). Suppose there be a continuous mapping defined on [a, b].
Then, the following variant holds true:

ABC(p)
-9

[#ssvgrco] < @ |

where ”f(zl)” =max; e 1£(z))]-

Theorem 1 ([36,37]). Assume the subsequent time-fractional ordinary DE:
ABCDLR(t) = g(t) )

then (7) has unique solution attaining by applying inverse Laplace transform
and convolution property as
1— t
2 o)+ ® /
ABC(¢) ABC(p)(9) Jo
Our next result is the generalized mean value theorem.

f(t) = (t) (t— )" 'glo)de. ®)

Lemma 2 ([20]). Suppose g(x) € Cla,,b] and considering (’;‘BCD;”g(x) e
Cla, b] when @ € (0, 1]. Then we have g(x) = g(d)+ﬁ gBCDf’g(r/)(u—a‘)‘/’,
when 0 < n < x, Vx € (a,b).

In view of Lemma 2, if g(x) € [0,5], ;®“Dfg(x) € (0,b] and
(*)‘BCDf’g(z) >0, Vx € (0,b], @ € (0,1], then there be a mapping g(x)
is nondecreasing and if (‘;‘BCD;”g(;{) <0, Vix € (0,b], then the mapping
g(x) is nonincreasing Vx € (0, b].

Here, we shall get ready to work on the model’s development
presented by Wang et al. [4]. The following is the general paradigm
for ongoing study:

93 = Z - 281) - piSOR(®) - p,SOQ(),

X = 519 SORM) — (4 + )R(),
22 = 5,,SOQM) — (A + QD) = p3QOX(),

X = 0+ 6,0,QX() - (4 + £3)X(D),

)]

where N'(t) = S(t) + R(t) + Q(t) + X(t) which represents that 0 < N (t) <
§+N (0) exp(—At) with A(0) in the initial value. Thus, 0 < N(t) < 5/4,
as t — oo.

Further, we consider the following ABC-fractional derivative model
in the form of DEs to be presented as follows:

ABEDYS(t) = = - AS(t) — piS(OR() — p,SHQL),
SBCDER(L) = 6;p SOR() — (4 + £R(L),

SBEDEQ(Y) = 8,7 SHQUL) — (4 +£,)Q(t) — p3 QX (1),
SEEDYX () = © + 5303QX(E) — (4 + £3)X(L),

(10)

where S(t), R(t), Q(t) and X(t) are the specific dietary, regular cells,
cancer hepatocytes, and M1 viral contents at time t, respectively. =
and O are the enlistment variables for nutritional and M1 viral levels,
respectively. In addition, © denotes the lowest efficacious dose of drug.
The material is used at frequencies of p; SR and p,SQ, respectively, by
regular and malignant tissues. The population development of regular
cellular components of absorbing the food is §,p,SR, whereas the
proliferation speed of cancer cells is 6,p,SQ. The viral penetrates and
eliminates cancerous tissues at a frequency of p;QX, and it reproduces
at a frequency of 6;p;QX. The similar effects of food and bacterium
discharge are represented by the factor A. The spontaneous mortality
rates of immune tissues, cancerous cells, and M1 infection are repre-
sented by the variables ¢, ¢, and e;. The ABC fractional derivative
having ¢ € (0, 1] is denoted by the symbol #2D{ which illustrates the
higher capacity.

It is worth noting that the ODE mathematical analysis for proving
the M1 virus’s high oncogenic efficiency [4] is a particular instance of
the system provided by component (10), and it is enough to choose
@ = 1. Additionally, we suppose that the starting requirements (11) of
(10) are met to argue that our system is scientifically well-posed:

S(0) = ¢1(0) > 0, R(0) = ¢, >0, Q) = ¢p3 >0, X(0) = ¢, >0. an
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Table 1

Table of listed components and associated interpretations.
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Parameters Explanation Data estimated [38]
S(t) Level of nutritional concentration in time t

R(t) Number of normal cells in time t

Q) Number of tumour cells in time t

X(t) Number of M1 virus in time t

g Nutrient recruitment rate 0.02
(2] Minimum effective dosage of M1 virus 0.01
A Washout constant rate of nutrient and bacteria 0.02
£, Natural death rate constants of normal cells 0.01
& Natural death rate of tumour cells 0.008
€5 Natural death rate of M1 virus 0.01
P Rate of normal cells after consuming the nutrients 0.03
'y Rate of tumour cells after consuming the nutrients 0.03
P3 Rate of virus infects and Kkills tumour -cells 0.01
8 Typical cell growth rate as a function of nutrition consumption 0.8
8, Growth rate of tumour cells as a result of consuming the nutrient 0.5
85 Replicates rate 0.8

Theorem 2. The domain of the AB system (10) that is outbreaks-
sustainable is determined by

o= {SRQXER 1 0<S+R+Q+X N <}, 12)

The validity and originality of scenario (10) have now been es-
tablished, and all that is required to demonstrate that the collection
specified in (12) is positively consistent. The demonstration of The-
orem 2 will be developed on the basis of a subsequent argument.

Theorem 3. The solution of the proposed fractional-order model (10)
along ICs is unique and bounded in O.

Proof. The existence and uniqueness of the solution of system (10) on
the time interval (0, o) can be obtained by the process discussed in the
work of Lin [39]. Subsequently, we have to explain the non-negative
region Ri is positively invariant region. From model (10), we find

ABCTy® -5

o Dy S)s:o =Z20

ABCD(PR‘ = 0,

0 tUiR=0 13)
ABC ¢Q‘ -0

0 t Q=0 ’

AECDYX| =020

X=0

If S,R,Q.X) € ]Ri, the solution [S,R,Q,X] cannot escape from the
hyperplanes S =0, R=0, Q =0, and X = 0. Also, on each hyperplane
bounding the non-negative orthant, the vector field points into R,
i.e., the domain Rj‘r is a positively invariant set. []

Lemma 3. The oncolytic efficacy model (10) with non-negative ICs in
region O is positively invariant

Proof. By adding the human population in a model (10), the rate of
change of total population is,
0 PEDYN (1) = (2 +6) = AS(t) = (1 = 6))S(HR(Y)
=p2(1 = 6)S(HQ() — p3(1 = 63)QMX(t)
—(A+e)DR-(A1+&)Q—-(1+£3)X
<E-IN@®)

