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This paper presents the nonlinear systems of Volterra-type fractional integro-differential equation solutions through a Chebyshev
pseudospectral method. The proposed method is based on the Caputo fractional derivative. The results that we get show the
accuracy and reliability of the present method. Different nonlinear systems have been solved; the solutions that we get are
compared with other methods and the exact solution. Also, from the presented figures, it is easy to conclude that the CPM
error converges quickly as compared to other methods. Comparing the exact solution and other techniques reveals that the
Chebyshev pseudospectral method has a higher degree of accuracy and converges quickly towards the exact solution.
Moreover, it is easy to implement the suggested method for solving fractional-order linear and nonlinear physical problems
related to science and engineering.

1. Introduction

Fractional calculus has a long history as classical calculus.
The concept of fractional calculus arouse when Leibnitz used
a proper representation dnf /dxn for the nth derivative in his
publications. L’hopital raises a question on the particular
notation on what happens if “n” is a noninteger. It was the
beginning of fractional calculus [1]. Recently, mathemati-
cians focused on fractional calculus due to its numerous
applications in every field of science: viscoelastic materials
[2], economics [3], continuum and statistical mechanics
[4], dynamics of interfaces between soft nanoparticles
and rough substrates [5], solid mechanics [6], and much
more [7–14].

Mathematical formulations solve many problems of
nature with the help of converting the physical phenomena
to the equation form. Differential equations (DEs) are
among those that play the main role in modeling various
phenomena. However, some problems are complex and can-
not be handled with the help of a differential equation. In
this regard, the researchers utilized fractional differential
equations (FDEs) that model the phenomenon more accu-
rately than differential equations having order integers.
Nowadays, FDEs got the importance of real-world modeling
problems: such as electrode-electrolyte polarization [15],
electrochemistry of corrosion [16], circuit systems [17],
optics and signal processing [18], heat conduction [19], dif-
fusion wave [20], control theory of dynamical systems [21],
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fluid flow [22], probability and statistics [23, 24], and so on
(see [25–28]).

The role of fractional integral and integrodifferential
equations is found in every field of engineering and science.
When a physical phenomenon is modeled under the differ-
ential equation, it finally gives a differential equation, an
integral equation, or an integrodifferential equation. Some
applications of these types of equations are nanohydrody-
namics [29], glass-forming process [30], wind ripple in the
desert [31], and drop-wise condensation [32]. The analytical
solution of integral and integrodifferential equations does
not exist in most cases. Even if it exists in certain cases, it
is hard to find. Different numerical methods have been
developed for finding an approximate solution of integral
and integro-differential equations. The most common
among these methods are the Chebyshev polynomials [33],
Haar wavelet [34], triangular function method [35], colloca-
tion method [36], Legendre wavelet operational method
[37], Taylor series expansion method [38], homotopy per-
turbation method [39], reproducing kernel Hilbert space
method [40], Adomian decomposition method [41], Euler
wavelet method [42], variational iteration method [43],
spectral collocation method [44], least square method [45],
homotopy analysis method [46], and differential transform
method [47].

We apply Chebyshev pseudospectral method (CPM) to
solve nonlinear Volterra integro-differential equation sys-
tems in the present work. CPM is a powerful technique for
solving linear and nonlinear problems. The obtained results
show the higher convergence rate of the present technique.
The solution that we get shows that CPM has good agree-
ment with the exact solution. Error analysis reveals the effi-
ciency of the proposed technique that CPM has greater
accuracy than other methods.

2. Definitions and Preliminary Concept

This unit shows the preliminary concept and some essential
definitions taken from fractional calculus and used in our
present research work.

2.1. Definition. The definition for fractional derivative by
Caputo of order α is showed by the following mathematical
expression [48]:

Dα j sð Þ = 1
Γ n − αð Þ

ðs
0
s − tð Þn−α−1 j nð Þ tð Þdt, ð1Þ

for n − 1 < α ≤ n, n ∈ℕ, s > 0, j ∈ℂm
−1.

