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Abstract
The main aim of the present article is to introduce some new ∇-conformable
dynamic inequalities of Hardy type on time scales. We present and prove several
results using chain rule and Fubini’s theorem on time scales. Our results generalize,
complement, and extend existing results in the literature. Many special cases of the
proposed results, such as new conformable fractional h-sum inequalities, new
conformable fractional q-sum inequalities, and new classical conformable fractional
integral inequalities, are obtained and analyzed.
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1 Introduction
Fractional calculus theory has an important role in the mathematical analysis and applica-
tions. Fractional calculus (FC), the theory of integrals and derivatives of noninteger order,
is a field of research with a history dating back to Abel, Riemann, and Liouville (see [33]
for a historical summary). Indeed, the most famous and extensively studied formulation,

Iα
a+η(t) =

1
�(α)

∫ x

a
(x – t)α–1η(t) dt,

is called the Riemann–Liouville fractional integral in their honor. The corresponding frac-
tional derivative is obtained by a composition of fractional integral with integer order
derivative.

The definitions of fractional integrals and derivatives are not unique, and many defini-
tions of fractional derivative operators have been introduced and successfully applied to
solve complex systems in science and engineering (see [17, 32, 37]). Recently, study on
fractional dynamic equations is very widespread around the world and is useful in pure
and applied mathematics, physics, engineering, biology, economics, etc. They use an in-
tegral in its formulation, especially Cauchy’s integral formula with some modifications.
Therefore, they sometimes require a difficult calculation to obtain. Riemann–Liouville
and Caputo fractional derivatives do not satisfy the nonlinear derivative rules as product,
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quotient, and chain rules. The mean value theorem and Rolle’s theorem are not formulated
using the definitions of Riemann–Liouville and Caputo fractional derivatives.

Recently, depending just on the basic limit definition of the derivative, Khalil et al. [31]
proposed a new simple definition of the fractional derivative called conformable derivative
Tαf (t) (α ∈ (0, 1]) of a function f : R+ →R

Tαf (t) = lim
ε→0

f (t + εt1–α) – f (t)
ε

,

for all t > 0, α ∈ (0, 1], this definition found wide resonance in the scientific community
interested in fractional calculus, see [29, 30, 48]. Therefore, calculating the derivative by
this definition is easily compared to the definitions that are based on integration. The
researchers in [31] also suggested a definition for the α-conformable integral of a function
η as follows:

∫ b

a
η(t)dαt =

∫ b

a
η(t)tα–1 dt.

After that, Abdeljawad [4] made an extensive research of the newly introduced con-
formable calculus. In his work, he generalized the definition of conformable derivative
Ta

α f (t) for t > a ∈R
+ as follows:

Ta
α f (t) = lim

ε→0

f (t + ε(t – a)1–α) – f (t)
ε

,

where f : R+ → R. Benkhettou et al. [38] introduced a conformable calculus on an arbi-
trary time scale, which is a natural extension of the conformable calculus.

In the last few decades many authors pointed out that derivatives and integrals of non-
integer order are very suitable for the description of properties of various real materials,
e.g., polymers. Fractional derivatives provide an excellent instrument for the description
of memory and hereditary properties of various materials and processes. These are some
of the advantages of fractional derivatives in comparison with classical integer-order mod-
els.

Time scales theory, which has become a trend, began with S. Hilger. In his PhD thesis,
this concept was initiated in order to get the continuous theorem and the discrete theorem
in one theorem [27]. In [12, 13], Bohner and Peterson introduced the most basic concepts
and definitions related to the theory of time scales. Next, some basic definitions and con-
cepts about the fractional analysis, which are used in this manuscript, were given and
adapted from [12, 13, 34, 38]. Any nonempty arbitrary closed subset of the real numbers
is called a time scale T. We assume that T has the standard topology on the real numbers
R. Now, let σ : T→ T be the forward jump operator defined by

σ (t) := inf{s ∈ T : s > t}, t ∈ T, (1.1)

and ρ : T :→ T be the backward jump operator defined by

ρ(t) := sup{s ∈ T : s < t}, t ∈ T. (1.2)
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In (1.1) and (1.2), we set supT = inf∅ (i.e., σ (t) = t if t is the minimum ofT) and infT = sup∅
(i.e., ρ(t) = t if t is the maximum), where ∅ is the empty set. A point t ∈ T with infT < t <
supT is said to be right-dense if σ (t) = t, left-dense if ρ(t) = t, right-scattered if σ (t) > t,
and left-scattered if ρ(t) < t. Points that are simultaneously right-dense and left-dense are
called dense points, and points that are simultaneously right-scattered and left-scattered
are called isolated points. The forward and backward graininess functions μ and ν , for a
time scale T, are defined by μ(t) := σ (t) – t and ν(t) := t – ρ(t), respectively.

