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Abstract. We aim to find the complements of the Bennett-Leindler type
inequalities in nabla time scale calculus by changing the exponent from 0 < ζ <

1 to ζ > 1. Different from the literature, the directions of the new inequalities,

where ζ > 1, are the same as that of the previous nabla Bennett-Leindler type
inequalities obtained for 0 < ζ < 1. By these settings, we not only complement

existing nabla Bennett-Leindler type inequalities but also generalize them by
involving more exponents. The dual results for the delta approach and the

special cases for the discrete and continuous ones are obtained as well. Some

of our results are novel even in the special cases.

1. Introduction

The theory of inequalities containing series or integrals has been shown to be of
great importance due to their effective usage in differential equations and in their
applications after the celebrated discrete and continuous inequalities of Hardy have
been obtained. In 1920, when Hardy [24] tried to find a simple and elementary
proof of Hilbert’s inequality [32]
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where am, cn ≥ 0 and

∞∑
m=1

a2m and

∞∑
n=1

c2n are convergent, he showed the following

pioneering discrete inequality

∞∑
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(
1

j

m∑
i=1

c(i)

)ζ

≤
(

ζ

ζ − 1

)ζ ∞∑
j=1

cζ(j), c(j) ≥ 0, ζ > 1 (1)

and pioneering continuous inequality for a nonnegative function Γ and for a real
constant ζ > 1, as∫ ∞

0

(
1

t

∫ t

0

Γ(s)ds

)ζ

dt ≤
(

ζ

ζ − 1

)ζ ∫ ∞

0

Γζ(t)dt, (2)

where

∫ ∞

0

Γζ(t)dt < ∞. In fact, Hardy only stated inequality (2) in [24] but did

not prove it. Later in 1925, the proof of inequality (2), which depends on the
calculus of variations, was shown by Hardy in [25].

The constant
(

ζ
ζ−1

)ζ
that appears in the above inequalities also has been found

as the best possible one, since if it is replaced by a smaller constant then inequalities
(1) and (2) are not fulfilled anymore for the involved sequences and functions,
respectively.

Hardy et al. [26, Theroem 330] developed inequality (2) and derived the following
integral inequality for a nonnegative function Γ as∫ ∞

0

Ψζ(t)

tθ
dt ≤

∣∣∣∣ ζ

θ − 1

∣∣∣∣ζ ∫ ∞

0

Γζ(t)

tθ−ζ
dt, ζ > 1, (3)

where Ψ(t) =


∫ t

0

Γ(s)ds, if θ > 1,∫ ∞

t

Γ(s)ds, if θ < 1.

The exhibition of the results containing the improvements, generalizations and
applications of the discrete and continuous Hardy inequalities can be found in the
books [7, 26,32,33,38] and references therein.

Since various generalizations and numerous variants of the discrete Hardy in-
equality (1) exist in the literature, all of which can not be covered here, we only
focus on the extensions which have been established by Copson [15, Theorem 1.1,
Theorem 2.1]. We refer these inequalities as Hardy-Copson type inequalities. The
discrete Hardy inequality (1) or Copson’s discrete inequalities were generalized
in [9, 14,34–37] and references therein.

The investigation of the reverse Hardy-Copson inequalities, which are called
Bennett-Leindler inequalities, were started almost at the same time with the origi-
nal inequalities.
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The first reverse discrete Hardy-Copson inequalities were obtained by Hardy and
Littlewood [23] in 1927 for 0 < ζ < 1 without finding the best possible constants.
Then Copson [15], Bennett [10] and Leindler [35] established discrete Bennett-
Leindler inequalities by means of the following: Assume that the sequences z and
h are nonnegative. If 0 < ζ < 1, then

∞∑
m=1

z(m)[
G(m)

]θ
 ∞∑

j=m

h(j)z(j)

ζ

≥ ζζ
∞∑

m=1

z(m)hζ(m)
[
G(m)

]ζ−θ
, 0 ≤ θ < 1,

(4)

where G(m) =

m∑
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∞∑
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ζ
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(5)
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≥
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Lζ

θ − 1
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z(m)hζ(m)
[
G(m)

]ζ−θ
, θ > 1.

(6)
There are some results in [36] about the reverse discrete Hardy-Copson inequalities
different than the above ones and in [19] about finding conditions on the sequence
z(m) for 0 < ζ < 1 to obtain best possible constant.

The following results are interesting due to the fact that in contrast to the
literature, discrete Bennett-Leindler inequalities were obtained for ζ > 1, which
is the same interval as for the Hardy-Copson inequalities. In 1986, Renaud [45]
established the following discrete Bennett-Leindler inequality for the nonnegative
and nonincreasing sequence h(m) whenever ζ > 1 as

∞∑
m=1

1

mζ

 m∑
j=1

h(j)

ζ

≥ Z(ζ)

∞∑
m=1

hζ(m), (7)

where Z(ζ) is Riemann-Zeta function.
Similar to the discrete Hardy inequality (1), the continuous versions (2) or (3)

have attracted many mathematicians’ interests and expansions of these continuous
inequalities have appeared in the literature. The first continuous refinements were
obtained by Copson [16, Theorem 1, Theorem 3] and after these results many papers
were devoted to continuous analogues and continuous improvements of the discrete
Hardy-Copson inequalities, see [8, 27,39,41,42].
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The first continuous Bennett-Leindler inequality, which is the reverse version of
the continuous Hardy-Copson inequality (3), when θ = ζ, was established in [26,

Theorem 337] for 0 < ζ < 1 and for H(t) =

∫ ∞

t

h(s)ds as

∫ ∞

0

H
ζ
(t)

tζ
dt ≥

(
ζ

1− ζ

)ζ ∫ ∞

0

hζ(t)dt, h(t) ≥ 0. (8)

Then Copson derived continuous analogues of the discrete Bennett-Leindler in-
equalities (5) and (6), which are called continous Bennett-Leindler inequalities,
in [16, Theorem 4, Theorem 2], respectively, for z(t) ≥ 0 and h(t) ≥ 0 and

G(t) =

∫ t

0

z(s)ds, H(t) =

∫ t

0

z(s)h(s)ds, H(t) =

∫ ∞

t

z(s)h(s)ds in the follow-

ing manners: If 0 < ζ ≤ 1, θ < 1 then∫ b

0

z(t)

[G(t)]θ
[H(t)]ζdt ≥

(
ζ

1− θ

)ζ ∫ b

0

z(t)[G(t)]ζ−θhζ(t)dt, 0 < b ≤ ∞. (9)

If 0 < ζ ≤ 1 < θ, a > 0, then∫ ∞

a

z(t)

[G(t)]θ
[H(t)]ζdt ≥

(
ζ

θ − 1

)ζ ∫ ∞

a

z(t)[G(t)]ζ−θhζ(t)dt. (10)

Unlike the above classical results, for ζ > 1, the continuous counterpart of the
discrete Bennett-Leindler inequality (7) was obtained in [45] as follows: Let ζ > 1
and for nonnegative and decreasing function h, we have∫ ∞

0

1

tζ

[∫ t

0

h(s)ds

]ζ
dt ≥ ζ

ζ − 1

∫ ∞

0

hζ(t)dt. (11)

Following the development of the time scale concept [6, 12, 13, 20, 21], the analysis
of dynamic inequalities have become a popular research area and most classical
inequalities have been extended to an arbitrary time scale. The surveys [1, 46]
and the monograph [3] can be used to see these extended dynamic inequalities
for delta approach. Although the nabla dynamic inequalities are less attractive
compared to the delta ones, some of the nabla dynamic inequalities can be found
in [5, 11,22,40,43].

The growing interest to Hardy-Copson type inequalities take place in the time
scale calculus as well and delta unifications of these inequalities are established in
the book [4] and in the articles [2,18,44,47,48,50–54] whereas their nabla counter-
parts and extensions can be seen in [29–31] for ζ > 1.