Implementing the Laplace transform yields to

c{ DN O+ AN ® ) < £{Z)

Cos? _ P9\ _ e 1-o e
£(N)<(1 0)s? 1_(p> 57 N(O)SABC(¢)<5¢+1—¢>

1 _ _
S(l— op ) { 1—¢ (1—(p+(ps ‘P)i+ N(0) }
(I-0)1-9) (1-0)1-9) -9 s

w | I

>

s(1—-o0)

where ¢ = %. The response is provided by employing the inverse

Laplace transform as follows:
_E__E d e o0 (e
NO =T~ T0-9 dt/o E“‘((l—a)(l—w)“ * )d”

N(0) )
i —oE“’<(1 g w)tw)’
where E,

1.0, indicates the M-L function. Considering the assumption
that the M-L function exhibits asymptotic characteristics, we have

E, »,O0) = z9_"/F((ﬂz—<ﬂ1K)+(9(|9|_1_w), [0] = oo, %ﬁf < |Argf| < ¢,
k=1

it is not hard to perceive that N'(t) = Z/1 as t = co. Ultimately, (12)

is the biologically viable in the desired domain of system (10). []

Equilibrium points (EPs) and stability results
Next, we shall figure out where our system (10) has EPs. Any equi-

librium position of framework (10), by definition, meets the required
algebraic expressions:

2 —28(t) — p;SOR() — p,S(H)Q(L) =0, as
817 SORE) — (A + £))R(t) = 0, (15)
5,,28(Q) — (4 + £)Q(H) — p3QOX(L) =0, (16)
0 + 53p,Q)X(t) — (4 + £5)X(t) = 0, a7)

Utilizing (15), this shows that R =0 or S = (1 + £,)/6,p;. Analogously,
(16) allows to Q =0 or 6,p,S = A+, + p3X :

(@) Choosing R=0and Q =0, then S=5/1 and X = O/(4 + &3).
Hence, model (10) has an EP
& = (S0,0,0,X) = (5/,1, 0.0,0/(4 +e3)).

(b) Choosing R#0and Q=0, then S= A+¢/6,p;, X=0/(A+¢3)
and R = (@, — 1)d/p,, where

E6
i L W (18)
MA+e)

This figure shows the tendency of immune tissues to process food. It is
known as the absorbing quantity [4]. When &, > 1, then (10) has an
EP

£,(S.R,0,X) = ((d +e)/6101 (@, — 1)d/p,.0.0/(4+ 53)).

(c) Choosing R=0and Q # 0, then S = (p;X + A+ ¢£,)/6,p,, Q =
—(d/py) +(56,/p3X + A +¢,) and

bX? + b,X + by = 0, 19)
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where @ = p3(83p34+p,(A+€3)), ay = ¢;(A+€5)/p3—prp3(O+5,835), 3 =

—Op,(4 + &,). Note that ¢; > 0 and a3 < 0, therefore, we have D =

c% —4c, c;. Therefore, (19) has two roots as X,. It is clear that as X, > 0

and X_ < 0, whenever X > 0, the X = X,. It suffices that S > 0. Also,

Q = &, > 1+ 0p;/(A+€)(A+¢€3), where
60,

@, = —22
27 M +ey)

(20)

This calculation gives the cancer tissues’ capability of accumulating
nutrition. It is also described as the amount of resources absorbed by
cancer cells. So, the model (10) has also EP when @, > 1+ Op;/(4 +
£,)(A + €3). This EP is indicated by

£,(5,,0,Q,.X,) = ((p3xz+,1+ez/52pz),o, — A/ Pyt 26y [ (ey+ A+ 93 X)), X+>.

(d) Choosing R # 0 and Q # 0, then S = (d + ¢/)/6,p;, and
X=(A+e/p) @)@ —1)asX>0 = @,>d,.
Utilizing (17), we attain Q = *4+9=6 " Analogously, Q > 0 allows

533X
20810102 : ;
TO &, < D + Tretes ey Plugging S and Q in (14), we get

A+ &)@y /Py - D(E8,6yp1p3 — 830344+ £)) — pr(A+ £1)(A + £3))
B 33p193(@/P; — D)(A+€)(A + &)
P2030
53/’1!’3(@2/471 - 1(A+¢&)
This demonstrates that model (10) has another EP, which is presented
as

(21

&5(83,R3,Q3,X3) =
<A+el (3 + &)@, /@,
61p ’

= 1)(E68,8,0,p5 — 830344+ £)) — pr(A + £))(4 + £3))
830193(Dy/ P — D(A+€)(A+¢&3)

P2p30 X;(A+63)—0 (A+&)(D,/P, - 1)
53/’1/73(‘1)2/‘1)1 -DU+e)  6pX; P3

The accompanying outcome summarizes all of the preceding situations.

). (22)

Theorem 4. Suppose there be @, and @, described in (18) and (20). Then

(al) Model (10) is generally in a non-competitive equilibria &y(S,, 0,
0,X,).

(b1) Model (10) is generally in a non-cancer equilibria &,(S, R, 0,X)
when @ > 1.

(c1) Model (10) is generally in a therapeutic breakdown equilibria
82(82,0 QZ’XZ) when (D2 > 14+ W

(d1) Model (10) is generally in a llmlted accomplishment equilibria

81p1P3=0
&3(83,R3,Q3,X;) when @, > @ + m

The experimental investigation of the equilibria &), &, & and &
is the core objective of this segment.

Theorem 5. Suppose there be a non-competitive equilibria &, is globally
asymptotically stable for

Op;
Dy <14 ——
(A+e)(A+g3)
or @, < 1. Furthermore, it is unstable if
Op;
(A+e)(A+g3)
ord; > 1.