In [11], the authors studied a version of the nabla conformable fractional derivative on
arbitrary time scales. Namely, for a function η : T → R, the nabla conformable fractional
derivative, T∇ ,αη(t) ∈ R of order α ∈ (0, 1] at t ∈Tκ and t > 0 was defined as: Given any
ε > 0, there is a δ- neighborhood Ut ⊂ T of t, δ > 0 such that

∣∣[η(
ρ(t)

)
– η(s)

]
t1–α – T∇ ,α(η)(t)

[
ρ(t) – s

]∣∣ ≤ ε
∣∣ρ(t) – s

∣∣

for all s ∈ Ut . The nabla conformable fractional integral is defined by

∫
η(t)∇αt =

∫
η(t)tα–1∇t.

Rahmat et al. [38] presented a new type of conformable nabla derivative and integral which
involves the time scale power function Ĝn(t, s) for s, t ∈ T and also generalizes the defini-
tion of the nabla conformable fractional derivative and integral on time scales in [11]. The
time scale power function takes the form (t – a)η for T = R which reduces to the definition
of conformable fractional derivative defined by Khalil et al. [31].

Definition 1.1 Let [s, t] ⊂ T and s < t. The generalized time scale power function Ĝn :
T×T−→ R

+ for n ∈ N0 is defined by

Ĝn(t, s) =

⎧⎨
⎩

(t – s)n, if [t, s] dense;∏n–1
j=0 (t – ρ j(s)), if [t, s] isolated;

(1.3)

and its inverse function Ĝ–n : T×T −→R
+ is then given by

Ĝ–n(t, s) =

⎧⎨
⎩

(t – s)–n, if [t, s] dense;
1∏n–1

j=0 (ρn(t)–ρj(s))
, if [t, s] isolated.

(1.4)

We use the convention Ĝ0(t, s) = 1 for all s, t ∈ T.

Corollary 1.2 For h > 0, T = hZ = {hk : k ∈ Z}, we have ρk(s) = s – kh. Then

Ĝn(t, s) = (t – s)(n)
h

=
n–1∏
j=0

(t – s + jh)

= hn
(

t – s
h

)(n)

, n ∈N, (1.5)
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and

Ĝn(t, s) = (t – s)(–n)
h

=
1∏n–1

j=0 (t – n – s + jh)

= h–n
(

t – n – s
h

+ n
)(n)

, n ∈N, (1.6)

where

x(n) =
�(x + n)

�(x)
and x(–n) =

1
(x – n)(n) =

�(x – n)
�(x)

, n ∈ N, x(0) = 1.

For T = qN0 , we have ρk(s) = sq–k . Then we write

Ĝn(t, s) = (t – s)(n)
q̃

=
n–1∏
j=0

(
t – sq–j)

= tn
n–1∏
j=0

(
1 –

q̃js
t

)
,

(
0 < q̃ =

1
q

< 1
)

. (1.7)

Remark 1.3 Regarding the generalization of the power function Ĝα(t, s) to real values of
α ≥ 0 (instead of integers), we recall a broadly accepted extension of its particular cases
(1.5) and (1.7) in the form (see [14])

(t – s)(α)
h = hα

�( t–s
h + α)

�( t–s
h )

, (t – s)(α)
q̃ = tα (s/t, q̃)∞

(q̃αs/t, q̃)∞
, t 
= 0, (1.8)

where

(p, q̃)∞ =
∞∏
j=0

(1 – pq̃).

