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Abstract In this paper, a new mathematical model involving the general form of Caputo fractional

derivative is studied for a real case of cholera outbreak. Fundamental properties of the new model

including the equilibrium points as well as the basic reproduction number are explored. Also, an

efficient approximation scheme on the basis of product-integration rule is established to solve the

new model. Several kernel functions for the general fractional derivative are tested, and the results

are compared with the real data of a cholera outbreak in Yemen. As a consequence, we find a spe-

cial case in which the aforesaid outbreak is described better, for the corresponding numerical sim-

ulations are closer to the real data than the other classical and fractional frameworks. Next, we

apply the most realistic model to investigate the effect of vaccination on the considered cholera out-

break. Simulation results show that earlier vaccination could reduce the number of infected individ-

uals effectively, so mortality would have been reduced considerably if the vaccination had been

performed earlier.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Cholera is a subject that concerns all human races. This infec-
tious illness prompts severe watery diarrhea. Diarrhea can be
such drastic that it leads within hours to intensive dehydration
and electrolyte unbalance. This may result in bruised and cold

skin, wrinkled hands and feet, sunken eyes, and diminished
skin elasticity. Symptoms begin two hours to five days after
the exposure. This illness is caused by eating unsafe food
and drinking unsafe water infected with a bacterium named
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Vibrio cholera [1]. This disease had been widespread in the US
before that the modern water and sewage treatment systems
omitted their spread via contaminated water [2]. Researchers

have estimated that every year, there are roughly 1:3 to 4:0 mil-
lion cholera cases in endemic countries, and 21000 to 143000
deaths occur worldwide due to this disease [3]. In 2010, cholera

was classified as a pandemic illness. Southeast Asia and Africa
are the areas with an ongoing risk of spreading the disease. The
risk of death amongst infectious persons is usually fewer than

five percent, but it may increase to fifty percent. Lack of treat-
ment facilities leads to higher death rates [4]. The largest out-
break of cholera in the history happened in Yemen [5].

Mathematical models can help public health interventions

by showing the likely outcome of an epidemic [6]. Also, these

models can project how infectious diseases progress [7].

Researchers in the field of mathematical modelling examined

several models for epidemic outbreaks. For instance, the

authors in [8] explored a stochastic norovirus epidemic model

with a time delay and random perturbations. In [9], a mathe-

matical model for cholera considering the vaccination effects

was proposed. In [10], Capasso and Paveri-Fontana suggested

a mathematical model for the 1973 cholera epidemic in the

European Mediterranean region. In 2017, the transmission

dynamic of cholera in Yemen was investigated by Nishiura

et al. [11]. A model containing optimal intervention strategies

for cholera control was formulated in [12], a study which pre-

sented the optimal quarantine approach for the minimization

of the number of infectious people. In this direction, another

relevant research can also be found in [13].

Mathematical models based on integer-order differential
equations explain the interactions between different parts of
a realistic system under consideration, but it is a traditional

approach in the concept of modelling [14]. Recently, there
has been much interest in developing mathematical models
by fractional-order differential equations (FDEs) [15]. The

FDEs are naturally related to the systems with memory that
exists in various real-world systems [16]. Over the past few
years, the theory and application of FDEs have widely been

explored by many researchers. In [17], a fractional description
of a prey-predator model was studied, and its existence theory
and numerical analysis were also investigated. In [18], the

authors formulated a fractional tuberculosis model and evalu-
ated the values of parameters according to the real clinical
cases of tuberculosis infections in Yemen from 2000 to 2019.
In [19], a local fractional Yang-Laplace decomposition method

was extended to solve a nonlinear system of local fractional
partial differential equations. In [20], a generalization of trun-
cated M-fractional derivative was investigated, and its applica-

tions to FDEs were analyzed. In [21], the authors established
some useful integral formulas by using fractional operators
with generalized p; qð Þ-Mathieu type series. In 2020, Evirgen

et al. [22] developed a comprehensive fractional analysis for

an HIV infection model of CD4þT cells. In [23], a fractional
model was considered for COVID-19 pandemic by taking into

account the fear effects of the media and social networks. For
the spread of COVID-19, a fractional model was also explored
in [24] based on nonlocal differential operators. Another rele-

vant study in the field of fractional calculus was performed in
[25] in which the authors introduced a fractional model for the
simulation of Ebola outbreak. In [26], a nonstandard finite dif-
ference scheme was employed for the modelling and synchro-
nization of fractional chaotic systems.