2.2. Definition. The fractional derivatives by Jin-Hunan He
are described as [48]

Dα j sð Þ
Dsα

= Γ 1 + αð Þ lim
Δs=s1−s2⟶L

f s1ð Þ − f s2ð Þ
s1 − s2ð Þα , ð2Þ

where Δs does not approach zero.

2.3. Definition. Xiao-Jun explains derivatives having frac-
tional order as [48]

Dα
s j s0ð Þ = jα s0ð Þ = dα j sð Þ

dsα

����
s=s0

= lim
s⟶s0

Δα j sð Þ − j s0ð Þð Þ
s − s0ð Þα , ð3Þ

where

Δα j sð Þ − j s0ð Þð Þ ≅ Γ 1 + αð ÞΔ j sð Þ − j s0ð Þð Þ: ð4Þ

2.4. Definition. The integral operator by Riemann-Liouville
for order α is [48]

Iα j sð Þ = 1
Γ αð Þ

ðs
0
s − tð Þα−1 j tð Þdt: ð5Þ

The Caputo derivative operator and Riemann-Liouville
integral operator have the following properties

DαIα j sð Þ = j sð Þ,

IαDα j sð Þ = j sð Þ − 〠
n−1

k=0

j kð Þ 0+ð Þ
k!

sk, s ≥ 0 n − 1 < α < n:
ð6Þ

3. Chebyshev Pseudospectral Method (CPM)

The Chebyshev polynomials are defined in the ½−1, 1�
interval and can be described by the following recurrence
formula:

Rn+1 tð Þ = 2uRn sð Þ − Rn−1 sð Þ, n = 1, 2,⋯, ð7Þ

where

R0 sð Þ = 1,

R1 sð Þ = s:
ð8Þ

To apply the Chebyshev polynomials in the ½0, 1� inter-
val, we define the Chebyshev shifted polynomials R̂nðsÞ
which are defined in the manner of Chebyshev polyno-
mials RnðsÞ by relation

R̂n sð Þ = Rn 2s − 1ð Þ: ð9Þ

And the recurrence formula is as follows:

R̂n+1 sð Þ = 2 2s − 1ð ÞR̂n sð Þ − R̂n−1 sð Þ, n = 1, 2,⋯, ð10Þ

where

R̂0 sð Þ = 1,

R̂1 sð Þ = 2s − 1:
ð11Þ
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Table 1: Exact versus CPM solution of problem 1 at m = 10.

s Exact j sð Þ Exact k sð Þ CPM solution j sð Þ CPM solution k sð Þ
0 0.0000000000 1.0000000000 0.0000000000 1.0000000000

0.1 0.1001667500 1.0050041680 0.1001667500 1.0050041680

0.2 0.2013360025 1.0200667556 0.2013360025 1.0200667556

0.3 0.3045202934 1.0453385141 0.3045202934 1.0453385141

0.4 0.4107523258 1.0810723718 0.4107523258 1.0810723718

0.5 0.5210953054 1.1276259652 0.5210953054 1.1276259652

0.6 0.6366535821 1.1854652182 0.6366535821 1.1854652182

0.7 0.7585837018 1.2551690056 0.7585837018 1.2551690056

0.8 0.8881059821 1.3374349463 0.8881059821 1.3374349462

0.9 1.0265167257 1.4330863854 1.0265167253 1.4330863853

1.0 1.1752011936 1.5430806348 1.1752011918 1.5430806343

Table 2: Error comparison of CPM versus other methods of Section 4.1 at m = 10.

s Error jCPMð Þ Error kCPMð Þ Error jOTMð Þ Error kOTMð Þ
0 0:0000000000E + 00 0:0000000000E + 00 0:00E + 00 0:00E + 00