In the delta time scale calculus, the reverse Hardy-Copson type inequalities,
which are called delta Bennett-Leindler inequalities, can be found in [17,47,49,54,55]
for 0 < ζ < 1. These results are unifications of discrete and continuous Bennett-
Leindler inequalities mentioned above except the ones in [45]. In addition to delta
calculus, the above discrete and continuous Bennett-Leindler inequalities can be
unified by nabla calculus and the previous reverse Hardy-Copson type inequalities



NABLA BENNETT-LEINDLER INEQUALITIES 353

can be obtained for the nabla case, see [28] for 0 < ζ < 1. Then these inequalities
are called nabla Bennett-Leindler inequalities.

For our further purposes, we will show the nabla Bennett-Leindler inequalities
established for 0 < ζ < 1 in [28] and use them in the sequel. As is customary, ρ
denotes the backward jump operator and fρ(t) = (f ◦ ρ)(t) = f(ρ(t)).

The following theorem presented in [28, Theorem 3.1] asserts a nabla analogue of
the delta Bennett-Leindler type inequalities given in [55, Theorem 2.1] for 0 < ζ < 1.

Theorem 1. [28] For nonnegative functions z and h, let us define the functions

G(t) =

∫ ∞

t

z(s)∇s and H(t) =

∫ t

a

z(s)h(s)∇s. If θ ≤ 0 < ζ < 1, then∫ ∞

a

z(t)

[Gρ(t)]θ
[H(t)]ζ∇t ≥

(
ζ

1− θ

)ζ ∫ ∞

a

z(t)hζ(t)[Gρ(t)]ζ−θ∇t. (12)

The following theorem presented in [28, Theorem 3.9] asserts a nabla analogue of
the delta Bennett-Leindler type inequalities given in [55, Theorem 2.3] for 0 < ζ < 1.

Theorem 2. [28] For nonnegative functions z and h, let us define the functions

G(t) =

∫ t

a

z(s)∇s and H(t) =

∫ ∞

t

z(s)h(s)∇s. If θ ≤ 0 < ζ < 1, then∫ ∞

a

z(t)

[G(t)]θ
[H

ρ
(t)]ζ∇t ≥

(
ζ

1− θ

)ζ ∫ ∞

a

z(t)hζ(t)[G(t)]ζ−θ∇t. (13)

The following theorem presented in [28, Theorem 3.12] asserts a nabla analogue of
the delta Bennett-Leindler type inequalities given in [55, Theorem 2.4] for 0 < ζ < 1.

Theorem 3. [28] For nonnegative functions z and h, let us define the functions

G(t) =

∫ t

a

z(s)∇s and H(t) =

∫ t

a

z(s)h(s)∇s. For L = inf
t∈T

G
ρ
(t)

G(t)
> 0, if 0 < ζ <

1 < θ, then∫ ∞

a

z(t)

[G(t)]θ
[H(t)]ζ∇t ≥

(
ζLθ

θ − 1

)ζ ∫ ∞

a

z(t)hζ(t)[G(t)]ζ−θ∇t. (14)

The following theorem presented in [28, Theorem 3.4] asserts a nabla analogue of
the delta Bennett-Leindler type inequalities given in [55, Theorem 2.2] for 0 < ζ < 1.

Theorem 4. [28] For nonnegative functions z and h, let us define the functions

G(t) =

∫ ∞

t

z(s)∇s and H(t) =

∫ ∞

t

z(s)h(s)∇s. If 0 < ζ < 1 < θ, then∫ ∞

a

z(t)

[Gρ(t)]θ
[H

ρ
(t)]ζ∇t ≥

(
ζ

θ − 1

)ζ ∫ ∞

a

z(t)hζ(t)[Gρ(t)]ζ−θ∇t. (15)

Although delta and nabla Bennett-Leindler type inequalities for the case 0 <
ζ < 1 have been deeply analyzed, the case ζ > 1 has been investigated neither
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via nabla and delta approaches nor for continuous and discrete cases. Hence the
main aim of this article is to complement aforementioned Bennett-Leindler type
inequalities obtained for 0 < ζ < 1 to the case ζ > 1 by using nabla and delta
time scale calculi without changing the directions of the inequalities derived for
0 < ζ < 1. We preserve the directions of the known inequalities since otherwise
we obtain the reverse Bennett-Leindler type inequalities, which are called Hardy-
Copson type inequalities and have already been established for the case ζ > 1
in delta [53] and nabla settings [29]. Our results are inspired by the papers [28]
and [55] which contain nabla and delta Bennett-Leindler type inequalities for the
case 0 < ζ < 1. We notice that the cases θ ≤ 0 and θ > 1 were considered in [28]
and [55] while the case 0 ≤ θ < 1 was not investigated therein. By taking account
of another constant η ≥ 0, we not only generalize the nabla and delta Bennett-
Leindler type inequalities presented in [28] and [55] for η ≥ 0, but also complement
them from the case 0 < ζ < 1 to the case ζ > 1. Furthermore novel discrete
and continuous Bennett-Leindler type inequalites, which are complementary and
generalized inequalities of inequalities (4)-(11), are established for ζ > 1 and η ≥ 0.

The organization of this paper can be seen as follows. The nabla time scale
calculus and its main properties are introduced in Section 2. The delta version can
be obtained similarly. The contribution of Section 3, which includes the main result,
is to extend the recently developed nabla and delta results, which were established
for 0 < ζ < 1 and presented in [28,55], to the case ζ > 1 by using the properties of
nabla and delta derivatives and integrals. Then the special cases of the nabla and
delta ζ > 1 type inequalities, which are continuous and discrete inequalities, are
stated.

2. Preliminaries

This section is devoted to present the main definitions and theorems of the nabla
time scale calculus. The fundamental theories of the delta and nabla calculi can be
found in [6, 12].

If T ̸= ∅ is a closed subset of R, then T is called a time scale. If t > inf T, we
define the backward jump operator ρ : T → T by ρ(t) := sup {τ < t : τ ∈ T} . The
backward graininess function ν : T → R+

0 is defined by ν(t) := t− ρ(t), for t ∈ T.
The ∇-derivative of Γ : T → R at the point t ∈ Tκ = T/[inf T, σ(inf T)) denoted

by Γ∇(t) is the number enjoying the property that for all ϵ > 0, there exists a
neighborhood V ⊂ T of t ∈ Tκ such that

|Γ(s)− Γ(ρ(t))− Γ∇(t)(s− ρ(t))| ≤ ϵ|s− ρ(t)|

for all s ∈ V.
The nabla derivative satisfies the following.

Lemma 1. [6, 12] Let Λ : T → R and t ∈ Tκ.
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(1) If Λ is continuous at a left scattered point t, then Λ is nabla differentiable

at t with Λ∇(t) =
Λ(t)− Λ(ρ(t))

ν(t)
.

(2) Λ is nabla differentiable at a left dense point t if and only if the limit

Λ∇(t) = lim
s→t

Λ(t)− Λ(s)

t− s
exists as a finite number.

(3) If Λ is nabla differentiable at t, then Λρ(t) = Λ(t)− ν(t)Λ∇(t).

A function Γ : T → R is ld-continuous if it is continuous at each left-dense points
in T and lim

s→t+
Γ(s) exists as a finite number for all right-dense points in T. The set

Cld(T,R) denotes the class of real, ld-continuous functions defined on a time scale
T.

If Γ ∈ Cld(T,R), then there exists a function Γ(t) such that Γ
∇
(t) = Γ(t) and

the nabla integral of Γ is defined by

∫ b

a

Γ(s)∇s = Γ(b)− Γ(a).

Some of the properties of the nabla integral are gathered next.