Definition 1.4 (Conformable nabla derivative) Given a function f : T −→ R and a ∈ T,
f is (γ , a)-nabla differentiable at t > a, if it is nabla differentiable at t, and its (γ , a)-nabla
derivative is defined by

∇γ
a f (t) = Ĝ1–γ (t, a)f ∇ (t), t > a,

where the function Ĝ1–γ (t, a) is as defined in (1.3). If ∇γ
a [f (t)] exists in some interval (a, a +

ε)T, ε > 0, then we define

∇γ
a
[
f (a)

]
= lim

t−→a+
∇γ

a
[
f (t)

]

if the limt−→a+ ∇γ
a [f (t)] exists. Moreover, we call f is (γ , a)-nabla differentiable on Tk (a ∈

Tk) provided ∇γ
a [f (t)] exists for all t ∈ Tk . The function ∇γ

a : Tk −→ R is then called (γ , a)-
nabla derivative of f on Tk .
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Next, we provide the (γ , a)-nabla derivatives of sums, products, and quotients of (γ , a)-
nabla differentiable functions.

Theorem 1.5 Assume that f , g : T −→ R are (γ , a)-nabla differentiable at t ∈ Tk , t > a.
Then:

(i) The sum f + g : T−→ R is (γ , a)-nabla differentiable at t with

∇γ
a (rf + sg)(t) = r∇γ

a f (t) + s∇γ
a g(t).

(ii) For all k ∈ R, then kf : T −→R is (γ , a)-nabla differentiable at t with

∇γ
a (kf )(t) = k∇γ

a f (t).

(iii) The product fg : T−→ R is (γ , a)-nabla differentiable at t with

∇γ
a (fg)(t) =

[∇γ
a f (t)

]
g(t) + f ρ(t)

[∇γ
a g(t)

]
.

(iv) If g(t)gρ(t) 
= 0, then f /g is (γ , a)-nabla differentiable at t with

∇γ
a

(
f
g

)
(t) =

[∇γ
a f (t)]g(t) – f (t)[∇γ

a g(t)]
g(t)gρ(t)

.

Lemma 1.6 (Chain rule) Let g ∈ C∇
ld(T) and assume that f : R → R is a continuously dif-

ferentiable function. Then (f ◦ g) : T→R is (γ , a)-nabla differentiable and satisfies

∇γ
a (f ◦ g)(t) =

{∫ 1

0
f ′(g(t) – hν(t)g∇ (t)

)
dh

}
∇γ

a g(t). (1.9)

Lemma 1.7 Let γ ∈ (0, 1]. Assume that ξ : T→R is continuous and (γ , a)-nabla differen-
tiable of order γ at t ∈ Tk , where t > a and η : R → R is continuously differentiable. Then
there is c in the real interval [ρ(t), t] such that

∇γ
a (η ◦ ξ )(t) = η′(ξ (c)

)∇γ
a
(
ξ (t)

)
. (1.10)

Definition 1.8 (γ -nabla integral from a) Assume that 0 < γ ≤ 1, a, t1, t2 ∈ T, a ≤ t1 ≤
t2, and f ∈ Cld(T), then we say that f is (γ , a)-nabla integrable on interval [t1, t2] if the
following integral

∇–γ
a f (t) =

∫ t2

t1

f (τ )∇γ
a τ

=
∫ t2

t1

f (τ )Ĝγ –1
(
σγ –1(τ ), a

)∇τ (1.11)

exists and is finite.

We need the relations between different types calculus on time scales T and continuous
calculus, discrete calculus, and quantum calculus as follows. Note that: For the case T = R,
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we have the classical conformable integral as defined in [4], namely

∫ t

a
f (τ )∇γ

a τ =
∫ t

a
f (τ )(τ – a)γ –1 dτ . (1.12)

For T = hZ, h > 0, we have a new conformable fractional h-sum given by

∫ t

a
f (τ )∇γ

a τ =
∑

τ∈(a,t]

hf (τ )
(
ργ –1(τ ) – a

)(γ –1)
h . (1.13)

For T = qN0 , we have a new conformable fractional q-sum given by

∫ t

a
f (τ )∇γ

a τ =
∑

τ∈(a,t]

τ (1 – q̃)f (τ )
(
ργ –1(τ ) – a

)(γ –1)
q̃ . (1.14)

Theorem 1.9 Let γ ∈ (0, 1] and a ∈ T. Then, for any ld-continuous function f : T −→ R,
there exists a function F : T −→R such that

∇γ
a F(t) = f (t) for all t ∈ Tk .

The function F is called a (γ , a)- nabla antiderivative of f .