In 2016, Luchko and Yamamoto [27] suggested a novel dif-

ferential operator with a general kernel function. This degree-
of-freedom provides a broad range of applications due to the
existence of flexibility in choosing the kernel [28]. By changing

the kernel in the general derivative, various asymptotic beha-
viours are obtained. This fact helps to show the hidden fea-
tures of real-world systems more accurately than the

traditional fractional systems. Nonetheless, the properties
and applications of this new operator must be explored more
in practical situations, and some complete theorems must also
be developed to analyze this operator. Besides, some appropri-

ate analytical and numerical methods should be investigated to
solve the fractional equations including the aforesaid general
operator. Motivated by the above discussion, this research sug-

gests a novel mathematical model involving the general form
of Caputo fractional derivative for a real case of cholera out-
break. The novelty of this research comes from the fact that,

to the best of our knowledge, no previous study has analyzed
a mathematical model with the general form of fractional
derivative for the cholera disease, an advantage which

increases the degree-of-freedom by using different kernels
and various fractional orders in order to capture the hidden
aspects of biological system under investigation. The main
contributions of this research and the new achievements

obtained within this manuscript are summarized as follows:

– This paper addresses a new mathematical model of cholera

disease, which involves the general form of Caputo frac-
tional derivative.

– The fundamental characteristics of the new model are dis-

cussed in detail.
– To solve the suggested model, an effective approximation
technique on the basis of product-integration rule is

developed.
– Several specific cases of general kernel are considered, and
the effect of vaccination on the spread of cholera is also
investigated by means of the new model.

– Comparative results in this reseach show an obvious linkage
between the mathematical and biological mechanisms.

Consequently, we think the work carried out in this study
makes the research rich in the new direction of fractional cal-
culus and presents promising results for the analysis, control,

and prevention of cholera outbreak.
The rest of this paper is structured in the following way.

The elementary concepts of general fractional derivative are
given in Section 2. Section 3 focuses on the new fractional

model. In Section 4, the basic properties of the new model
are discussed. For the purpose of implementation, an efficient
numerical method is proposed in Section 5, and the analysis of

numerical results is also included in this section. Eventually, a
sum up for the paper is given in Section 6.

2. Preliminary remarks

In this section, we present a brief review of notations and pre-
liminaries for fractional derivatives and integrals in a new gen-

eral form.
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Definition 2.1 [27]. The left-sided fractional derivative of

Riemann-Liouville type in general sense is defined by

0D
q
t f tð Þ ¼

d

dt

Z t

0

f xð ÞjL t� xð Þdx; ð1Þ

and the general form of Caputo derivative is described as

C
0D

q
t f tð Þ ¼

Z t

0

f0 xð ÞjL t� xð Þdx; ð2Þ

where 0 < q < 1 demonstrates the fractional-order,
f : 0;þ1½ Þ�!R is an absolutely continuous function satisfying

f0 2 L1
loc 0;þ1ð Þ; 0 6 t 6 T < þ1, and the general kernel jL is

a locally integrable nonnegative function. The relation between
the Riemann-Liouville and Caputo fractional derivatives (1)
and (2) is also stated as [27]

0D
q
t f tð Þ ¼ C

0D
q
t f tð Þ þ jL tð Þf 0ð Þ: ð3Þ

Remark 2.1. The operators (1) and (2) are linear, so

0D
q
t c1f1 tð Þ þ c2f2 tð Þð Þ ¼ c1 0D

q
t f1 tð Þ þ c2 0D

q
t f2 tð Þ; ð4Þ

C
0D

q
t c1f1 tð Þ þ c2f2 tð Þð Þ ¼ c1

C
0D

q
t f1 tð Þ þ c2

C
0D

q
t f2 tð Þ: ð5Þ

Similarly, the right-sided general fractional derivatives are
described by [27]

tD
q
Tf tð Þ ¼

d

dt

Z T

t

f xð ÞjR x� tð Þdx; ð6Þ

t
CDq

Tf tð Þ ¼
Z T

t

f0 xð ÞjR x� tð Þdx; ð7Þ

where jR has the same properties as jL.