Lemma 2. [6, 12] Let t1, t2, t3 ∈ T with t1 < t3 < t2 and a, b ∈ R. If Λ,Γ : T → R
are ld-continuous, then

1)

∫ t2

t1

[aΛ(s) + bΓ(s)]∇s = a

∫ t2

t1

Λ(s)∇(s) + b

∫ t2

t1

Γ(s)∇s.

2)

∫ t1

t1

Λ(s)∇(s) = 0.

3)

∫ t3

t1

Λ(s)∇s+

∫ t2

t3

Λ(s)∇s =

∫ t2

t1

Λ(s)∇s = −
∫ t1

t2

Λ(s)∇s.

4) integration by parts formula holds:∫ t2

t1

Λ(s)Γ∇(s)∇s = Λ(t2)Γ(t2)− Λ(t1)Γ(t1)−
∫ t2

t1

Λ∇(s)Γ(ρ(s))∇s.

Lemma 3 (Hölder’s inequality). [40] Let t1, t2 ∈ T. For Λ,Γ ∈ Cld([t1, t2]T,R) and
for constants κ,ϖ > 1 with

1

κ
+

1

ϖ
= 1, Hölder’s inequality

∫ t2

t1

|Λ(s)Γ(s)|∇s ≤
[∫ t2

t1

|Λ(s)|κ∇s

]1/κ [∫ t2

t1

|Γ(s)|ϖ∇s

]1/ϖ
holds true.

If 0 < κ < 1 or κ < 0 with
1

κ
+

1

ϖ
= 1, then the reversed Hölder’s inequality

∫ t2

t1

|Λ(s)Γ(s)|∇s ≥
[∫ t2

t1

|Λ(s)|κ∇s

]1/κ [∫ t2

t1

|Γ(s)|ϖ∇s

]1/ϖ
(16)

is satisfied.
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Lemma 4 (Chain rule for the nabla derivative). [22] If Λ : R → R is continuously
differentiable and Γ : T → R is nabla differentiable, then Λ◦Γ is nabla differentiable
and

(Λ ◦ Γ)∇(s) = Γ∇(s)

[∫ 1

0

Λ′(Γ(ρ(s)) + hν(s)Γ∇(s))dh

]
.

3. Bennett-Leindler type inequalities

In the sequel, we will obtain several Bennett-Leindler type inequalities for non-
negative, ld-continuous, ∇-differentiable and locally nabla integrable functions z
and h and for the functions G,H,G and H defined in Theorem 1-Theorem 4.

The next theorem, which is proven for ζ > 1, η ≥ 0 and η + θ ≤ 0, provides
complements and generalizations of some of the abovementioned Bennett-Leindler
type inequalities given for 0 < ζ < 1, η = 0 and θ ≤ 0. These previous Bennett-
Leindler type inequalities are listed as follows:

(a) The discrete inequality obtained by Saker et al. [55, Remark 2] or Kayar et
al. [28, Remark 3.3].

(b) The continuous inequality obtained by Saker et al. [55, Remark 1] or Kayar
et al. [28, Remark 3.2].

(c) The delta counterpart of the nabla inequality (12) in Theorem 1 obtained
by Saker et al. [55, Theorem 2.1].

(d) The nabla inequality (12) in Theorem 1 obtained by Kayar et al. [28, The-
orem 3.1].

Theorem 5. Let the functions z, h,G and H be defined as in Theorem 1. For a

constant L1 > 0, assume that
Gρ(t)

G(t)
≤ L1 for t ∈ (a,∞)T. Let ζ > 1, η ≥ 0 be real

constants. If η + θ ≤ 0, then we have

(1)∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t ≥ Lη+θ

1 (η + ζ)

1− η − θ

∫ ∞

a

z(t)h(t)[Hρ(t)]η+ζ−1

[G(t)]η+θ−1
∇t, (17)

∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t ≥

[
Lη+θ
1 (η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[Hρ(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∇t.

(18)
(2)∫ ∞

a

z(t)[Hρ(t)]η+ζ

[Gρ(t)]η+θ
∇t ≥ η + ζ

1− η − θ

∫ ∞

a

z(t)h(t)[Hρ(t)]η+ζ−1

[G(t)]η+θ−1
∇t, (19)

∫ ∞

a

z(t)[Hρ(t)]η+ζ

[Gρ(t)]η+θ
∇t ≥

[
Lη+θ−1
1 (η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[Hρ(t)]η+ζ− 1
ζ

[Gρ(t)]η+θ− 1
ζ

∇t.

(20)
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Proof. The same methodology used in the proof of [28, Theorem 3.1] works for the
proof of this theorem except some steps.

(1) We start by the following equation similar to (3.2) in the proof of [28,
Theorem 3.1] as∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t =

∫ ∞

a

−u(t)
[
Hη+ζ(t)

]∇ ∇t, (21)

where u(t) = −
∫ ∞

t

z(s)

[G(s)]η+θ
∇s. Observe that since η + ζ > 1,

[Hη+ζ(t)]∇ ≥ (η + ζ)z(t)h(t)[Hρ(t)]η+ζ−1, (22)

which is different than (3.3) in the proof of [28, Theorem 3.1]. In our case,
when η + θ ≤ 0, since[

G1−η−θ(t)
]∇ ≥ −(1− η − θ)

z(t)

[Gρ(t)]η+θ
≥ −(1− η − θ)

z(t)

Lη+θ
1 [G(t)]η+θ

,

using (22) and

−u(t) =

∫ ∞

t

z(s)∇s

[G(s)]η+θ
≥
∫ ∞

t

−Lη+θ
1

[
G1−η−θ(s)

]∇ ∇s

1− η − θ
=

Lη+θ
1 [G(t)]1−η−θ

1− η − θ

in (21) implies the desired result (17). In order to obtain inequality (18), we
apply reversed Hölder inequality (16) to inequality (17) with the constants
1

ζ
< 1 and

1

1− ζ
< 0.

(2) When the above process is repeated for the left hand side of inequality (19)

with u(t) = −
∫ ∞

t

z(s)

[Gρ(s)]η+θ
∇s, the desired results can be obtained.

□

Remark 1. The nabla Bennett-Leindler type inequalities (17)-(20) obtained for
ζ > 1, η ≥ 0 and η + θ ≤ 0 are complements and generalizations of the nabla
Bennett-Leindler type inequalities given in [28, Theorem 3.1] for 0 < ζ < 1, η = 0
and θ ≤ 0.

Corollary 1. From inequalities (17)-(20) obtained by the nabla calculus, we can
get the dual inequalities in the delta setting by replacing Gρ, G,Hρ, H presented in
Theorem 1 by G,Gσ, H,Hσ, repectively, where

G(t) =

∫ ∞

t

z(s)∆s and H(t) =

∫ t

a

z(s)h(s)∆s (23)

and σ : T → T denotes the forward jump operator defined by σ(t) := inf {τ > t : τ ∈ T}
with fσ(t) = (f ◦ σ)(t) = f(σ(t)).
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Let z and h be nonnegative functions and G and H be defined as in (23). For

a constant M1 > 0, assume that
G(t)

Gσ(t)
≤ M1 for t ∈ (a,∞)T. In this case for

ζ > 1, η ≥ 0 and η + θ ≤ 0, nabla Bennett-Leindler type inequalities (17)-(20)
become novel delta Bennett-Leindler type inequalities, two of which obtained from
(18) and (20) can be written as follows∫ ∞

a

z(t)[H(t)]η+ζ

[Gσ(t)]η+θ
∆t ≥

[
Mη+θ

1 (η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[Gσ(t)]η+θ− 1
ζ

∆t

and∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∆t ≥

[
Mη+θ−1

1 (η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∆t,

respectively.
The delta variants of the nabla Bennett-Leindler type inequalities (17)-(20) ob-

tained for ζ > 1, η ≥ 0 and η + θ ≤ 0 are complements and generalizations of
the delta Bennett-Leindler type inequalities given in [55, Theorem 2.1] for 0 < ζ <
1, η = 0 and θ ≤ 0.