@, > 1+

Proof. To prove the consequence for non-competitive equilibria, for
this, suppose the following Lyapunov functional depend on the param-
eterp=x—1—-Inx, Vx>O0:

S X
At = Sm( m) O m( m) + —R(t>+ —Q(t)
293

The derivative of © in the direction of model (10) is presented by

S-S X-X
4 _ 0\dS . 1 0 dX L LdR_14dQ
dt S Jat " 55\ X

5 at T3 dt
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= <S_SSO>(E—S/1—pISR—pZST—1)

1 (X=X,
+—
6,63 X

+5i (5,91SR — (A+£)R) + 5i (5,0,5Q — (A + £,)Q - p;QX).
2

> (0 +630,QX — (4 + €3)X)

Utilizing Sy = Z/4 and X, = ©/(4 + ¢3), we find

dA _ -4 5 Ate  At+es (X=X
— < —(S-5 R@, -1 -
at = 5SS FR@ )51 5,55 X
A+ (]
ALY PRSP .
8y A+ e)(A+e3)

d A Op3

51and¢2§1+m.
=01ffS=SO, R =0, Q =0 and X = X,,. Thus, the
maximum invariant set is in {(S, R,Q, X)% = 0} is the set &. Taking
into consideration Lasalle’s invariance theorem [40], conclude that &,
is globally asymptotically stable for @, <1 and @, <1+ mgg%

In case &, has a dynamical characteristic, 1t has to be examined
further. Whenever @, > 1 or @, > 1 + m We do this by
computing the characteristic equation at &, which is supplied by

This 111ustrates that == < 0 when @,

is clear that 42 b

(Dy — D)(A+ &) — p3O

Vi =—A vy = —d—gy, vy = . Vg = (@ —D)(A+e)).

A+es
(23)
Op3
From above, we observe that v;,v, <Oand v; > 0as @, < 1+ Treairen

and v, > 0 if @; > 1. Finally, &, is unstable if @, > | or @, >
1+ —25__ O

(A+e)(A+e3)

In an analogous manner, we can find the stability criteria for other
EPs &, &, and &;.

Theorem 6. Assume that @, > 1. Then the tumour-free equilibrium &, is
globally asymptotically stable if
Z061p1p3

Pyt A+ e)A+e)A+e3) @49

otherwise it is unstable.

Proof. Assume the subsequent Lyapunov functional:
S(t) R(t)

_ 1 1 X(t)
s0=50(32) + T (80) Lo Lxio(30). o9
Therefore we have
d4, Siy, =
Sh<(1- —)<_ - AS - p;SR - p,SQ)

1
=R (6,0;SR — (A +£,))
51( ) 171 1
+—(52p25Q - (A +&)Q - p;QX)
1
v (1 - —)(@+63p3QX —(A+e)X). (26)
Setting X| = 0/(4+¢3) and S| = (1 +€,)/6,p,, we get
da, S \2 288, - 81 -§° A+é
Tt SH1-g) Fasimi( SS, )+ (niSi- 5 )R
+(pz(i+e|) _Ate  Op ) +i(2XX1 —X?—X2>
5101 5, Sy(A+ey) 5,5, XX,
AMA ! Z06
_ A -{;_61)( +ez)<¢2_¢] _ 19192 )
25,650, A4+ €A+ e)(A +e3)
S- Sl) o X-X;?
- R)—— =2 2
(4+pR)) 5253 XX, (27)
dA]
Then, <0, when
Z6
@, <ol + PiPs . (28)
A4 +e)(A+ )4+ €3)



S. Rashid et al.

Clearly, =0ifand onlyif S =S;, R=R;, Q =0 and X = X|.

Thus, the maximum invariant set in {(S,R,Q,X) dAt‘ =0} is the set &,.
Taking into consideration Lasalle’s invariance theorem [40], conclude

that &, is globally asymptotically stable for

E0p,p;
MA+e))(A+e)A+es)

On contrary, the characteristic equation at &;, which is supplied by

D, <Dl +

(A+ €1 +V)(6,0,81 — A—€y — p3X| —V)F(v) =0, (29)

where F(v) = (A+ v+ p;R)(A+ &, +v —5pS)) + 5 p’R,S;. Therefore,
the eigenvalues of (29) are
Vi =6,0,8] — A —€2 - p3X;
AMA+€)DA+¢€y) Z0O5,pp
=%( —0, - 19175 ) (30)
Z61pq MA+e)(A+€))(A+€3)

; 206,103
It is clear that v; > 0 then @, > & + /1(/1+£1)(/1+52)(/1+53)
[

un-stability of £. This completes the proof.

. Which shows the

Theorem 7. Assume that @, > 1 + (H# and @, > @,. Then the

treatment failure equilibrium &, is globally asymptoncally stable if

[C] A+
@, + b <14 2UEE) (1)
830 + £5) (@, /@) — 1) 83034
Otherwise, it is unstable.
Proof. Assume the subsequent Lyapunov functional:
S(t) Q) 1 X
4(6) =Sy = )+ R0+ Qz(t)@( o, )+5 5.X ( X, ) 32
Then, we have
da, S \2 288, - 87 -§° Ate
< _ = - s _
at <48,(1 s) + SRy SS, )+ (S, 5 )R
(A+¢&) o /2XX; - X% -Xx?
S, - by
+(nsS2 5 5, 2o+ 5,05 A XX, )
o X-X,? (S =8,
= —S) - — 22 G+ pRy)—2 33
=015, -83) 5,6, XX, (A+ pRy) S (33)
Simple computations gives
Sy =83 = E6,83p1p3(A+ ) ((@2/D)) — 1) + Opyp3(A +£))
—py(A+e)(A+&)(A+&3)((@,/D)) — 1)
—63p3A(A+ €)(A + &) (@, /P)) - 1). (€D)]
Thus, S, — S; < 0 implies that @ 9p3 <14 2te)
us, S, 3 < 0 implies that @ + 53/1(/1+62)((‘D2/d’1)_1) = 53034
Ultlmately, <0, when @, + Op3 <14 2dre)
53AG+e2) (@ /@))-1) 83034
Clearly, =0ifand only if S=S,, R=0, Q =Q, and X = X,.

Thus, the maximum invariant set in {(S,R, Q, X)=2 “2 =0} is the set &,.