The above introduced general operators agree with the gen-
eralization in [29]. Thus, according to the analysis in [29], the
aforesaid operators satisfy the integration-by-parts formulas
in the following wayZ T

0

f xð Þ0Dq
xg xð Þdx ¼

Z T

0

g xð ÞxCDq
Tf xð Þdx; ð8Þ

Z T

0

f xð ÞC0Dq
xg xð Þdx ¼

Z T

0

g xð ÞxDq
Tf xð Þdx: ð9Þ

Remark 2.2. There exists a completely monotone function

mL tð Þ so as under some suitable conditions on the kernel
function jL tð Þ, the convolution jL tð Þ �mL tð Þ is equal to 1 [27],
i.e.,

jL tð Þ �mL tð Þ ¼
Z 1

0

jL t� xð ÞmL xð Þdx ¼ 1; t > 0: ð10Þ

Lemma 2.1 [27]. Suppose that f 2 Lloc
1 Rþð Þ; then we have

0I
q
t

C
0D

q
t f tð Þ

� � ¼ f tð Þ � f 0ð Þ; ð11Þ
where 0I
q
t indicates the Riemann-Liouville fractional integral in

general sense portrayed via

I
q
t f tð Þ ¼

Z t

0

f xð ÞmL t� xð Þdx: ð12Þ

There are some specific cases in agreement with the above-

expressed definitions:

� If we set jL tð Þ ¼ t�q

C 1�qð Þ, then mL becomes the power function

tq�1

C qð Þ. In this case, the general operators (1) and (2) are

demoted to the classical Riemann-Liouville and Caputo

fractional derivatives, respectively. Moreover, the integral
operator (12) is reduced to the Riemann-Liouville integral
[30].

� If we set jL tð Þ ¼ v qð Þ
1�q Eq

�q
1�q t

q
h i

, where Eq is a Mittag-Leffler

(ML) function and v qð Þ is a normalization function fulfill-
ing v 0ð Þ ¼ v 1ð Þ ¼ 1, then we obtain the nonlocal and non-

singular AB-Caputo derivative operator [31].

� If we set jL tð Þ ¼ v qð Þ
1�q exp

�q
1�q t
h i

, where v qð Þ is a normaliza-

tion function as above, then the Caputo-Fabrizio derivative

operator is obtained [32].

3. New mathematical model

In [1], Lemos-Paião et al. suggested a conceptual model for the
cholera disease, which effectively catched the time-line of a

cholera outbreak. Indeed, the authors in [1] formulated the
mathematical epidemic model of cholera including five compo-
nents as

S0 tð Þ ¼ K� lS tð Þ þ uR tð Þ � bS tð Þ
C tð ÞþqC tð Þ;

I0 tð Þ ¼ � a1 þ lþ cð ÞI tð Þ þ bS tð Þ
C tð ÞþqC tð Þ;

Q0 tð Þ ¼ � a2 þ lþ �ð ÞQ tð Þ þ cI tð Þ;
R0 tð Þ ¼ � uþ lð ÞR tð Þ þ �Q tð Þ;
C0 tð Þ ¼ �rC tð Þ þ hI tð Þ;

8>>>>>>><>>>>>>>:
ð13Þ

accompanying with the initial conditions

S 0ð Þ ¼ S0; I 0ð Þ ¼ I0; Q 0ð Þ ¼ Q0;

R 0ð Þ ¼ R0; C 0ð Þ ¼ C0; ð14Þ
where S0; I0;Q0;R0;C0 P 0. In this model, N tð Þ as the total
population at time t P 0 is partitioned into four categories.