0.1 8:2692537238E − 17 1:4541999963E − 17 1:39E − 17 0:00E + 00

0.2 9:1822482293E − 16 1:6662883612E − 16 5:27E − 16 0:00E + 00

0.3 1:2443994903E − 15 2:2699378388E − 16 4:45E − 14 1:11E − 15

0.4 1:2607906760E − 15 2:3113111594E − 16 1:05E − 12 3:51E − 14

0.5 7:2897283903E − 16 1:2454060032E − 16 1:23E − 11 5:10E − 13

0.6 2:5175064758E − 13 5:5241090380E − 14 9:11E − 11 4:55E − 12

0.7 5:8189005235E − 12 1:3209327312E − 12 4:97E − 10 2:90E − 11

0.8 5:8725732247E − 11 1:3786485036E − 11 2:16E − 9 1:44E − 10

0.9 3:7796170567E − 10 9:1669608328E − 11 7:90E − 9 5:92E − 10

1.0 1:8157658168E − 09 4:5450903393E − 10 2:52E − 8 2:10E − 9
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Figure 1: The solution graph of example 1. (a) Exact solution and
(b) CPM solution.
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Figure 2: The solution graph of example 1. (a) Exact solution and
(b) CPM solution.
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A function jðsÞ ∈ L2½0, 1�, in terms of Chebyshev shifted
polynomials described as

j sð Þ = 〠
∞

n=1
cnR̂n sð Þ: ð12Þ
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Figure 5: The absolute error graph of Section 4.1 at a different
fractional order.
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Figure 6: The absolute error graph of Section 4.1 at a different
fractional order.
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Figure 4: CPM and OTM error graph of Section 4.1.
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Figure 3: CPM and OTM error graph of Section 4.1.
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The Chebyshev shifted polynomials first (m + 1) terms
are considered as

jm sð Þ = 〠
m

n=0
cnR̂n sð Þ,

dα

dsα
〠
m

n=0
cnR̂n sð Þ

 !
+ 〠

m

n=0
cnR̂n sð Þ +

ðs
u0

〠
m

n=0
cnR̂n sð Þ

 !
ds = g s, jð Þ:

ð13Þ

For finding the system of equations, we have

dα

dsα
〠
m

n=0
cnR̂n sið Þ

 !
+ 〠

m

n=0
cnR̂n sið Þ +

ðs
s0

〠
m

n=0
cnR̂n sið Þ

 !
du = g si, jð Þ:

ð14Þ

whereas

si =
i − 0:5
2k−1M

: ð15Þ

I solved the resultant system using maple software,
which provide CPM solution for the given problem.

4. Numerical Representation

4.1. Problem. Consider the nonlinear FIDE system having
B.Cs jð0Þ = 0, kð0Þ = 1

Dα j sð Þ + 1
2

dk
ds

� �2
−
ðs
0

s − tð Þk tð Þ + k tð Þj tð Þ½ �dt = 1,

Dαk sð Þ + sj sð Þ −
ðs
0

s − tð Þj tð Þ + k2 tð Þ� �
dt = 2s,

ð16Þ

having jðsÞ = sinh ðsÞ, kðsÞ = cosh ðsÞ as the exact solution
at α = 1.

The exact solution and numerical results obtained by
means of the proposed method are shown in Table 1. The
absolute error comparison of our method and those
obtained from OTM is given in Table 2. The behavior of
the exact solution and approximate solution (our method)
of this example when α = 1 is presented in Figures 1 and 2
whereas the error comparison of CPM and OTM can be
observed in Figures 3 and 4. The graphical representation
for different fractional order of α is seen in Figures 5 and 6
which confirm that the solution converge to the exact solu-
tion as the value of α converges from the fractional order
to the integer order.