Remark 2. If the time scale is the set of real numbers, then for all t ∈ R, the back-
ward jump operator results in ρ(t) = t and L1 = 1 in (17)-(20). Hence inequalities
(17) and (19) as well as inequalities (18) and (20) coincide and their delta versions
become exactly the same inequalities as them. Therefore together with their coin-
cident inequalities, inequalities (17) and (18) reduce to the following inequalities
as ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥ η + ζ

1− η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G(t)]η+θ−1
dt

and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥

[
η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

dt,

respectively, where ζ > 1, η ≥ 0 and η + θ ≤ 0 and the functions G and H are
defined as

G(t) =

∫ ∞

t

z(s)ds and H(t) =

∫ t

a

z(s)h(s)ds. (24)

For the continuous case, when 0 < ζ < 1, η = 0 and θ ≤ 0, the first Bennett-
Leindler type inequalities were established in [55, Remark 1] and [28, Remark 3.2]
for the given aforementioned functions G and H. These inequalities are extended to
the cases ζ > 1, η ≥ 0 and η+θ ≤ 0 by the above novel continuous Bennett-Leindler
type inequalities.
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Remark 3. If the time scale is the set of natural numbers, then for all t ∈ N, the
backward jump operator results in ρ(t) = t− 1 in (17)-(20).

Using

∫ ∞

t

z(s)∇s =

∞∑
k=t+1

z(k), we have Gρ(t) = G(t − 1) =

∞∑
k=t

z(k), where

G(t) =

∞∑
k=t+1

z(k). Moreover H(t) =

t∑
k=a+1

z(k)h(k). For a constant L1 > 0, let us

assume that
G(t− 1)

G(t)
≤ L1. For a = 0, ζ > 1, η ≥ 0 and η + θ ≤ 0, in the set of

natural numbers, inequalities (17)-(20) become novel discrete Bennett-Leindler type
inequalities, two of which obtained from (18) and (20) can be written as follows

∞∑
t=1

z(t)[H(t− 1)]η+ζ

[G(t)]η+θ
≥

[
Lη+θ
1 (η + ζ)

1− η − θ

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t− 1)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

and
∞∑
t=1

z(t)[H(t− 1)]η+ζ

[G(t− 1)]η+θ
≥
[

η + ζ

1− η − θ

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t− 1)]η+ζ− 1
ζ

[G(t− 1)]η+θ− 1
ζ

,

respectively.
For the discrete case, when 0 < ζ < 1, η = 0 and θ ≤ 0, the first Bennett-

Leindler type inequalities were established in [55, Remark 2] and [28, Remark 3.3]
for the given aforementioned series G and H. These inequalities are extended to
the cases ζ > 1, η ≥ 0 and η + θ ≤ 0 by the above novel discrete Bennett-Leindler
type inequalities.

The next theorem, which is proven for ζ > 1, η ≥ 0 and 0 ≤ η+ θ < 1, provides
complements and generalizations of some of the abovementioned Bennett-Leindler
type inequalities given for 0 < ζ < 1, η = 0 and θ ≤ 0. These previous Bennett-
Leindler type inequalities are listed as follows:

(a) The discrete inequality obtained by Saker et al. [55, Remark 2] or Kayar et
al. [28, Remark 3.3].

(b) The continuous inequality obtained by Saker et al. [55, Remark 1] or Kayar
et al. [28, Remark 3.2].

(c) The delta counterpart of the nabla inequality (12) in Theorem 1 obtained
by Saker et al. [55, Theorem 2.1].

(d) The nabla inequality (12) in Theorem 1 obtained by Kayar et al. [28, The-
orem 3.1].

Theorem 6. Let the fuctions z, h,G and H be defined as in Theorem 1. For

a constant L2 > 0, let us assume that 1 ≤ Gρ(t)

G(t)
≤ 1

L2
for t ∈ (a,∞)T. Let

ζ > 1, η ≥ 0 be real constants. If 0 ≤ η + θ < 1, then we have
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(1)∫ ∞

a

z(t)[Hρ(t)]η+ζ

[Gρ(t)]η+θ
∇t ≥ Lη+θ

2 (η + ζ)

1− η − θ

∫ ∞

a

z(t)h(t)[Hρ(t)]η+ζ−1

[G(t)]η+θ−1
∇t, (25)

∫ ∞

a

z(t)[Hρ(t)]η+ζ

[Gρ(t)]η+θ
∇t ≥

[
L2(η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[Hρ(t)]η+ζ− 1
ζ

[Gρ(t)]η+θ− 1
ζ

∇t. (26)

(2) ∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t ≥ η + ζ

1− η − θ

∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t, (27)

∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t ≥

[
η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[Hρ(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∇t. (28)

Proof. The same methodology used in the proofs of [28, Theorem 3.1] and Theorem
6 works for the proof of this theorem except that for 0 ≤ η + θ < 1, we have[

G1−η−θ(t)
]∇ ≥ −(1− η − θ)

z(t)

[G(t)]η+θ
.

□

Remark 4. The nabla Bennett-Leindler type inequalities (25)-(28) obtained for
ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 are complements and generalizations of the nabla
Bennett-Leindler type inequalities given in [28, Theorem 3.1] for 0 < ζ < 1, η = 0
and θ ≤ 0.

Corollary 2. From inequalities (25)-(28) obtained by the nabla calculus, we can
get the dual inequalities in the delta setting by replacing Gρ, G,Hρ, H presented in
Theorem 1 by G,Gσ, H,Hσ defined in (23), repectively.

Let z and h be nonnegative functions and G and H be defined as in (23). For

a constant M2 > 0, let us assume that 1 ≤ G(t)

Gσ(t)
≤ 1

M2
for t ∈ (a,∞)T. In

this case for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1, the nabla Bennett-Leindler type
inequalities (25)-(28) become novel delta Bennett-Leindler type inequalities, two of
which obtained from (26) and (28) can be written as follows∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∆t ≥

[
M2

η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∆t

and ∫ ∞

a

z(t)[H(t)]η+ζ

[Gσ(t)]η+θ
∆t ≥

[
η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[Gσ(t)]η+θ− 1
ζ

∆t,

respectively.
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The delta variants of the nabla Bennett-Leindler type inequalities (25)-(28) ob-
tained for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 are complements and generaliza-
tions of the delta Bennett-Leindler type inequalities given in [55, Theorem 2.1] for
0 < ζ < 1, η = 0 and θ ≤ 0.

Remark 5. If the time scale is the set of real numbers, then for all t ∈ R, the back-
ward jump operator results in ρ(t) = t and L2 = 1 in (25)-(28). Hence inequalities
(25) and (27) as well as inequalities (26) and (28) coincide and their delta versions
become exactly the same inequalities as them. Therefore together with their coin-
cident inequalities, inequalities (25) and (26) reduce to the following inequalities
as ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥ η + ζ

1− η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G(t)]η+θ−1
dt

and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥

[
η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

dt,

respectively, where ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 and the functions G and H are
defined as in (24).

For the continuous case, when 0 < ζ < 1, η = 0 and θ ≤ 0, the first Bennett-
Leindler type inequalities were established in [55, Remark 1] and [28, Remark 3.2]
for the given aforementioned functions G and H. These inequalities are extended
to the cases ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 by the above novel continuous
Bennett-Leindler type inequalities.