Taking into consideration Lasalle’s invariance theorem [40], conclude
that &, is globally asymptotically stable for

+ Op; <4 4teEy)
5344+ €)) (@ /@)~ 1) — 0334

On contrary, the characteristic equation at &,, which is supplied by

(6,0,S, — A— e, — WF,(v) =0, (35)
where Fj(v) = (V+ ppRy + D)(A+ 65+ v+ p3X5 —6,0,5))(8303Q, — A — 3 —
V) — 83 p§Q2X2 Therefore, the eigenvalues of (35) are

Vy =61p1S; —A—€l =61p1(Sy = S3). (36)
It is clear that v, > 0 then @, + s >1+2 Z(H?). Which

63)»(/1+£2)g(tb2/tbl)—]) = 8303
shows the un-stability of &,. This completes the proof. []
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Theorem 8. The partial success equilibrium &; is globally asymptotically

; 2061013
stable if @, > @ + e ey ey

Proof. Assume the subsequent Lyapunov functional:

45(t)
Do SO\ 1. (ROY . L QY. 1 o (X®)
=5:5(5 )+ 3, Ry (% R, )+ Q*(tm( Q )+ 5,55 X X, )
37
Then, we have
dA S
=2 <(1-F)E- 18- pSR-1,SQ)
R
+5i(1 - —3)(p3alsR—(l+el)R)
1
(- %)(/)2525(2 U+ Q- 7,QX)
1
1—— O+ p36;QX — (1 + £3)X (38)
5 (1- )@+ 060X - (A &)X,
Setting = = 4S3+9,5;Q3+0,5;R3. p3Q3X3/6, = (4+53 X355 5 » P1S3Ry
= (’1;5‘ )R; and p,S;Q; = ( ;:2 Qs + ’;—ZQ3X3, we have

2SS; —s§_s2>+ (is _Ate )R
SS; g
2XX, - X2 - X2
(83— Y ;;2) - Z—zx3)Q+ %(}TS)
28S; — 82 — 82
( 3 ss33 )

% < /183(1 - %)2+pZS3R3<

+p153R3

6 X - X3)2

= —<v— A+ Ry +p,Q3)

S -8,
T80, XX, :

S (39

Therefore, % < 0 if and only if S = S; and X = X;. By an
easy calculation, we can prove that % = 0 if and only if S =
S;, R = R;, Q = Q3 and X = Xj. Following the LaSalle’s invariant
approach [40], we conclude that &; is globally asymptotically stable

under the assumptions that this point holds. []

A fractional model for oncolytic efficacy in the ABC derivative
sense

The DEs framework presents the methodological strategy that en-
compasses the assumptions with the demonstration of MI virus’s ro-
bust oncolytic effectiveness, followed by the ABC-fractional derivative
operator

ABEDYS() = Y1(t,S),

ABCTH? —

SECDYR() = Y, (L, R) (40)
ABCDYQ(L) = Y5(t, Q)

ABCDEX(t) = Yu(t,X)

with ICs stated in (11)
Existence and uniqueness of the fractional model for oncolytic efficacy

Here, the (40) demonstrates that the fractional order model for
cancer therapy is a nonlinear model. The fixed point methodology is
employed to investigate the presence of solutions. Because of this, we
define 2 = [0,t] such that W = U(2) X U'(Q) x U'(2) X U'(2) as a
Banach space U'(2) = C[0,t] of real-valued continuous mappings on
the domain £ having the norm:

s k@< ] =] + o] « ]

Here, |

| = sup{iswl : t € 2}, |R]| = sup{IRw)| : t € 2}, Q] =
sup{1Q()| : te 2}, [X|| = sup{IX(®)l : t e 2}.
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The AB fractional order integral can be used to transform the
model (40) to a Volterra type integral equation. The implementation
of Theorem 1 yields the following.

@

S(t) —S(0) = ABC( )

{228 - piSOR® - p,S©QW® |

—_ 1 _ _
+ABC((p)r((p) / (t—9)*" { AS(t) — p; S(HR(L) st(t)Q(t)}dg

R() = RO) = =2 { 5,5 SORW) — (4 + ¢ )RO) |

ABC( )

¢ -1
AR / (t= 0" 517 SOR® ~ (i + £ R® e,

Q(t) — Q(0) = ABC( ) {521’25(00(0 —(A+&)Q(t) - p3Q(t)X(t)}
e
ABC(o)[ (9)

t
x / t—gr! {52pzs(t)Q(t) - G+ )Q®) - QX (®) | d

X(t) - X(0) = {9 + 6373 QOX(t) — (4 + 63)X(t)}

ABC( )

—_— —_— 1 —_—
G [ 0+ 5N - G X0 e 42

The accompanying terms are defined for clarity

Y (t.S) = Z — AS(t) — o S(OR(L) — p,SHQ(L),
Y5(t,R) = 6;p; S(OR(t) — (A + £1)R(t),

Y3(t, Q) = 6, S(H)Q(H) — (4 + £,)Q(t) — p3QHX(H),
Y,(t.X) = 0 + 63p3QOX() — (4 + £3)X(1),

(43)

Theorem 9. The kernels Y;, i = 1,2,3,4 holds the subsequent Lipschitz
assumption. Then, if Y|(a,S(a)) = 0 and contraction variant satisfies

0<9, <1, i=1,273.4. (44)

Proof. Assume that the kernel Y|(t,S) = Z — AS(t) — p;S(OR() —
2,S(H)Q(t). Also, let S and S are two distinct mappings, then we have
e -rie.s))|

= || - 4(s) - 8®) - pRO(S®) - S®) - p,QWI(S® - SV))|

< s -5 1+ o]+ o]

< ”S(t) - S(t)” (A+ p1Ky + pak3)

<9||s® -S| (45)

By choosing 9 = 4 + p K, + p,k3, where k| = maxyi € ZHS(t) Ky =

maxyi € I|R@®)|. x3 = max,ie IHQ(t)” K, = maxgi € I”X(t)” are
the bounded mappings, then we attain
it -rie.9) < 8|s® -S| (46)

As a result, the Lipschitz criteria applies for Y}, and if 0 < 9; < 1 is
a contraction for Y|. Additional kernels can be addressed utilizing the
analogous technique, as shown below:

[t R) - Yot Ny)|| < 0, |Ret) -
3t @ - 36, Q)| < 85t - Q).
”Y4(t,X) - Y4(t,X)” < &”X(t) - X(t)“. 47)

The verification is now finalized. []

Therefore, the mechanism (43) can be represented as using the
kernels from (10)

S(t) =S0) + ——Y(t.S) + - 9?7 'Y(c.8)d,

___® / (t
ABC( ) ABC(@)(p) Jo
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R(t) = R(0) + ——Y,(t,R)

-1
ABC( 3 Y2 9)?7Y,(¢, Rydg,

® t
. t —
T ABC(o) I (@) /0 (

9 'Y;3(¢,Q)ds,

t
[
= 0 ARC( DT () -
Q(t) = Q(0) + ABC((p)F((ﬂ)/o «

ABC( )Yz( ,Q) +
X(t) =

X(0) + =Y. X) +

_ -l
ABC() 7 Yy(¢. X)dg.  (48)