The first-class contains susceptible individuals S tð Þ, the second
class includes I tð Þ as the infectious persons with symptoms, the
individuals in treatment through a quarantine are in the third

class and denoted by Q tð Þ, and the recovered persons R tð Þ are
in the final class. Additionally, C tð Þ represents the bacterial
concentration at time t. The parameter K > 0 shows the rate
of recruitment in the susceptible class, and l denotes natural

death rate. The coefficient b > 0 represents the absorbency
of the bacteria via taint sources. The infectious people can
adapt to stay in quarantine at a time frame subject to an

appropriate medicine at the rate c. The bacteria population
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half-saturation constant and the rate of losing immunity in the

recovered individuals are denoted by q and u, respectively. The
recovery rate of quarantined individuals is described by �. The
two parameters a1 and a2 denote the rates of disease-related

death in the persons that are contaminated and in quarantine,
respectively. Also, the parameter h shows the rate of bacterial
concentration increase, and r indicates the bacterial concentra-
tion decrease rate.

In 2018 [9], the model (13) was modified by considering dif-
ferent kinds of cholera’s treatment and adding a vaccination
class V tð Þ as follows

S0 tð Þ ¼ K� wþ lð ÞS tð Þ þ u1R tð Þ þ u2V tð Þ � bS tð Þ
C tð ÞþqC tð Þ;

I0 tð Þ ¼ � a1 þ lþ cð ÞI tð Þ þ bS tð Þ
C tð ÞþqC tð Þ;

Q0 tð Þ ¼ � a2 þ lþ �ð ÞQ tð Þ þ cI tð Þ;
R0 tð Þ ¼ � lþ u1ð ÞR tð Þ þ �Q tð Þ;
V0 tð Þ ¼ � u2 þ lð ÞV tð Þ þ wS tð Þ;
C0 tð Þ ¼ �rC tð Þ þ hI tð Þ;

8>>>>>>>>><>>>>>>>>>:
ð15Þ

where w P 0 shows the rate of vaccination in susceptible per-

sons. The rates of losing immunity in the recovered and vacci-
nated individuals are also denoted by u1 and u2, respectively.

The integer-order models (13) and (15) do not save memory
effects on themselves. To study the effects of memory in the

above-mentioned epidemic models, we modify the model (15)
to a fractional-order one, so we employ the general form of
Caputo fractional derivative instead of ordinary time-

derivatives in (15). Besides, we modify the fractional operator
via an auxiliary parameter k > 0 to avoid dimensional mis-
matching [33]. As a result, the new model takes the following

form

kq�1C
0D

q
t S tð Þ ¼ K� wþ lð ÞS tð Þ þ u1R tð Þ þ u2V tð Þ � bS tð Þ

C tð ÞþqC tð Þ;
kq�1C

0D
q
t I tð Þ ¼ � a1 þ lþ cð ÞI tð Þ þ bS tð Þ

C tð ÞþqC tð Þ;
kq�1C

0D
q
t Q tð Þ ¼ � a2 þ lþ �ð ÞQ tð Þ þ cI tð Þ;

kq�1C
0D

q
t R tð Þ ¼ � lþ u1ð ÞR tð Þ þ �Q tð Þ;

kq�1C
0D

q
t V tð Þ ¼ � u2 þ lð ÞV tð Þ þ wS tð Þ;

kq�1C
0D

q
t C tð Þ ¼ �rC tð Þ þ hI tð Þ;

8>>>>>>>>>><>>>>>>>>>>:
ð16Þ

accompanying with the initial conditions

S 0ð Þ ¼ S0; I 0ð Þ ¼ I0;Q 0ð Þ ¼ Q0;R 0ð Þ ¼ R0;V 0ð Þ ¼ V0;C 0ð Þ ¼ C0, where

S0; I0;Q0;R0;V0;C0 P 0.