Remark 6. If the time scale is the set of natural numbers, then for all t ∈ N, the
backward jump operator results in ρ(t) = t− 1 in (25)-(28). Suppose that the series
G and H are defined as in Remark 3. For a constant L2 > 0, let us assume that

1 ≤ G(t− 1)

G(t)
≤ 1

L2
. For a = 0, ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1, in the set of

natural numbers, inequalities (25)-(28) become novel discrete Bennett-Leindler type
inequalities, two of which obtained from (26) and (28) can be written as follows

∞∑
t=1

z(t)[H(t− 1)]η+ζ

[G(t− 1)]η+θ
≥
[
L2

η + ζ

1− η − θ

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t− 1)]η+ζ− 1
ζ

[G(t− 1)]η+θ− 1
ζ

and
∞∑
t=1

z(t)[H(t− 1)]η+ζ

[G(t)]η+θ
≥
[

η + ζ

1− η − θ

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t− 1)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

,

respectively.
For the discrete case, when 0 < ζ < 1, η = 0 and θ ≤ 0, the first Bennett-

Leindler type inequalities were established in [55, Remark 2] and [28, Remark 3.3]
for the given aforementioned series G and H. These inequalities are extended to the
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cases ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 by the above novel discrete Bennett-Leindler
type inequalities.

The next theorem, which is proven for ζ > 1, η ≥ 0 and η + θ ≤ 0, provides
complements and generalizations of some of the abovementioned Bennett-Leindler
type inequalities given for 0 < ζ < 1, η = 0 and η + θ ≤ 0. These previous
Bennett-Leindler type inequalities are listed as follows:

(a) The discrete inequality (5) obtained by Copson [15, Theorem 2.3] and by
Bennett [10, Corollary 1] or Leindler [35, Proposition 6].

(b) The continuous inequality (8) obtained by Hardy et al. [26, Theorem 337]
and the continuous inequality (9) obtained by Copson [16, Theorem 4].

(c) The delta counterpart of the nabla inequality (13) in Theorem 2 obtained
by Saker et al. [55, Theorem 2.3].

(d) The nabla inequality (13) in Theorem 2 obtained by Kayar et al. [28, The-
orem 3.9].

Theorem 7. Let the fuctions z, h,G and H be defined as in Theorem 2. For a

constant L3 > 0, assume that
G(t)

G
ρ
(t)

≤ L3 for t ∈ (a,∞)T. Let ζ > 1, η ≥ 0 be real

constants. If η + θ ≤ 0, then we have

(1)∫ ∞

a

z(t)[H(t)]η+ζ

[G
ρ
(t)]η+θ

∇t ≥ Lη+θ
3 (η + ζ)

1− η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G
ρ
(t)]η+θ−1

∇t, (29)

∫ ∞

a

z(t)[H(t)]η+ζ

[G
ρ
(t)]η+θ

∇t ≥

[
Lη+θ
3 (η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G
ρ
(t)]η+θ− 1

ζ

∇t.

(30)
(2) ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≥ η + ζ

1− η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G
ρ
(t)]η+θ−1

∇t, (31)

∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≥

[
Lη+θ−1
3 (η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∇t.

(32)

Proof. The same methodology used in the proof of [28, Theorem 3.9] works for the
proof of this theorem except some steps.

(1) We start by the following equation similar to (3.11) in the proof of [28,
Theorem 3.9] as∫ ∞

a

z(t)[H(t)]η+ζ

[G
ρ
(t)]η+θ

∇t =

∫ ∞

a

uρ(t)

{
−
[
H

η+ζ
(t)
]∇}

∇t, (33)
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where u(t) =

∫ t

a

z(s)

[G
ρ
(s)]η+θ

∇s. Observe that since η + ζ > 1,

− [H
η+ζ

(t)]∇ ≥ (η + ζ)z(t)h(t)[H(t)]η+ζ−1, (34)

which is different than (3.12) in the proof of [28, Theorem 3.9]. In our case,
when η + θ ≤ 0, since[
G

1−η−θ
(t)
]∇

≤ (1− η − θ)
z(t)

[G(t)]η+θ
≤ (1− η − θ)

z(t)

Lη+θ
3 [G

ρ
(t)]η+θ

,

using (34) and

uρ(t) =

∫ ρ(t)

a

z(s)∇s

[G
ρ
(s)]η+θ

≥
∫ ρ(t)

a

Lη+θ
3

[
G

1−η−θ
(s)
]∇

∇s

1− η − θ
=

Lη+θ
3 [G

ρ
(t)]1−η−θ

1− η − θ

in (33) implies the desired result (29). In order to obtain inequality (30), we
apply reversed Hölder inequality (16) to inequality (29) with the constants
1

ζ
< 1 and

1

1− ζ
< 0.

(2) When the above process is repeated for the left hand side of inequality (31)

with u(t) =

∫ t

a

z(s)

[G(s)]η+θ
∇s, the desired results can be obtained.

□

Remark 7. The nabla Bennett-Leindler type inequalities (29)-(32) obtained for
ζ > 1, η ≥ 0 and η + θ ≤ 0 are complements and generalizations of the nabla
Bennett-Leindler type inequalities given in [28, Theorem 3.9] for 0 < ζ < 1, η = 0
and θ ≤ 0.

Corollary 3. From inequalities (29)-(32) obtained by the nabla calculus, we can

get the dual inequalities in the delta setting by replacing G
ρ
, G,H

ρ
, H presented in

Theorem 2 by G,G
σ
, H,H

σ
defined as

G(t) =

∫ t

a

z(s)∆s and H(t) =

∫ ∞

t

z(s)h(s)∆s, (35)

respectively.
Let z and h be nonnegative functions and G and H be defined as in (35). For a

constant M3 > 0, let us assume that
G

σ
(t)

G(t)
≤ M3 for t ∈ (a,∞)T. In this case for

ζ > 1, η ≥ 0 and η + θ ≤ 0, the nabla Bennett-Leindler type inequalities (29)-(32)
become novel delta Bennett-Leindler type inequalities, two of which obtained from
(30) and (32) can be written as follows∫ ∞

a

z(t)[H
σ
(t)]η+ζ

[G(t)]η+θ
∆t ≥

[
Mη+θ

3 (η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H
σ
(t)]η+ζ− 1

ζ

[G(t)]η+θ− 1
ζ

∆t
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and∫ ∞

a

z(t)[H
σ
(t)]η+ζ

[G
σ
(t)]η+θ

∆t ≥

[
Mη+θ−1

3 (η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H
σ
(t)]η+ζ− 1

ζ

[G
σ
(t)]η+θ− 1

ζ

∆t,

respectively.
The delta variants of the nabla Bennett-Leindler type inequalities (29)-(32) ob-

tained for ζ > 1, η ≥ 0 and η + θ ≤ 0 are complements and generalizations of
the delta Bennett-Leindler type inequalities given in [55, Theorem 2.3] for 0 < ζ <
1, η = 0 and θ ≤ 0.

Remark 8. If the time scale is the set of real numbers, then for all t ∈ R, the back-
ward jump operator results in ρ(t) = t and L3 = 1 in (29)-(32). Hence inequalities
(29) and (31) as well as inequalities (30) and (32) coincide and their delta versions
become exactly the same inequalities as them. Therefore together with their coin-
cident inequalities, inequalities (29) and (30) reduce to the following inequalities
as ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥ η + ζ

1− η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G(t)]η+θ−1
dt

and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥

[
η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

dt,

respectively, where ζ > 1, η ≥ 0 and η + θ ≤ 0 and the functions G and H are
defined as

G(t) =

∫ t

a

z(s)ds and H(t) =

∫ ∞

t

z(s)h(s)ds. (36)

These novel inequalities complement and generalize the continuous inequality (8)
obtained by Hardy et al. [26, Theorem 337] for 0 < ζ < 1, η = 0 and θ = ζ and the
continuous inequality (9) obtained by Copson [16, Theorem 4] for 0 < ζ < 1, η = 0
and θ < 1 to the cases ζ > 1, η ≥ 0 and η + θ ≤ 0.

Remark 9. If the time scale is the set of natural numbers, then for all t ∈ N, the
backward jump operator results in ρ(t) = t− 1 in (29)-(32).