Theorem 1.10 Let γ ∈ (0, 1]. If a, t1 t2, t3 ∈ T, a ≤ t1 ≤ t2 ≤ t3, α ∈ R, and f , g ∈ Cld(T),
then

(i)
∫ t2

t1
[f (t) + g(t)]∇γ

a t =
∫ t2

t1
f (t)∇γ

a t +
∫ t2

t1
g(t)∇γ

a t.
(ii)

∫ t2
t1

αf (t)∇γ
a t = α

∫ t2
t1

f (t)∇γ
a t.

(iii)
∫ t2

t1
f (t)∇γ

a t = –
∫ t1

t2
f (t)∇γ

a t.
(iv)

∫ t3
t1

f (t)∇γ
a s =

∫ t2
t1

f (t)∇γ
a t +

∫ t3
t2

f (t)∇γ
a t.

(v)
∫ t1

t1
f (t)∇γ

a t = 0.
(vi) If |f (t)| ≤ g(t) on [t1, t2], then

∣∣∣∣
∫ t2

t1

f (t)∇γ
a t

∣∣∣∣ ≤
∫ t2

t1

g(t)∇γ
a t.

The study of Hardy-type inequalities attracted and still attracts the attention of many
researchers. Over several decades many generalizations, extensions, and refinements have
been made to the above inequalities, we refer the interested reader to the papers [1, 8, 9,
18, 19, 23, 24, 35, 36, 41, 44], see also [2, 21, 22, 24] and the references cited therein.

Hardy [25] established the classical discrete inequality.

Theorem 1.11 Let {�(ı)}∞ı=1 be a sequence of nonnegative real numbers. For 1 < p, we have

∞∑
ı=1

1
ıp

(
ı∑

j=1

�(j )

)p

≤
(

p
p – 1

)p ∞∑
ı=1

�p(ı). (1.15)

In 1925, by using the calculus of variations, Hardy [26] introduced a continuous version
of inequality (1.15).
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Theorem 1.12 Suppose that the continuous function η ≥ 0 on [0,∞). For 1 < p, we have

∫ ∞

0

1
πp

(∫ π

0
η(s) ds

)p

dπ ≤
(

p
p – 1

)p ∫ ∞

0
ηp(π ) dπ . (1.16)

The constant ( p
p–1 )p in (1.16) is sharp.

Copson [16] obtained another classical discrete inequality of Hardy type.

Theorem 1.13 Let {�(ı)}∞ı=1 be a sequence of nonnegative real numbers. For 1 < p, we have

∞∑
ı=1

( ∞∑
j=ı

�(j )

)p

≤ pp
∞∑
ı=1

(
ı�(ı)

)p. (1.17)

Renaud [40] proved the following two results which are the reverse discrete and contin-
uous versions of inequality (1.17).

Theorem 1.14 Suppose that {�(ı)}∞ı=1 is a sequence of nonnegative and nonincreasing real
numbers. For 1 < p, we have

∞∑
ı=1

( ∞∑
j=ı

�(j )

)p

≥
∞∑
ı=1

ıp�p(ı). (1.18)

Theorem 1.15 Suppose that η is a nonnegative and nonincreasing function on the interval
[0,∞). For 1 < p, we have

∫ ∞

0

(∫ ∞

π

η(s) ds
)p

dπ ≥
∫ ∞

0
πpηp(π ) dπ . (1.19)

Renaud [40] proved the following result.

Theorem 1.16 Suppose that η is a nonnegative and nonincreasing function on the interval
[0,∞). For 1 < p, we have

∫ ∞

0

1
πp

(∫ π

0
η(s) ds

)p

dπ ≥ p
p – 1

∫ ∞

0
ηp(π ) dπ . (1.20)

In [3, 6, 12, 19, 20, 24, 28, 39] many mathematicians have investigated several new forms
of dynamic inequalities. In 2005, Řehák [39] was the first mathematician that introduced
the time scales version of Hardy inequality which unifies inequalities (1.15) and (1.16) as
follows.

Theorem 1.17 Let T be a time scale, and f ∈ Crd([a,∞)T, [0,∞)). If p > 1, then

∫ ∞

a

(∫ σ (t)
a η(s)�s
σ (t) – a

)p

�t <
(

p
p – 1

)p ∫ ∞

a
ηp(t)�t, (1.21)

unless η ≡ 0.
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Furthermore, if μ(t)/t → 0 as t → ∞, then inequality (1.21) is sharp.