4. Equilibrium points and basic reproduction number

4.1. Disease-free equilibrium point

The disease-free equilibrium (DFE) point is the steady-state
solution in the absence of infection or disease. Hence, to obtain
such a point for the model (16), following the study [9], we
should equate to zero all time fractional derivatives in Eq. (16)

C
0D

q
t S tð Þ ¼ C

0D
q
t I tð Þ ¼ C

0D
q
t Q tð Þ ¼ C

0D
q
t R tð Þ ¼ C

0D
q
t V tð Þ

¼ C
0D

q
t C tð Þ ¼ 0; ð17Þ

and solve the resultant nonlinear algebraic system such that
the infectious states are zero, i.e.,
I tð Þ ¼ Q tð Þ ¼ R tð Þ ¼ C tð Þ ¼ 0: ð18Þ
This procedure leads to

DFE ¼ S0; I0;Q0;R0;V0;C0
� �

; ð19Þ
where S0 ¼ K u2þlð Þ

wþlð Þ u2þlð Þ�wu2
, V0 ¼ Kw

wþlð Þ u2þlð Þ�wu2
,

I0 ¼ Q0 ¼ R0 ¼ C0 ¼ 0, and wþ lð Þ u2 þ lð Þ � wu2 > 0.

4.2. Basic reproduction number

The basic reproduction (BR) number, indicated by R0, is one
of the most important quantities in the epidemiology. The
aforementioned quantity denotes the expected number of

infectious cases in the population who are susceptible to the
infection directly caused by an infectious case. This definition
assumes that no other individuals are infected or immunized

(naturally or by vaccination). There are various methods for
determining the BR number; here the next generation matrix
is used [34], where R0 is the spectral radius of this matrix. First,
one defines the transmission and transition function matrices F

and W as follows

F tð Þ ¼

0
bC tð ÞS tð Þ
C tð Þþq

0

0

0

0

2666666664

3777777775
; ð20Þ

W tð Þ ¼

wþ lð ÞS tð Þ � Kþ u1R tð Þ þ u2V tð Þð Þ þ bS tð ÞC tð Þ
C tð Þþq

a1 þ lþ cð ÞI tð Þ
a2 þ lþ �ð ÞQ tð Þ � cI tð Þ
lþ u1ð ÞR tð Þ � �Q tð Þ
u2 þ lð ÞV tð Þ � wS tð Þ

rC tð Þ � hI tð Þ

26666666664

37777777775
:

ð21Þ
Therefore, we have

kq�1C
0D

q
t S tð Þ

kq�1C
0D

q
t I tð Þ

kq�1C
0D

q
t Q tð Þ

kq�1C
0D

q
t R tð Þ

kq�1C
0D

q
t V tð Þ

kq�1C
0D

q
t C tð Þ

26666666666664

37777777777775
¼ F tð Þ �W tð Þ: ð22Þ

Evaluating the Jacobian matrices of F tð Þ and W tð Þ at the DFE

point yields the following matrices

F0 ¼

0 0 0 0 0 0

0 0 0 0 0 bK u2þlð Þ
wþlð Þ u2þlð Þ�wu2ð Þq

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2666666664

3777777775
; ð23Þ
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W0 ¼

wþ l 0 0 �u1 �u2
bK u2þlð Þ

wþlð Þ u2þlð Þ�wu2ð Þq
0 a1 þ lþ c 0 0 0 0

0 �c a2 þ lþ � 0 0 0

0 0 �� u1 þ l 0 0

�w 0 0 0 u2 þ l 0

0 �h 0 0 0 r

26666666664

37777777775
:

ð24Þ

Thus, R0, the dominant eigenvalue of F0 W0
� ��1

, is given by

R0 ¼ bK u2 þ lð Þh
wþ lð Þ u2 þ lð Þ � wu2ð Þ a1 þ lþ cð Þqr : ð25Þ
4.3. Endemic equilibrium point

For obtaining the endemic equilibrium point, we set all frac-

tional derivatives in the system (16) equal to zero, while the
number of infectious population is not zero. Let the basic
reproduction number R0 > 1 and p0 ¼ wþ l; p1 ¼ cþ a1 þ l;
p2 ¼ �þ a2 þ l; p3 ¼ u1 þ l, and p4 ¼ u2 þ l; then the ende-
mic equilibrium point is