Using G(t) =

∫ t

a

z(s)∇s =
t∑

k=a+1

z(k), we have G
ρ
(t) = G(t − 1) =

t−1∑
k=a+1

z(k).

Moreover H(t) =

∞∑
k=t+1

z(k)f(k). For a constant L3 > 0, let us assume that

G(t)

G(t− 1)
≤ L3. For a = 0, ζ > 1, η ≥ 0, and η + θ ≤ 0, in the set of nat-

ural numbers, inequalities (29)-(32) become novel discrete Bennett-Leindler type
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inequalities, two of which obtained from (30) and (32) can be written as follows

∞∑
t=1

z(t)[H(t)]η+ζ

[G(t− 1)]η+θ
≥

[
Lη+θ
3 (η + ζ)

1− η − θ

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t− 1)]η+θ− 1
ζ

and

∞∑
t=1

z(t)[H(t)]η+ζ

[G(t)]η+θ
≥

[
Lη+θ−1
3 (η + ζ)

1− η − θ

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

,

respectively.
The discrete Bennett-Leindler type inequality (5) obtained by Copson [15, The-

orem 2.3] and by Bennett [10, Corollary 1] or Leindler [35, Proposition 6] for
0 < ζ < 1, η = 0, θ < 0 is complemented and generalized to the cases ζ > 1, η ≥
0, η + θ ≤ 0 by Theorem 7 and particularly by this remark.

The next theorem, which is proven for ζ > 1, η ≥ 0 and 0 ≤ η+ θ < 1, provides
complements and generalizations of some of the abovementioned Bennett-Leindler
type inequalities given for 0 < ζ < 1, η ≥ 0 and η + θ ≤ 0. These previous
Bennett-Leindler type inequalities are listed as follows:

(a) The discrete inequality (4) obtained by Copson [15, Theorem 2.3].
(b) The continuous inequality (8) obtained by Hardy et al. [26, Theorem 337]

and the continuous inequality (9) obtained by Copson [16, Theorem 4].
(c) The delta analogue of the inequality (13) in Theorem 2 obtained by Saker

et al. [55, Theorem 2.3].
(d) The nabla inequality (13) in Theorem 2 obtained by Kayar et al. [28, The-

orem 3.9].

Theorem 8. Let the functions z, h,G and H be defined as in Theorem 2. For

a constant L4 > 0, let us assume that 1 ≤ G(t)

G
ρ
(t)

≤ 1

L4
for t ∈ (a,∞)T. Let

0 < ζ < 1, η ≥ 0 be real constants. If 0 ≤ η + θ < 1, then we have

(1)∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≥ Lη+θ

4 (η + ζ)

1− η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G
ρ
(t)]η+θ−1

∇t, (37)

∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≥

[
L4(η + ζ)

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∇t. (38)

(2) ∫ ∞

a

z(t)[H(t)]η+ζ

[G
ρ
(t)]η+θ

∇t ≥ η + ζ

1− η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G
ρ
(t)]η+θ−1

∇t, (39)

∫ ∞

a

z(t)[H(t)]η+ζ

[G
ρ
(t)]η+θ

∇t ≥
[

η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G
ρ
(t)]η+θ− 1

ζ

∇t. (40)
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Proof. The same methodology used in the proofs of [28, Theorem 3.9] and Theorem
7 works for the proof of this theorem except that for 0 ≤ η + θ < 1, we have[

G
1−η−θ

(t)
]∇

≤ (1− η − θ)
z(t)

[G
ρ
(t)]η+θ

.

□

Remark 10. The nabla Bennett-Leindler type inequalities (37)-(40) obtained for
ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 are complements and generalizations of the nabla
Bennett-Leindler type inequalities given in [28, Theorem 3.9] for 0 < ζ < 1, η = 0
and θ ≤ 0.

Corollary 4. From inequalities (37)-(40) obtained by the nabla calculus, we can

get the dual inequalities in the delta setting by replacing G
ρ
, G,H

ρ
, H presented in

Theorem 2 by G,G
σ
, H,H

σ
defined in (35), repectively.

Let z and h be nonnegative functions and G and H be defined as in (35). For

a constant M4 > 0, let us assume that 1 ≤ G
σ
(t)

G(t)
≤ 1

M4
for t ∈ (a,∞)T. In

this case for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1, the nabla Bennett-Leindler type
inequalities (37)-(40) become novel delta Bennett-Leindler type inequalities, two of
which obtained from (38) and (40) can be written as follows∫ ∞

a

z(t)[H
σ
(t)]η+ζ

[G
σ
(t)]η+θ

∆t ≥
[
M4

η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H
σ
(t)]η+ζ− 1

ζ

[G
σ
(t)]η+θ− 1

ζ

∆t

and ∫ ∞

a

z(t)[H
σ
(t)]η+ζ

[G(t)]η+θ
∆t ≥

[
η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H
σ
(t)]η+ζ− 1

ζ

[G(t)]η+θ− 1
ζ

∆t,

respectively.
The delta variants of the nabla Bennett-Leindler type inequalities (37)-(40) ob-

tained for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 are complements and generaliza-
tions of the delta Bennett-Leindler type inequalities given in [55, Theorem 2.3] for
0 < ζ < 1, η = 0 and θ ≤ 0.

Remark 11. If the time scale is the set of real numbers, then for all t ∈ R,
the backward jump operator results in ρ(t) = t and L4 = 1 in (37)-(40). Hence
inequalities (37) and (39) as well as inequalities (38) and (40) coincide and their
delta versions become exactly the same inequalities as them. Therefore together
with their coincident inequalities, inequalities (37) and (38) reduce to the following
inequalities as∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥ η + ζ

1− η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G(t)]η+θ−1
dt
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and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥

[
η + ζ

1− η − θ

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

dt,

respectively, where ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 and the functions G and H are
defined as in (36).

These novel inequalities complement and generalize the continuous inequality (8)
obtained by Hardy et al. [26, Theorem 337] for 0 < ζ < 1, η = 0 and θ = ζ and the
continuous inequality (9) obtained by Copson [16, Theorem 4] for 0 < ζ < 1, η = 0
and θ < 1 to the cases ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1.

Remark 12. If the time scale is the set of natural numbers, then for all t ∈ N,
the backward jump operator results in ρ(t) = t − 1 in (37)-(40). Suppose that the
series G and H are defined as in Remark 9. For a constant L4 > 0, let us assume

that
G(t)

G(t− 1)
≤ 1

L4
. For a = 0, ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1, in the set of

natural numbers, inequalities (37)-(40) become novel discrete Bennett-Leindler type
inequalities, two of which obtained from (38) and (40) can be written as follows

∞∑
t=1

z(t)[H(t)]η+ζ

[G(t)]η+θ
≥
[
L4

η + ζ

1− η − θ

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

and
∞∑
t=1

z(t)[H(t)]η+ζ

[G(t− 1)]η+θ
≥
[

η + ζ

1− η − θ

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t− 1)]η+θ− 1
ζ

,

respectively.
The discrete Bennett-Leindler type inequality (4) obtained by Copson [15, The-

orem 2.3] for 0 < ζ < 1, η = 0, 0 ≤ θ < 1 is complemented and generalized to the
case ζ > 1, η ≥ 0, 0 ≤ η + θ < 1 by Theorem 8 and particularly by this remark.

The next theorem, which is proven for ζ > 1, η ≥ 0 and η + θ > 1, provides
complements and generalizations of some of the previous Bennett-Leindler type
inequalities given for 0 < ζ < 1, η = 0, θ > 1 or ζ > 1, η = 0, θ = ζ. These
previous Bennett-Leindler type inequalities are listed as follows:

(a) The discrete inequality (6) obtained by Copson [15, Theorem 1.3] and Ben-
nett [10, Corollary 3] or Leindler [35, Proposition 7] as well as the discrete
inequality (7) obtained by Renaud [45, Theorem 1].