@ / ! (t
ABC(p)I (@) Jo

Further, the recursive relationship that follows is presented as

S (t) = -9 'Y(. S, ))ds,

ABC( )Yl( Sr |)+

@ / t
ABC(@)(p) Jo
t

R.(t) = ————Y5(t, -9 'Y, (6. R,_))ds,

ABC( ) Re)+

@ / t
ABC(@) I (p) Jo
t

Q. (t) =

X, (t) =
1-
ABC( )

————Y3(t,Q,_ )+ -9 Y36, Qe

e / o
ABC( ) ABC(o)I'(9) Jo

——Y,(t.X, )+ O Y (6. X, ds,  (49)

t
__ / t—
ABC(o) () Jo

as well as adequate ICs are

So®) =5(0), Ry(t) =R(0), Qy(t) = Q(0), Xy(t) =X(0). (50)

Here, we get the preceding by implementing the difference between the
succeeding components

Ap(t) =8.(6) =S (1)

1-
= 2500 )(Yl(t Se-) = Vi(t.Sc))

¥ Y —_
+ABC((p)F((p)/0(t 9] (Yl(gasr—l) Y1(§»Sr_2))d§,

Br(t) = Re(t) —Rp_(t)
1-
= ABC( )(YZ(t Rr ]) Yz(t,Rr_2)>

p— 1 —
m/( 9\ (Yz(& r—1) — Y2(6, Ry 2))d§,

Ce(®) = Q) - Q. (D)
1-

= ABC(p )<Y3(t Q.— 1)—Y3(t Qr 2))

p— _1 —
+m /0 t-9° (YS(g’Qr—l) Ya(g,Qr_z))dg,
Dy (t) = X (t) — X, (D)

1-
ABCs )(Y4(t X, - Y4(t,x,,2))

t
—_— —_ 71 P
+1magT €9 (e X -V X e, 5D)

Observe what follows

Sc() = Y Art), Ru(t) = D B(1), Q) = Y Co(t), X,(t) = Y, Dy(t).
=1 =1 =1 =1

(52)

Next, implement the norm criterion and the triangle inequality to (51),
which yields the corresponding consequence as follows:

=S40

< AlB;((fp) HY1 t.S_)-Y; (t,Sr,z)H

t
[ (riesn-vies, ).
0

T ABCo) [ (9)

Since the kernel meets the Lipschitz criteria, we have the following

_Sr—l(t)“ < ﬁyl Sr—l _Sr—2H

—_ g)(ﬂ—l

t
@
— 7 Y - )
TABC(p) T (9) /o « S22 = et
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Consequently, we get the following:

‘Ar A'_l(t))‘+—ABC(Z)F((p)YI /Ot(t—g)(’Hl

o] <

l-¢
ABCo ! Ay ()| de.
(53)

Applying a similar technique, we acquire

|

IBér—l(t)H

t
(t- g)‘”‘1|

(4
T ABCOIT () 2 /o By ds.

(Cr—l(t)H

t
¢ — )Pl
+ R 5 / (t =97 | ae.

Yy |Dp_ 1(0”

ABC( )

v _ —1
+ ABC((p)F(¢)Y4 /0 (t = 9| Doy )| de.

Now, we prove a revolutionary theorem by acquiring the preceding
outcomes.

Theorem 10. The fractional model of oncolytic efficacy (10) considering
ABC derivative operator has a solution, if for t .. the subsequent assumption
holds

-9 inax

Y,
ABC(p) ' ABC(o)I'(9) '

Y, <1, for 1=1,2.3. (54)

Proof. Utilizing the assumption of bounded mappings of S(t), R(t), Q(t)
and X(t). Moreover, the kernels Y,, : = 1,2,3,4 fulfils the Lipschitz
assumption from (53), then

[+ <“ﬁmH{ABC@)1 ABC&XF@OK}
o] < RO { 55¢ ABC " ABC(H;;F((p) v}
oo <o ABCZ,,) "+ )
[orco] =[x { 5¢ ABC " ABCt(%)xr(rmY ) ©

Because identity (52) and a continuous mapping occur, we must il-
lustrate that the foregoing mappings are the findings of the suggested
oncolytic model (10). For this, we analyse

S(t) - S(0) =S, —E. (1),

R(t) —R(0) =R, —F.(t),
Q(t) — Q) = Q, — G, (t),
X(t) — X(0) =X, — H,(t). (56)

Further, we illustrate that the infinite term ”Em(t)” — 0. Thus, we have

?_(vy(t.8) - Vi(t.S,_))

|swcio

—_— —_— _l —_—
BT/, €97 e - iteSe )e].

It follows that

< mpogres -res, |
m/(t 9k 1”Y1(§,S) Y106, S, 1)‘|d§
1

SABC((;))YIHS Sr- 1” ABC((p)F((p) H H

By repeating a similar technique, we have

S—S._1||" (57)

r—1

—Q t? lyr
{ ABC(¢) ABC(fp)T(qﬂ) } :
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Adjusting t =t then we have

Now implementing limit, we achieve |[E_(t)

max>

tmax r+1 . .
{ABC((;) ABC((p)F((p)} YIS =S 1” 8)

~ 0. Analogously, one

can obtain J|]F (t)” 0, “G (t)‘L ~ 0, ||H, (t)J — 0, which assures the
existence of the solution of the fractional model oncolytic efficacy.

We now investigate a contraction strategy for the validity of the
results of the hypothesized fractional model for oncolytic efficacy (10).
Permit a framework of responses to emerge for this, assuming that there
is a system of solutions for (10), S(t), R(t), Q(t) and X(t). Then we have

SQ -SQ) = —=— (V1(t.8) - Y;(t.5))

ABC( )

t
— [ t-9*(Y,c.S) -Y,c.S))dc. (59
+F(¢)ABC(¢)/O( 91 (Y1(6.9) - Y1(¢.5))ds. (59)

Implementing norm on (59), we acquire

s@-s0) < "8 -rie.9)|

-9
ABC((p)‘
ey A (e 1

In view of the Lipschitz assumption for the kernel, we have

”S(Q) B S(Q)” ABC((p) ABC(g) ! ” H F((p)ABC((p) ” ” (60)
which permits us to write

— Y t?
”S(Q) B S(Q)”< ABC((fp) Yi+ F((p)/iBC((p)) <0, 61
and
[s@ -5 =0 = s@=5@. (62)

Hence, (61) and (62) demonstrate that the system (10) has a unique
solution. We can acquire the unique result for the r, Q and X using the
equivalent technique. As a result, the solution of the fractional model
of oncolytic efficacy (10) is unique.