E� ¼ S�; I�;Q�;R�;V�;C�ð Þ; ð26Þ
where

S� ¼ p1p2 qr p1p2p3�c�u1ð ÞþKhp2p3f g
hD ;

I� ¼ p1p3 bKhp4� p0p4�wu2ð Þqrp1f g
hD ;

Q� ¼ p3c bKhp4� p0p4�wu2ð Þqrp1f g
hD ;

R� ¼ c� bKhp4� p0p4�wu2ð Þqrp1f g
hD ;

V� ¼ p1w qr p1p2p3�c�u1ð ÞþKhp2p3f g
hD ;

C� ¼ p2p3 bKhp4� p0p4�wu2ð Þqrp1f g
rD ;

ð27Þ

and D ¼ p1p2p3 p0p4 � wu2ð Þ þ bp4 p1p2p3 � c�u1ð Þ. As can be
seen, the symbol D in the denominators depends on the sys-

tem’s parameters. Thus, the values of parameters in the model
(16) should be selected in such a way that D – 0.

5. Numerical method

In this section, the product-integration rule is used to obtain a
numerical scheme solving the model (16). To this end, consider

the following fractional initial-value problem

kq�1C
0D

q
t y tð Þ ¼ f t; y tð Þð Þ; ð28Þ

with the initial condition y t0ð Þ ¼ y0. By applying the operator

0I
q
t on the both sides of (28), we have the next integral

equation

y tð Þ ¼ y0 þ k1�q

Z t

0

f x; y xð Þð ÞmL t� xð Þdx: ð29Þ

Let h be the time step size, and put t ¼ tn ¼ nh in the Eq. (29),

so we achieve

y tnð Þ ¼ y0 þ k1�q
Xn�1

i¼0

Z tiþ1

ti

f x; y xð Þð ÞmL tn � xð Þdx: ð30Þ

Then the first-order Lagrange interpolation is used to approx-

imate f t; y tð Þð Þ in ti; tiþ1½ �. Thus, the following general form of
product-integration formula is attained
yn ¼ y0þ

k1�q
Xn�1

i¼0

hþ1ð Þf tiþ1 ;yiþ1ð Þ�f ti ;yið Þ
h

� �R tiþ1

ti
x� tiþ1ð ÞmL tn � xð Þdx;n P 1;

ð31Þ
where yi ¼ y tið Þ. Note that the Eq. (31) is an implicit equation
for yn, so one can use the Newton-Raphson iterative method to

evaluate the successive approximations. Moreover, the order
of convergence for the above rule is 1þ q for 0 < q < 1(see
[35]). Additionally, here we consider three special cases for

the method (31):

� If jL tð Þ ¼ t�q

C 1�qð Þ, then the following formula is obtained

yn ¼ y0 þ k1�qhq bxnf t0; y0ð Þ þ
Xn
i¼1

xn�if ti; yið Þ
 !

; ð32Þ

where

bxn ¼ n� 1ð Þqþ1 � nq n� q� 1ð Þ
C qþ 2ð Þ ; ð33Þ

xi ¼
1

C 2þqð Þ ; i ¼ 0;

n�1ð Þ1þq�2n1þqþ nþ1ð Þ1þq

C 2þqð Þ ; i ¼ 1; 2; � � � ; n� 1:

8<: ð34Þ

� If jL tð Þ ¼ v qð Þ
1�q Eq

�q
1�q t

q
h i

, then

yn ¼ y0 þ k1�q hq

v qð Þ bxnf t0; y0ð Þ þ
Xn
i¼1

xn�if ti; yið Þ
 !