Table 3: Exact and CPM solutions of Section 4.2 at m = 3.

s Exact j sð Þ Exact k sð Þ CPM solution j sð Þ CPM solution k sð Þ
0.05 0.047500000000000 −0.002375000000000 0.047500000050000 −0.002375000000000
0.15 0.127500000000000 −0.019125000000000 0.127500000100000 −0.019124999970000
0.25 0.187500000000000 −0.046875000000000 0.187500000100000 −0.046874999940000
0.35 0.227500000000000 −0.079625000000000 0.227500000100000 −0.079624999950000
0.45 0.247500000000000 −0.111375000000000 0.247500000000000 −0.111374999900000
0.55 0.247500000000000 −0.136125000000000 0.247500000000000 −0.136125000000000
0.65 0.227500000000000 −0.147875000000000 0.227500000000000 −0.147875000000000
0.75 0.187500000000000 −0.140625000000000 0.187500000000000 −0.140625000000000
0.85 0.127500000000000 −0.108375000000000 0.127500000000000 −0.108375000000000
0.95 0.047500000000000 −0.045125000000000 0.047499999999999 −0.045125000100000

Table 4: Error comparison of CPM versus other methods of Section 4.2.

s Error jCPMð Þ Error kCPMð Þ Error jSCMð Þ Error kSCMð Þ
0.05 5:0000000000E − 11 0:0000000000E + 00 8:17886E − 8 1:71222E − 7

0.15 1:0000000000E − 10 3:0000000000E − 11 4:14502E − 8 5:20012E − 8

0.25 1:0000000000E − 10 6:0000000000E − 11 3:00945E − 9 1:53079E − 7

0.35 1:0000000000E − 10 5:0000000000E − 11 5:66834E − 8 1:82626E − 7

0.45 0:0000000000E + 00 1:0000000000E − 10 3:81977E − 8 6:42170E − 7

0.55 0:0000000000E + 00 0:0000000000E + 00 3:16220E − 8 6:19236E − 7

0.65 0:0000000000E + 00 0:0000000000E + 00 6:05974E − 8 1:37882E − 7

0.75 0:0000000000E + 00 0:0000000000E + 00 9:63834E − 9 1:53242E − 7

0.85 0:0000000000E + 00 0:0000000000E + 00 4:55344E − 8 1:18939E − 8

0.95 5:0000000000E − 11 1:0000000000E − 10 8:32363E − 8 9:10621E − 8
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4.2. Problem. Consider the FIDE system with B.Cs jð0Þ =
jð1Þ = 0, kð0Þ = kð0Þ = 0

Dα j sð Þ + k2 sð Þ + s
2
dk
ds

−
ðs
0

s − tð Þk tð Þ + j tð Þk tð Þð Þdt = g2 sð Þ,

Dαk sð Þ + j2 sð Þ −
ðs
0

s − tð Þj tð Þ − k2 tð Þ + j2 tð Þ� �
dt = g1 sð Þ,

ð17Þ
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Figure 9: CPM and SCM error graph of Section 4.2.
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Figure 10: CPM and SCM error graph of Section 4.2.
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Figure 7: The solution graph of example 2. (a) Exact solution and
(b) CPM solution.
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Figure 8: The solution graph of example 2. (a) Exact solution and
(b) CPM solution.
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Figure 11: The solution graph of example 3. (a) Exact solution and
(b) CPM solution.
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Figure 12: The solution graph of example 3. (a) Exact solution and
(b) CPM solution.

Table 5: Exact versus CPM solution of Section 4.3 at m = 10.

s Exact j sð Þ Exact k sð Þ CPM solution j sð Þ CPM solution k sð Þ
0 1.0000000000 −1.0000000000 1.0000000000 −1.0000000000
0.1 1.2051709180 −1.0051709180 1.2051709180 −1.0051709180
0.2 1.4214027580 −1.0214027580 1.4214027580 −1.0214027580
0.3 1.6498588080 −1.0498588075 1.6498588080 −1.0498588075
0.4 1.8918246980 −1.0918246976 1.8918246980 −1.0918246976
0.5 2.1487212710 −1.1487212707 2.1487212710 −1.1487212707
0.6 2.4221188000 −1.2221188003 2.4221188000 −1.2221188003
0.7 2.7137527070 −1.3137527074 2.7137527070 −1.3137527074
0.8 3.0255409280 −1.4255409284 3.0255409280 −1.4255409284
0.9 3.3596031110 −1.5596031111 3.3596031111 −1.5596031109
1.0 3.7182818280 −1.7182818284 3.7182818284 −1.7182818275