Since the precise result of the suggested framework is hard to
ascertain. Both ends of (9) are transformed using the straightforward
and inverse Sumudu transforms (4), we have

S(t) = S(0)

-1 1-¢ = - —
+ {ABCWW)E (_,M)ST{_ IS = i SOR() st(t)Q(t)}},
R(t) = R(0)

—1 1-¢ _
* { ABC@)I(o+DEy(T42) ST{ﬁ'p'S(t)R(t) @+ El)R(t)} }

Q) = Q(0) + ST { =

ABC(@) T (p+1)E(742)
XST{3,SOQ) ~ (4 +£2)Q() - p;3QOX(®) | }
X(t) = X(0)

ABC(@)T(p+DE (742

+ST! I—¢ )ST{ 0 + 550,QX(t) — (A + 53)X(t)} }
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The following recursive scheme can be written as

Stey(®) = S(0)

-1 1-¢ 5 _ _
ST ABC(wrWl)Ew(ww)ST{“ AS(t) — py SOR() pzS(t)Q(t)}},

I-¢
Npy(t) = R(0)

ST ———2 o s1{5,5, SOR® - (4 + Rt }}
ABC T Dy () 1P1S(OR(t) — ( DR()
)=QO)+ST!'{ — ¢
Qn®=Q0O { ABC(¢)F(¢+1)E,,<%)

XST{6,9,SDQ®) - (4 +£2)Q(0) - p3QOX(V) | }

X (t) = X(0)
+ST"! ¢

—— - ST{O0+6 HX(t) — (4 + 3)X(t .
T TEe {0+8:0Q0X®) - (1+£5) ()}}

Here, Q = 1_—(p,qz

ABC(@) (p+DE,(7£)
employing limit as r approaches to oo, then we can attain the approx-
imate solutions S(t) = lim,_ Se®); R) = lim, o Rpy(®), Q) =
limy, .00 Quy (1) and X(t) = lim,,_, o, X(y(®). O

represents the Lagrange multiplier. By

Stability analysis of the fractional model for oncolytic efficacy

Suppose that there be a complete metric space (y,d) having W :
x — x. Consider a Picard iteration W(y,) = y,,, having a set of fixed
points F(W) # @ of W such that lim,,,, y, = w € F(W). Suppose
there be a sequence {y,} € y such that lim,_ . d(x,, Wx,) = 0, =
x. ~ w, then the sequence y,,; = y, is Picard W-stable. For further
investigation (see [41]).

Theorem 11 ([41]). Suppose there be a complete metric space (y,d) and
also there be a nonempty fixed point F(W) of W : y + y, then there exists
¢; 20, ¢, €[0,1) such that

d_(Wyl,ng) < cli(Wyl,yl) +cd(y1,6)), Yy €1, (63)
where 8, € F(W) having lim,,, ., d(x,, Wx,) = 0, then we say that Picard
iteration is W-stable.

Theorem 12. Consider a self-map W presented as

l-¢

ABC(o)T (@ + I)EW(%

WS (®)] = Spp (1) = Sp(t) + ST {

><ST{5 = AS¢_1®) = p1Se_ 1 OR (1) — pZS(r_l)(t)Q(r_U(t)} }

-
ABC(p) (9 + 1)E¢(£

W[Rq,®)] =Ry () = R (t) + ST {

xST{ 81018 _1OR_)(®) — (A+ el)R(H)(t)} }

-9

ABC(@)I (¢ + DE, (T4

W[Q(r)(t)] =Qr (1) =Qu(t) + ST_I{

XST{ 5zﬂzs(r_1)(t)Q(r_1)(t) -+ 52)Q(r_1)(t) - P3Q(r_1)(t)X(r_1)(t)} },

l-¢
—u®
ABC(@)I'(¢ + DE,(T2

W[X(r)(t)] =X, () =X, (1) + ST! {

><ST{ 0 +6303Qq_1,(OX 1)) — (A + e3)X(r_1)(t)} } (64)
is W-stable on L£'(a, b) if
pwesen-wes,, o)

810 =8, O] {1 = 2= 07 @& - e O3 ©) |,
P®R0) - W, ©)]

<
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|

R0~ R,, {61071 Om30) - 4+ enas@ |,

W) -wa,, o)

Q) = QO { 82021 @3 — 4+ £0)m3(@) - P33 @@ |
W) - wx,,, @)

X0 = X,,, O] {33037 m3) - G+ £3)w4) |-

|

|

Proof. By means of the given hypothesis, also employing the norm on
both sides, we have

s - wes,, @)

l-¢

ABC(@)I (¢ + DE, (75

S, (t) S, (t)+ ST {

xST{ (5 —AS,(t) — p; S (OR (L) — pzS,(t)Qr(t))
(228, = 1S, (OR,, (O = :8,,, ©Q,, ®)) }”

<

Se(®) = 8,,, (]| +

ST71 { 1- 4
ABC(@)I (¢ + 1)E¢(£
xsT{ (=45:®) = S,,, ®) = P S, OR, () = S, (DR, (1)

~p2(S:OQ(D) = S,,, OQ,,, (1)) } H (65)
It follows that
(REXOERECHON
$:0 =8, O{1-1-nm©Om© - nm @@ . (©6)

Analogously, we have

<

®R©) - W, )]

|

R (®) = R,, {61021 ©m30) - 4+ ena@ |,

W) - W, o)

Q) = QO { 82021 @3 = 4+ £0)m3(@) - P33 @4 |
@) - wx,, )|

X0 = X,,, O] {33037 0m30) - G+ e9)mu |, ©7)

|

|

where w,, w,, w;, w, are the ST’I{ =0 )ST(.)}.

ABC(@) T (g+DE, (747
Thus, utilizing Theorem 11, we concluded that W is Picard W-stable
according to the foregoing findings. []

Numerical analysis and mathematical modelling

In this section, we will use the model (10) which has been numer-
ically simulated by [42] using the ABC fractional derivative of order
¢. The method is used to obtain approximate solutions to the proposed
model.