Saker et al. [43] studied the following results on time scale.

Theorem 1.18 Let T be a time scale and 1 ≤ c ≤ k. Let

χ (t) =
∫ t

a
λ(s)�s for any t ∈ [a,∞)T, (1.22)

and define

�(t) =
∫ t

a
λ(s)ξ (s)�s for any t ∈ [a,∞)T. (1.23)

Then
∫ ∞

a

λ(t)
(χσ (t))c

(
�σ (t)

)k
�t ≤ k

c – 1

∫ ∞

a
χ1–c(t)λ(t)ξ (t)

(
�(t)

)k–1
�t.

and

∫ ∞

a

λ(t)
(χσ (t))c

(
�σ (t)

)k
�t ≤

(
k

c – 1

)k ∫ ∞

a

(χσ (t))(k–1)c

(χ (t))k(c–1) λ(t)ξ k(t)�t.

Theorem 1.19 Let T be a time scale and k > 1 and 0 ≤ c < 1. Let χ be defined as in (1.22)
and define

�(t) =
∫ ∞

t
λ(s)ξ (s)�s for any t ∈ [a,∞)T.

Then
∫ ∞

a

λ(t)
(χσ (t))c

(
�(t)

)k
�t ≤ k

1 – c

∫ ∞

a

(
χσ (t)

)1–c
λ(t)ξ (t)

(
�(t)

)k–1
�t

and

∫ ∞

a

λ(t)
(χσ (t))c

(
�(t)

)k
�t ≤

(
k

1 – c

)k ∫ ∞

a

(
χσ (t)

)k–c
λ(t)ξ k(t)�t.

Agarwal et al. [7] generalized inequality (1.20) on time scales as follows: for p > 1,

∫ ∞

0

1
tp

(∫ t

0
η(s)�s

)p

�t ≥ p
p – 1

∫ ∞

0
ηp(t)�t. (1.24)

In 2020, El-Deeb et al. [23] established a generalization of (1.24) which unify (1.18) and
(1.19) in the following form: for 1 ≤ p and 1 < γ , we obtain

∫ ∞

a

λ̃(ζ )�̆p(ζ )
�̃γ̂ (ζ )

�ζ ≥ p
γ̂ – 1

∫ ∞

a
λ̃(ζ )�̃p–γ̂ (ζ )ηp(ζ )�ζ ,
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where

�̆(ζ ) =
∫ ζ

a
λ̃(η)η(s)�η and �̃(ζ ) =

∫ ζ

a
λ̃(η)�η.

For more results on the Hardy-type inequalities on time scales, we refer the interested
reader to [8, 18, 35, 36, 44].

A few years ago, by using conformable calculus, a lot of papers have been published for
conformable inequalities, and several authors have investigated different inequalities like
Hardy’s inequality [42, 49], Hermite–Hadamard’s inequality [5, 15, 47], Opial’s inequality
[10, 45], and Steffensen’s inequality [46]. For example, in 2020, Saker et al. [42] gave α-
conformable versions of Theorem 1.18 and Theorem 1.19 on time scales as follows.

Theorem 1.20 Let T be a time scale with 1 ≤ c ≤ k, and define

χ (x) =
∫ x

a
λ(s)�αs and �(x) =

∫ x

a
λ(s)ξ (s)�αs.

If

�(∞) < ∞ and
∫ ∞

a

λ(s)
(χσ (s))c–α+1 �αs < ∞,

then

∫ ∞

a

λ(x)
(χσ (x))c–α+1

(
�(x)

)k
�αx ≤

(
k

c – α

)k ∫ ∞

a

λ(x)(χ (x))K (α–c)

(χσ (x))(1–k)(c–α+1) ξ
k(x)�αx.

Very recently, Zakarya et al. [49] gave an α-conformable version of Theorem 1.20 on
time scales as follows.

Theorem 1.21 Assume that T is a time scale with ω ∈ (0,∞)T. If k ≤ 0 < h < 1 and α ∈
(0, 1], define

χ (t) =
∫ ∞

t
λ(s)�αs and �(t) =

∫ t

ω

λ(s)ξ (s)�αs.