; ð35Þ

where

bxn ¼ n� 1ð Þqþ1 � nq n� q� 1ð Þ
C qþ 2ð Þ ; ð36Þ

xi ¼
1

C 2þqð Þ þ 1�q
qhq

; i ¼ 0;

n�1ð Þ1þq�2n1þqþ nþ1ð Þ1þq

C 2þqð Þ ; i ¼ 1; 2; � � � ; n� 1:

8<: ð37Þ

� If jL tð Þ ¼ v qð Þ
1�q exp

�q
1�q t
h i

, then

yn ¼ y0 þ
k1�qh

v qð Þ 2� qð Þ qf t0; y0ð Þ þ
Xn
i¼1

xn�if ti; yið Þ
 !

; ð38Þ

where

xi ¼
2 1�qð Þ

h
þ q; i ¼ 0;

2q; i ¼ 1; 2; � � � ; n� 1:

(
ð39Þ
5.1. Simulation results and discussion

In this section, we discuss the cholera outbreak happened in
Yemen from April 27, 2017, to April 15, 2018 [4]. To do so,

we apply the numerical algorithm expressed above to solve
the integer and fractional-order systems (15) and (16), respec-
tively. In these simulations, the values of biological parameters

are selected according to [9], which are also given in Table 1.



Table 1 Values of parameters [9].

Parameter K l b q u1 u2

Value 28:4N 0ð Þ
365000

1:6� 10�5 0:01694 107 0:4
365

1
1460

Parameter w c a1 a2 h r
Value 0:005 1:15 6� 10�6 3� 106 10 0:33

Parameter S 0ð Þ I 0ð Þ Q 0ð Þ R 0ð Þ V 0ð Þ B 0ð Þ
Value 28249670 750 0 0 0 275000

Fig. 1 Simulation results for the model (16) without vaccination when jL tð Þ ¼ t�q

C 1�qð Þ.
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The dynamical behaviours of the new model (16) without vac-
cination intervention for different kernels and various frac-
tional orders are illustrated in Figs. 1–3. In these figures, the

numerical simulations are performed with the mentioned val-
ues in Table 1 for the parameters except u2 ¼ w ¼ 0. Figs. 1–
3 indicate that the susceptible population S tð Þ grows uniformly

whenever the non-integer order q decreases. Also, there is a
sharp leap in the population of infectious people in the early
years when q decreases. Furthermore, as can be seen from
Fig. 2 Simulation results for the model (16) wit
Figs. 1,2, when the power and ML kernels are used, the recov-
ered population R tð Þ decreases by decreasing q. Besides, Fig. 3
depicts that there is a decline in the recovered population in the

early years by decreasing the fractional order q when the expo-
nential kernel is applied. In Fig. 4, different kernels in the gen-
eral form of Caputo fractional derivative are considered.

Moreover, a systematic comparison is performed between
our results and those of the classic integer model (15) and real
data. Fig. 4 að Þ indicates that the fractional-order q ¼ 0:96 is
hout vaccination when jL tð Þ ¼ v qð Þ
1�q

Eq
�q
1�q

tq
h i

.



Fig. 3 Simulation results for the model (16) without vaccination when jL tð Þ ¼ v qð Þ
1�q

exp �q
1�q

t
h i

.
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more consistent with the real data when the power kernel is
applied. Also, from Figs. 4 bð Þ and 4 cð Þ it is apparent that
the fractional orders q ¼ 0:98 and q ¼ 0:90 are more consistent

with the real data when the kernels are the ML and exponen-
tial functions, respectively. Simulations of the infected individ-
uals for each kernel with its best fractional order are compared
in Fig. 4 dð Þ. This figure reveals that the numerical results when

the kernel is the ML function are closer to the real data. Thus,
the model (16) with the ML kernel and non-integer order
q ¼ 0:98 as the best candidate is applied to describe the effect
of vaccination on the considered cholera outbreak in Yemen.
In this case, the dynamical behaviour of the new fractional

model under the effect of vaccination treatment is depicted
in Fig. 5. The predicted number of infected individuals under
vaccination campaign (Fig. 5) reveals that the spread of cho-
lera would have considerably been decreased, so there would

not have been so many deaths if the vaccination had been done
earlier in time.