Assuming the subsequent DE of oncolytic efficacy in ABC operator
form
{ ABCDY A®t) = (8, A1), ©8)

AQ0) = A,.
The fractional integral representation of the aforesaid initial value
problem is as follows:

] —_
A =A©0) = ——2_ (1, AQ)+ )P~ (c, A¢)de.

L/t(t—g
ABC(¢p) ABC(@)I'(9) Jo

(69)
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Inserting t =t.,;, r = 1,2,3, ..., then (69) diminishes to the subsequent

Altey1) = AQ) = —=—=¥(t,, At,))

ABC( )

—0)* (g, Alo)ds.  (70)

T+l
e t
ABC(cp)r(@ /o (b
Taking into consideration ¥(¢, A(s)) and incorporating the Lagrange
polynomial interpolation with two step [42], we acquire the approx-
imation below on [t,, t,, ]

=¥(c, A©)
—t
- —tg L. At) - g—fg’(tf—v/‘(‘f—l))
— 1 f - f—l
=57r“m%Aw»— S At)
N STt Wty A,) - C_qu/(tt,fl,/lffl). (71)

Employing Lagrange polynomial interpolation on (70), then we have

__*
ABC(p) (@)

Apy = A0)+ P(t,, At.)) +

ABC( )

Q"1 (¢, A¢))de
M Joto 416 = tp)(teyy — P W(c, AO)dS.

Yty A
R S (a7 (R

2

After simplifying the integral in (72), we attain

(72)

Ary A(O)+ABC( A ))+ABC( )
r h”‘l’(t, As) _ _ _ _ _
XZ o (E+1=0P@ = +2+4¢) = (= £)°(r f+2+2¢))(73)
%((r+l—f)"“—(r—f)"’(r—f+1+(p))+§Rf,

where R represent the remainder term and is defined as

(c—t)c—t,_y)
wo-___ P / o Eo )t )
" T ABC(@)I(9) &= Jo © 2!

02 _
X W[T(gzl(g))]gzsy(tm - o) lde. 74

The numerical technique for the oncolytic efficacy system (10) encom-
passing the AB-fractional integral operator is presented as

S(t) =S(0)+

ABC( )Y1 (t.5(1))

——— | (t-9)?Y (5, S()ds,
+ABC(¢)F(¢)/( P76, S(E)de

R(t) = R(0) + ABC( )Yz(t »R(1))

[ S t — ) 1Y, (¢, R(¢))dg,
+ABC(¢)F(¢)/( [9) 2(6, R(¢))dg

Q) =QO) + ABC( )Yz(t » Q1)

% el
+ABC((p)f((p)/(t %7 Y35, Q(¢))dg,

X(t) =X(0) + ABC( )Y4(t , X(1)
— [ (t-9* Y (c. X(¢))dg, 75

+ABC(¢)F(¢)/O( )7 Y4(c, X(9)dg (75)
supplemented to ICs
S(0) = R(0) = Q(0) = X(0) = (76)
In view of numerical technique (73) to (75), we attain

_ %

S,41(®) =S0) + ABC( )Yl(tr’s(t D+ ABC(p)

neY|(t,.S,)

S+ 1= (= +24+¢) = (=) (c = £ +2+ 2(,;))(77)

h?Y (t,_ .S, 1)
S e (1= — @ = )P = £+ 1+ 9) + R,

r
)
£=0

10
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RO) + ———

Rr+1 (t) ABC( )

@
——Y,(t., R(t,

2 (t, R( ))+ABC((p)
Y, (t, R,)

) (C+1=-*@ - +2+9)—(r - ) — £ +2+2¢))

(78)

XZ

SRR (4 L= )P — (0= 0P = €+ 1+ 9) + R,
¢
Qr11(t) = QO) + ABC( )Ya(th(t ))+ABC( )

r Y, (t,.Q,)

YR (C+1=0@-C+2+9)— @ =) (r - +2+2¢))

79

#=0 _%((r+1—5)w1 =0+ 1+¢) + R,
and
X () =X0) + ABC( )Y4(tr, X(t,) + ——— ABC((p)
§ i hwry?;t;;/) ((r +1 - -C+2+¢0)— (@ =) -7+ 2+2(p))(80)
Mﬁ;gjf L+ 1= @ =)@~ + 1+ 9)) + RY,.
where RY, 1=1,2,3,4 are presented as
RY, = / Al 2IChad 700
vl ABC((p)F (0) & 21
X —2 Y. A(Q))]FE“ (tey) — ©)°Vde,
RY, = / o 2t~ te)
2o ABC(qJ)F(w) 2!
9% o1
X3 [Ya(c. A9)) o, (e =07,
R = / o 2t
3 ABC(rp)r(«p) 21
TS 6 M@, et =" e
4 / €Tt~ te)
rl ABC((p)F (0) & 21
a —
X @ [Y4(§a A(g))] =, (teyr — 194 ldg. (81)

The mathematical findings for (77)-(80) are now reported. The settings
of biological components supplied by Wang et al. [4] were imple-
mented in this ocolytic efficacy model (9).

Results and discussion

Immunotherapy is at the cutting edge of contemporary cancer treat-
ment. With varying degrees of success, innovative medicines have been
developed that address all three components of cancer pathogenesis:
tumour, niche, and impervious mechanism. Oncolytic viruses are new
flaviviruses that are being used in combination for initial and salvage
treatment. In an attempt to strengthen improved and more appropriate
tumour therapies, numerical strategies have been implemented to assist
in comprehending the intricate mechanisms of oncolytic virotherapy.
Following that, a slew of numerical models (detailed in the preamble)
were built to characterize the oncolytic efficacy model (10). Here, we
designed a fractional model of oncolytic efficacy based on fractional
epidemic assumptions [10,11] and integrated monitoring indicators in
this investigation. The method incorporates the chance of recidivism,
which fluctuates irrespective of how long the individual has been
on treatment, via the use of the ABC fractional derivative operator,
incorporating the variation in parameters represented in Table 1.