(b) The continuous inequality (10) obtained by Copson [16, Theorem 2] and
the continuous inequality (11) obtained by Renaud in [45, Theorem 3].

(c) The delta counterpart of the nabla inequality (14) in Theorem 3 obtained
by Saker et al. [55, Theorem 2.4].

(d) The nabla inequality (14) in Theorem 3 obtained by Kayar et al. [28, The-
orem 3.12].
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Theorem 9. Suppose that the functions z, h,G and H are defined as in Theorem 3
and the constant L4 is defined as in Theorem 8. Let ζ > 1, η ≥ 0 be real numbers.
If η + θ > 1, then we have

(1)∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t ≥ Lη+θ

4 (η + ζ)

η + θ − 1

∫ ∞

a

z(t)h(t)[Hρ(t)]η+ζ−1

[G(t)]η+θ−1
∇t, (41)

∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t ≥

[
Lη+θ
4 (η + ζ)

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[Hρ(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∇t.

(42)
(2)∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G
ρ
(t)]η+θ

∇t ≥ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[Hρ(t)]η+ζ−1

[G(t)]η+θ−1
∇t, (43)

∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G
ρ
(t)]η+θ

∇t ≥

[
Lη+θ−1
4 (η + ζ)

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[Hρ(t)]η+ζ− 1
ζ

[G
ρ
(t)]η+θ− 1

ζ

∇t.

(44)

Proof. The same methodology used in the proof of [28, Theorem 3.12] works for
the proof of this theorem except some steps.

(1) We start by the following equation similar to (3.16) in the proof of [28,
Theorem 3.12] as∫ ∞

a

z(t)[Hρ(t)]η+ζ

[G(t)]η+θ
∇t =

∫ ∞

a

−u(t)
[
Hη+ζ(t)

]∇ ∇t, (45)

where u(t) =

∫ ∞

t

z(s)

[G(s)]η+θ
∇s. In our case, when η + θ > 1, since

[
G

1−η−θ
(t)
]∇

≥ −(η + θ − 1)
z(t)

[G
ρ
(t)]η+θ

≥ −(η + θ − 1)
z(t)

Lη+θ
4 [G(t)]η+θ

,

using (22) and

−u(t) =

∫ ∞

t

z(s)∇s

[G(s)]η+θ
≥
∫ ∞

t

−Lη+θ
4

[
G

1−η−θ
(s)
]∇

∇s

η + θ − 1
=

Lη+θ
4 [G(t)]1−η−θ

η + θ − 1

in (45) implies the desired result (41). In order to obtain inequality (42), we
apply reversed Hölder inequality (16) to inequality (41) with the constants
1

ζ
< 1 and

1

1− ζ
< 0.

(2) When the above process is repeated for the left hand side of inequality (43)

with u(t) =

∫ ∞

t

z(s)

[G
ρ
(s)]η+θ

∇s, the desired results can be obtained.
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□

Remark 13. The nabla Bennett-Leindler type inequalities (41)-(44) obtained for
ζ > 1, η ≥ 0 and η + θ > 1 are complements and generalizations of the nabla
Bennett-Leindler type inequalities given in [28, Theorem 3.12] for 0 < ζ < 1, η = 0
and θ > 1.

Corollary 5. From inequalities (41)-(44) obtained by the nabla calculus, we can

get the dual inequalities in the delta setting by replacing G
ρ
, G,Hρ, H presented in

Theorem 3 by G,G
σ
, H,Hσ defined in (35) and (23), repectively.

Let z and h be nonnegative functions and G and H be defined as in (35) and
(23), repectively, and the constant M4 be defined as in Corollary 4. In this case for
ζ > 1, η ≥ 0 and η + θ > 1, the nabla Bennett-Leindler type inequalities (41)-(44)
become novel delta Bennett-Leindler type inequalities, two of which obtained from
(42) and (44) can be written as follows∫ ∞

a

z(t)[H(t)]η+ζ

[G
σ
(t)]η+θ

∆t ≥

[
Mη+θ

4 (η + ζ)

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G
σ
(t)]η+θ− 1

ζ

∆t

and∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∆t ≥

[
Mη+θ−1

4 (η + ζ)

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∆t,

respectively.
The delta variants of the nabla Bennett-Leindler type inequalities (41)-(44) ob-

tained for ζ > 1, η ≥ 0 and η + θ > 1 are complements and generalizations of
the delta Bennett-Leindler type inequalities given in [55, Theorem 2.4] for 0 < ζ <
1, η = 0 and θ > 1.

Remark 14. If the time scale is the set of real numbers, then for all t ∈ R,
the backward jump operator results in ρ(t) = t and L4 = 1 in (41)-(44). Hence
inequalities (41) and (43) as well as inequalities (42) and (44) coincide and their
delta versions become exactly the same inequalities as them. Therefore together
with their coincident inequalities, inequalities (41) and (42) reduce to the following
inequalities as∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G(t)]η+θ−1
dt

and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥

[
η + ζ

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

dt.

respectively, where ζ < 1, η ≥ 0 and η + θ > 1 and the functions G and H are
defined as in (36) and (24), respectively.
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These novel inequalities complement and generalize the continuous inequality
(10) obtained by Copson [16, Theorem 2] for 0 < ζ < 1, η = 0 and θ > 1 and the
continuous inequality (11) obtained by Renaud in [45, Theorem 3] for ζ > 1, η = 0
and θ = ζ to the cases ζ > 1, η ≥ 0 and η + θ > 1.

Remark 15. If the time scale is the set of natural numbers, then for all t ∈ N, the
backward jump operator results in ρ(t) = t− 1 in (41)-(44). Let the constant L4 be
defined as in Remark 12. For a = 0, ζ > 1, η ≥ 0 and η + θ > 1, in the set of
natural numbers, inequalities (41)-(44) become novel discrete Bennett-Leindler type
inequalities, two of which obtained from (42) and (44) can be written as follows

∞∑
t=1

z(t)[H(t− 1)]η+ζ

[G(t)]η+θ
≥

[
Lη+θ
4 (η + ζ)

η + θ − 1

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t− 1)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

and

∞∑
t=1

z(t)[H(t− 1)]η+ζ

[G(t− 1)]η+θ
≥

[
Lη+θ−1
4 (η + ζ)

η + θ − 1

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t− 1)]η+ζ− 1
ζ

[G(t− 1)]η+θ− 1
ζ

,

respectively, where the series G and H are defined as in Remark 9 and Remark 3,
respectively.

The discrete Bennett-Leindler type inequality (6) obtained by Copson [15, Theo-
rem 1.3] and Bennett [10, Corollary 3] or Leindler [35, Proposition 7] for 0 < ζ <
1, η = 0, θ > 1 as well as the discrete inequality (7) obtained by Renaud [45, The-
orem 1] for ζ > 1, η = 0, θ = ζ are complemented and generalized to the cases
ζ > 1, η ≥ 0, η + θ > 1 by Theorem 9 and particularly by this remark.

The next theorem, which is proven for ζ > 1, η ≥ 0 and η + θ > 1, provides
complements and generalizations of some of the previous Bennett-Leindler type
inequalities given for 0 < ζ < 1, η = 0 and θ > 1. These previous Bennett-Leindler
type inequalities are listed as follows:

(a) The discrete inequalities obtained by Saker et al. [55, Remark 4] and by
Kayar et al. [28, Remark 3.8].

(b) The continuous inequalities obtained by Saker et al. [55, Remark 3] and by
Kayar et al. [28, Remark 3.7].

(c) The delta counterpart of the nabla inequality (15) in Theorem 4 obtained
by Saker et al. [55, Theorem 2.2].

(d) The nabla inequality (15) in Theorem 4 obtained by Kayar et al. [28, The-
orem 3.4].