Fig. 4 The evolution of infectious individuals for different kernels and various fractional orders.
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Remark 5.1. As mentioned before, comparative and simula-

tion results in this study are related to the cholera outbreak
in Yemen from April 27, 2017, to April 15, 2018, and
according to the real data supported by WHO [5]. To extend

these results for any other cases, we need a new set of real
data related to each new case; then, by using this new
information, we have to update the values of parameters

and coefficients, evaluate different kernel functions, and try
various fractional orders in order to find the best model
describing the new case under consideration. Here, it should

be noted that the output of this research provides such a
degree-of-freedom for the modelling of a new epidemic
outbreak; indeed, for each new case, the general fractional

model has to be updated in terms of its parameters,
coefficients, the kernel of fractional derivative, and its
associated fractional order, in order to build up the best

model following the new set of real data better than the
other classical and fractional frameworks.



Fig. 5 The plots of the new model (16) without vaccination (red dashed line) and with vaccination (blue solid line) when

jL tð Þ ¼ v qð Þ
1�q

Eq
�q
1�q

tq
h i

and q ¼ 0:98.
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6. Conclusion

In this paper, we developed a new mathematical model involv-
ing the general form of Caputo fractional derivative for a real

cholera outbreak in Yemen. The steady-states and the basic
reproduction number were computed analytically. Besides, a
new scheme was designed to implement the model numerically.
To observe the efficiency of using a general kernel in the new

modelling strategy, several numerical simulations were per-
formed in Figs. 1–3 for different kernels and various fractional
orders. These simulations disclosed that changes in the kernel
and fractional order influence the model’s dynamical beha-

viours effectively. Additionally, we found an appropriate ker-
nel function and a suitable fractional order in Fig. 4 by some
comparative results with a set of real clinical observations.

Fig. 4 revealed that the numerical results with the ML kernel
and q ¼ 0:98 are closer to the real data than the other classical
and fractional frameworks. Thus, the fractional model with the
ML kernel and the non-integer order q ¼ 0:98 was selected to
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describe the effect of vaccination on the cholera disease under
investigation. In this case, the dynamical behaviours of the
new fractional model under the treatment of vaccination were

depicted in Fig. 5. Simulation results in this figure portrayed
that the number of infected individuals, associated with the
cholera outbreak in Yemen from April 27, 2017, to April 15,

2018, would have considerably been decreased under vaccina-
tion campaign, so there would not have been so many deaths,
if the vaccination had been done earlier in time. However, as

the vaccination was not started early in time for the aforesaid
outbreak, so many deaths occurred. Therefore, the prediction
in our study, indeed, presens a regret for a past event.

Nowadays, cholera infection is still a health-care problem

in many parts of the world and causes widespread human suf-
fering; therefore, the dynamical investigation and control of
this infectious disease should be the goal of many researches

these days. As a result, further studies should be done on the
stability analysis [36] and the implementation of other control
methodologies, such as optimal control [37], in the presence of

epidemic infectious diseases such as cholera, Ebola, COVID-
19, etc.
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T. Córdova-Fraga, R. Guzmán-Cabrera, Fractional mechanical

oscillators, Revista Mexicana de Fı́sica 58 (2012) 348–352.

[34] J.M. Heffernan, R.J. Smith, L.M. Wahl, Perspectives on the

basic reproductive ratio, J. Roy. Soc. Interface 2 (2005) 281–293.

[35] R. Garrappa, Numerical solution of fractional differential

equations: a survey and a software tutorial, Mathematics 6 (2)

(2018) 16.

[36] A.A. Abozaid, H.H. Selim, K.A.K. Gadallah, I.A. Hassan, E.I.

Abouelmagd, Periodic orbit in the frame work of restricted three

bodies under the asteroids belt effect, Appl. Math. Nonlinear

Sci. 5 (2) (2020) 157–176.

[37] A. Jajarmi, N. Pariz, S. Effati, A.V. Kamyad, Infinite horizon

optimal control for nonlinear interconnected large-scale

dynamical systems with an application to optimal attitude

control, Asian J. Control 14 (5) (2012) 1239–1250.