To substantiate the simulated predictions from the preceding parts,
we perform several numerical computations. As for this explanation,
the components of framework (10) gravitate to &)(S,.0,0,X,) =
(%,O, 0, %) in this instance, see, Plot 3 and 4, which is compatible
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Fig. 3. Three-dimensional illustration of oncolytic efficacy model (10) when @, > 1 or @, > 1+

the spatiotemporal factors of nutrient and normal cells, respectively.
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Fig. 4. Three-dimensional illustration of oncolytic efficacy model (10) when @, > 1 or @, > 1+

the spatiotemporal factors of tumour cells and free M1 virus, respectively.

with Theorem 5. The nutrition is insufficient to sustain the cancerous
and normal tissue communities, resulting in eventual annihilation.
This could also be an instance where, in the absence of an immu-
nity reaction, there has been intense rivalry between healthy and
cancerous tissues, and the procedure destroyed the cancerous tissues,
rendering them unable to maintain regular organisms, resulting in
decompensation.

For the ABC fractional oncolytic efficacy model, S(t), R(t), Q(t)
and X(t) are the specific dietary, regular cells, cancer hepatocytes,
and M1 viral contents at time t, respectively. & = 0.02 and 6 =
0.01 are the enlistment variables for nutritional and M1 viral levels,
respectively. Fig. 5(a)-(b) shows the association of EP &(S,R,0,X)
in the dearth of an innate reaction, the oncolytic M1 virus therapy
unable to decimate cancerous tissue, resulting in the elimination of
healthy cells when ICs (S,R,Q,X) = (0.36,0.24,0.12,0.12). Meanwhile,
Fig. 6(a)-(b) depicts that rise in tumour cells and free M1 virus. As a
result, this circumstance poses a serious risk to the service user. This
inspection concludes that people with acute or influenced drug therapy
after tissue allografts have a clinically important improved incidence
of virtually each type of tumour tissue that supplies potent, effective
treatments for the pivotal involvement of invulnerable surveillance in
tumorigenesis and malignant transformation. Figs. 7-8 illustrates the
correlation of EP &,(S,0,Q,X) when the defencive reaction is absent,
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the oncolytic M1 virotherapy is completely successful in eliminating
the tumour utilizing ICs (S,R,Q,X) = (0.24,0.16,0.08,0.08), resulting
in the restoration of healthy tissues and improved wellness outcomes.
As a result, the M1 virus is able to regulate the tumour despite being
influenced by the immunological reaction targeting tumour tissues.
The smallest efficacious dose required to eradicate the tumour is cal-
culated. Furthermore, Figs. 9-10 demonstrates the preciseness of EP
&(S,R,Q,X), when the anti-tumour innate immunity is active, the
tumour is controlled, and the number of cancerous germs decreases,
involving the ICs (S, R, Q, X) = (1.29,0.39,0.29, 0.29). Because oncogenes
rely on cancerous tissues for proliferation, this reduction could result
in oncolytic virus deterioration and, as a result, therapy rejection. In
a nutshell, both the antibody reaction and oncogenic virotherapy were
unable to maintain adequate tissues and save the patient’s life in this
circumstance.

Finally, Figs. 11-12 represents the response of nutrient, normal
tissues, tumour tissues and free M1 virus utilizing the ICs (S, R, Q,X) =
(0.5,0.34,0.29,0.29). Throughout this situation, the tumour is controlled
by the anti-tumour innate invulnerability, that reduces the number of
cancerous lymphocytes while increasing the number of healthy tissues.
As a result, oncogenic virotherapy can no longer consistently defend
the tumour, and the reduction in cancerous growth corresponds to
a drop in oncolytic pathogen generation. However, this stratagem



S. Rashid et al.

Results in Physics 37 (2022) 105553

025 o= ¢=1
©=0.95 120 1 © =0.95
¢ =09 ©=0.9
© =085 © =085

0.2 » =08 , 100 © =08
© =075 ©=0.75
80 1
o5 1
-
Z
wn 60 | i
0.1F 4
a0t ]
0.05 4
20 1
/__
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
t (days) t (days)
(a) (b)

Fig. 5. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (S, R, Q,X) = (0.36,0.24,0.12,0.12) of (a) nutrient
(b) normal cells.
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Fig. 6. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (S, R, Q,X) = (0.36,0.24,0.12,0.12) of (a) tumour
cells (b) free M1 virus.
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Fig. 7. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (S, R, Q,X) = (0.24,0.16,0.08,0.08) of (a) nutrient
(b) normal cells.

might be applied to various recipient cellular functions. That is to say,
graphics have the potential to effectively enable not only oncotherapy,
but also dominating disruption of localized rheumatoid manifestations,

inhibition of innate immunity, and possibly performance expectancy for
compensatory or proliferative tissue renovation.
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Fig. 8. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (S, R, Q,X) = (0.24,0.16,0.08,0.08) of (a) tumour
cells (b) free M1 virus.
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Fig. 9. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (S, R, Q,X) = (1.29,0.39,0.29,0.29) of (a) nutrient
(b) normal cells.
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Fig. 10. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (S, R, Q,X) = (1.29,0.39,0.29,0.29) of (a) tumour
cells (b) free M1 virus.
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Fig. 11. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (S, R, Q,X) = (0.5,0.34,0.29,0.29) of (a) nutrient

(b) normal cells.
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Fig. 12. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (S, R, Q,X) = (0.5,0.34,0.29,0.29) of (a) tumour

cells (b) free M1 virus.

Conclusion

In this investigation, we researched the impact of an oncogenic M1
virotherapy framework in this research, taking into account the mem-
ory impact expressed by the ABC fractional derivative. Several mathe-
matical aspects of the aforesaid model are discussed in detail. The four
potential EPs in the framework were discovered to be non-competitive
equilibrium &, cancer-free equilibria &, therapeutic inability equilib-
ria &,, and partially accomplishment equilibria &;. The findings suggest
that the M1 infection is partly effective at reducing cancer growth
while enhancing immune tissues, perhaps minimizing tumorigenicity
and regulating infection severity. According to the aforementioned
numerical conclusions, the persistence of the ABC fractional derivative
has no relevance to the structural characterization of equilibria. We
notice that the fractional order impacts the pace of convergence and
the time-frame it requires to reach equilibrium, which is obtained from
the numeric computations. It is worth-mentioning that our outcomes
discussed all aspects of the oncolytic M1 efficacy model and are more
general than the results derived by [4]. The fractional derivative in
the perspective of ABC having an M-L kernel is used to derive the
outcome of this research. Modelling the behaviour of oncolytic M1
drug treatment using the newly developed fractal-fractional derivative
operator [43] could be very interesting. In addition, we will also
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incorporate additional biological parameters, including dispersion [44,
45] and immunology [46] into our framework described in (10).
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