Theorem 10. Suppose that the functions z, h,G and H are defined as in Theorem
4 and the constant L2 is defined as in Theorem 6. Let ζ > 1, η ≥ 0 be real numbers.
If η + θ > 1, then we have
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(1)∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
∇t ≥ Lη+θ

2 (η + ζ)

η + θ − 1

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gρ(t)]η+θ−1
∇t, (46)

∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
∇t ≥

[
Lη+θ
2 (η + ζ)

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[Gρ(t)]η+θ− 1
ζ

∇t.

(47)
(2) ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≥ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gρ(t)]η+θ−1
∇t, (48)

∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≥

[
Lη+θ−1
2 (η + ζ)

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

∇t.

(49)

Proof. The same methodology used in the proof of [28, Theorem 3.4] works for the
proof of this theorem except some steps.

(1) We start by the following equation similar to (3.7) in the proof of [28,
Theorem 3.4] as∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
∇t =

∫ ∞

a

uρ(t)

{
−
[
H

η+ζ
(t)
]∇}

∇t, (50)

where u(t) =

∫ t

a

z(s)

[Gρ(s)]η+θ
∇s. In our case, when η + θ > 1, since

[
G1−η−θ(t)

]∇ ≤ (η + θ − 1)
z(t)

[G(t)]η+θ
≤ (η + θ − 1)

z(t)

Lη+θ
2 [Gρ(t)]η+θ

,

using (34) and

uρ(t) =

∫ ρ(t)

a

z(s)∇s

[Gρ(s)]η+θ
≥
∫ ρ(t)

a

Lη+θ
2

[
G1−η−θ(s)

]∇ ∇s

η + θ − 1
=

Lη+θ
2 [Gρ(t)]1−η−θ

η + θ − 1

in (50) implies the desired result (46). In order to obtain inequality (47), we
apply reversed Hölder inequality (16) to inequality (46) with the constants
1

ζ
< 1 and

1

1− ζ
< 0.

(2) When the above process is repeated for the left hand side of inequality (48)

with u(t) =

∫ t

a

z(s)

[G(s)]η+θ
∇s, the desired results can be obtained.

□
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Remark 16. The nabla Bennett-Leindler type inequalities (46)-(49) obtained for
ζ > 1, η ≥ 0 and η + θ > 1 are complements and generalizations of the nabla
Bennett-Leindler type inequalities given in [28, Theorem 3.4] for 0 < ζ < 1, η = 0
and θ > 1.

Corollary 6. From inequalities (46)-(49) obtained by the nabla calculus, we can

get the dual inequalities in the delta setting by replacing Gρ, G,H
ρ
, H presented in

Theorem 4 by G,Gσ, H,H
σ
defined in (23) and (35), repectively.

Let z and h be nonnegative functions and H be defined as in (23) and (35),
repectively, and the constant M2 be defined as in Corollary 2. In this case for
ζ > 1, η ≥ 0 and η + θ > 1, the nabla Bennett-Leindler type inequalities (46)-(49)
become novel delta Bennett-Leindler type inequalities, two of which obtained from
(47) and (49) can be written as follows∫ ∞

a

z(t)[H
σ
(t)]η+ζ

[G(t)]η+θ
∆t ≥

[
Mη+θ

2 (η + ζ)

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H
σ
(t)]η+ζ− 1

ζ

[G(t)]η+θ− 1
ζ

∆t

and∫ ∞

a

z(t)[H
σ
(t)]η+ζ

[Gσ(t)]η+θ
∆t ≥

[
Mη+θ−1

2 (η + ζ)

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H
σ
(t)]η+ζ− 1

ζ

[Gσ(t)]η+θ− 1
ζ

∆t,

respectively. The delta variants of the nabla Bennett-Leindler type inequalities (46)-
(49) obtained for ζ > 1, η ≥ 0 and η + θ > 1 are complements and generalizations
of the delta Bennett-Leindler type inequalities given in [55, Theorem 2.2] for 0 <
ζ < 1, η = 0 and θ > 1.

Remark 17. If the time scale is set of real numbers, then for all t ∈ R, the back-
ward jump operator results in ρ(t) = t and L2 = 1 in (46)-(49). Hence inequalities
(46) and (48) as well as inequalities (47) and (49) coincide and their delta versions
become exactly the same inequalities as them. Therefore together with their coin-
cident inequalities, inequalities (46) and (47) reduce to the following inequalities
as ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[G(t)]η+θ−1
dt

and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
dt ≥

[
η + ζ

η + θ − 1

]1/ζ ∫ ∞

a

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

dt,

respectively, where ζ > 1, η ≥ 0 and η + θ > 1 and the functions G and H are
defined as in (24) and (36), repectively.

For the continuous case, when 0 < ζ < 1, η = 0 and θ > 1, the first Bennett-
Leindler type inequalities were established in [55, Remark 3] and [28, Remark 3.7]
for the given aforementioned functions G and H. By this remark, these inequalities
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are extended to the cases ζ > 1, η ≥ 0 and η+ θ > 1 by the above novel continuous
Bennett-Leindler type inequalities.

Remark 18. If the time scale is the set of natural numbers, then for all t ∈ N, the
backward jump operator results in ρ(t) = t − 1 in (46)-(49). Let the constant L2

be defined as in Remark 5. For a = 0, ζ > 1, η ≥ 0 and η + θ > 1, in the set of
natural numbers, inequalities (46)-(49) become novel discrete Bennett-Leindler type
inequalities, two of which obtained from (47) and (49) can be written as follows

∞∑
t=1

z(t)[H(t)]η+ζ

[G(t− 1)]η+θ
≥

[
Lη+θ
2 (η + ζ)

η + θ − 1

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t− 1)]η+θ− 1
ζ

and

∞∑
t=1

z(t)[H(t)]η+ζ

[G(t)]η+θ
≥

[
Lη+θ−1
2 (η + ζ)

η + θ − 1

]1/ζ ∞∑
t=1

z(t)h1/ζ(t)[H(t)]η+ζ− 1
ζ

[G(t)]η+θ− 1
ζ

,

respectively, where the series H and G are defined as in Remark 9 and Remark 3,
respectively.

For the discrete case, when 0 < ζ < 1, η = 0 and θ > 1, the first Bennett-
Leindler type inequalities were established in [55, Remark 4] and [28, Remark 3.8]
for the given aforementioned series G and H. By this remark, these inequalities
are extended to the cases ζ > 1, η ≥ 0 and η + θ > 1 by the above novel discrete
Bennett-Leindler type inequalities.
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plications, Birkhäuser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-
0201-1

[13] Bohner, M., Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser
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[34] Lefèvre, P., A short direct proof of the discrete Hardy inequality, Arch. Math. (Basel)., 114(2)

(2020), 195-198. https://doi.org/10.1007/s00013-019-01395-6

[35] Leindler, L., Some inequalities pertaining to Bennett’s results, Acta Sci. Math. (Szeged).,
58(1-4) (1993), 261-279.

[36] Leindler, L., Further sharpening of inequalities of Hardy and Littlewood, Acta Sci. Math.,

54(3–4) (1990), 285–289.
[37] Liao, Z.-W., Discrete Hardy-type inequalities, Adv. Nonlinear Stud., 15(4) (2015), 805-834.

https://doi.org/10.1515/ans-2015-0404

[38] Masmoudi, N., About the Hardy Inequality, in: An Invitation to Mathematics. From Com-
petitions to Research, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-19533-

4 11
[39] Nikolidakis, E. N., A sharp integral Hardy type inequality and applications to

Muckenhoupt weights on R, Ann. Acad. Sci. Fenn. Math., 39(2) (2014), 887-896.

https://doi.org/10.5186/aasfm.2014.3947
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Şttiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 45(1) (1999), 103-114.

[43] Pelen, N. N., Hardy-Sobolev-Mazya inequality for nabla time scale calculus, Eskişehir Tech-
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