Table 6: Error comparison of CPM versus other methods of Section 4.3 at m = 10.

s Error jCPMð Þ Error kCPMð Þ Error jOTMð Þ Error kOTMð Þ
0 0:0000000000E + 00 0:0000000000E + 00 0:00E + 00 0:00E + 00

0.1 8:1999412724E − 17 8:2624090006E − 17 2:22E − 16 0:00E + 00

0.2 3.8043301351E− 15 3:8490016915E − 15 4:44E − 16 6:66E − 16

0.3 1:9076326419E − 14 1:9470658817E − 14 4:55E − 14 4:55E − 14

0.4 3:8309289099E − 14 3:9767165526E − 14 1:09E − 12 1:09E − 12

0.5 5:6578756405E − 14 6:0124928716E − 14 1:28E − 11 1:28E − 11

0.6 3:2264909603E − 13 3:2822178282E − 13 9:57E − 11 9:57E − 11

0.7 6:8521655232E − 12 6:8380840814E − 12 5:26E − 10 5:26E − 10

0.8 7:2715580869E − 11 7:2515818424E − 11 2:30E − 9 2:30E − 9

0.9 4:8186768333E − 10 4:8069973992E − 10 8:49E − 9 8:49E − 9

1.0 2:3551879379E − 09 2:3502526547E − 9 2:73E − 8 2:73E − 8
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with the exact solution ðjðsÞ = s − s2, kðsÞ = s3 − s2Þ at α = 2,
where

g1 sð Þ = 7
6
s6 −

49
20

s5 +
4
3
s4 +

3
2
s3 − s2 − 2,

g2 sð Þ = s7

7
−
s6

3
+
19
12

s4 −
5
2
s3 + s2 + 6s − 2:

ð18Þ

In Table 3, we give the numerical values of the exact
solution and CPM solution for m = 3. The absolute errors

obtained by the present method are compared with SCM
in Table 4. We compare the actual and estimated solution
in Figures 7 and 8 which tells us that both the solutions
are quite close to each other. Also, Figures 9 and 10 dis-
play the error comparison of CPM and SCM which verify
that our method is in good agreement with the exact
solution.
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Figure 13: CPM and OTM error graph of Section 4.3.
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Figure 14: CPM and OTM error graph of Section 4.3.
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4.3. Problem. Consider the nonlinear FIDE system having
B.Cs jð0Þ = 1, j′ð0Þ = 2, kð0Þ = −1, and k′ð0Þ = 0

Dα j sð Þ + 1
2

dk
ds

� �2
−
1
2

ðs
0
j2 tð Þ + k2 tð Þ� �

dt = 1 −
1
3
s3,

Dαk sð Þ + sj sð Þ − 1
4

ðs
0
j2 tð Þ − k2 tð Þ� �

dt = s2 − 1,

ð19Þ

having jðsÞ = s + es, kðsÞ = s − es as the exact solution.
To solve this example, we implement the method sug-

gested in Section 4 for α = 2 with m = 10. The exact solution
and estimated solution by CPM are presented in Table 5.
The absolute error of our method and those obtained from
OTM are given in Table 6. In Figures 11 and 12, it is clear
that the numerical solution of the proposed method is in
good contact with the exact solution. In order to illustrate
the effectiveness of CPM, the error comparison with OTM
is shown in Figures 13 and 14. Also, in Figures 15 and 16,
we can obtain that as α⟶ 2 the estimated solution
approach to the exact solutions.

5. Conclusion

In this work, we implemented the Chebyshev pseudospectral
method for solving nonlinear fractional integral and integro-
differential equation systems. The proposed technique
reduces this type of systems to the solution of the system
of linear and nonlinear algebraic equations. Special attention
is given to study the convergence of the proposed method.
The results that we get by implementing the suggested tech-
nique are in excellent agreement with the exact solution and
show more accuracy than the solution obtained using other
methods. Also, from the presented figures, it is easy to con-
clude that the CPM error converges quickly as compared to
other methods. The computation work in this article is done
using Maple.
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