Then

∫ ∞

ω

λ(t)
χ k–α+1(t)

(
�σ (t)

)h
�αt ≥

(
h

α – k

)h ∫ ∞

ω

λ(t)ξh(t)χh–k+α–1(t)�αt.

In this paper, motivated by the results in [7, 23, 43], we introduce a new nabla version of
Hardy-type dynamic inequalities via conformable fractional ∇-integral of order γ ∈ (0, 1]
on time scales. These inequalities have a completely new form. Therefore, as special case,
we obtain some new conformable fractional h-sum inequalities, new conformable frac-
tional q-sum inequalities, and new classical conformable fractional integral inequalities.
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2 Main results
Now, we are ready to state and prove our main results. Throughout this section, any time
scale T is unbounded above, and we will assume that the right-hand sides of the inequali-
ties converge if the left-hand sides converge.

Theorem 2.1 Assume that T is a time scale with 0 ≤ r ∈ T. Moreover, suppose that f and
λ are nonnegative Id-continuous functions on [r,∞)T with f nondecreasing. If p ≥ 1 and
β ≤ 0, then for t ≥ a ∈ T and γ ∈ (0, 1] we have that

∫ ∞

r

λ(t)�p–γ +1(t)
(�ρ(t))β

∇γ
a t ≤

∫ ∞

r

λ(t)�p–γ +1(t)f p–γ +1(t)
(�ρ(t))β

∇γ
a t, (2.1)

where

�(t) =
∫ ∞

t
λ(s)f (s)∇γ

a s and �(t) =
∫ t

r
λ(s)∇γ

a s.

Proof As f is nondecreasing, we have for x ≥ t ≥ r

F(x, t) =
∫ x

t
λ(s)f (s)∇γ

a s ≤ f (x)
∫ x

t
λ(s)∇γ

a s.

Then

f (x)Fp–γ (x, t) ≤
[∫ x

t
λ(s)∇γ

a s
]p–γ

f p–γ +1(x). (2.2)

Applying the chain rule (1.9) and using ∇γ ,x
a F(x, t) = λ(x)f (x) ≥ 0, where ∇γ ,x

a denotes the
(γ , a)-nabla derivative with respect to x, we get

∇γ ,x
a

(
Fp–γ +1(x, t)

)
= (p – γ + 1)∇γ ,x

a F(x, t)
∫ 1

0

[
(1 – h)F(x, t) + hF

(
ρ(x), t

)]p–γ dh

≤ (p – γ + 1)λ(x)f (x)
∫ 1

0

[
(1 – h)F(x, t) + hF(x, t)

]p–γ dh

= (p – γ + 1)λ(x)f (x)Fp–γ (x, t). (2.3)

Combining (2.2) with (2.3) gives

∇γ ,x
a

(
Fp–γ +1(x, t)

) ≤ (p – γ + 1)λ(x)
[∫ x

t
λ(s)∇γ

a s
]p–γ

f p–γ +1(x)

and so (note that x ≥ t ≥ r and hence, because � is nondecreasing, (0 ≤ (�ρ(x))β ≤
�ρ(t))β )

λ(t)∇γ ,x
a (Fp–γ +1(x, t))
(�ρ(t))β

≤ (p – γ + 1)λ(t)λ(x)
(�ρ(t))β

[∫ x

t
λ(s)∇γ

a s
]p–γ

f p–γ +1(x)

≤ (p – γ + 1)λ(t)λ(x)
(�ρ(x))β

[∫ x

t
λ(s)∇γ

a s
]p–γ

f p–γ +1(x).
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Integrating both sides with respect to x over [t,∞)T gives

λ(t)�p–γ +1(t)
(�ρ(t))β

=
∫ ∞

t

λ(t)∇γ ,x
a (Fp–γ +1(x, t))
(�ρ(t))γ

∇γ
a x

≤ (p – γ + 1)
∫ ∞

t

λ(t)λ(x)
(�ρ(x))β

[∫ x

t
λ(s)∇γ ,x

a s
]p–γ

f p–γ +1(x)∇γ
a x.

Integrating both sides again, but this time with respect to t over [r,∞)T, produces

∫ ∞

r

λ(t)�p–γ +1(t)
(�ρ(t))β

∇γ
a t

≤ (p – γ + 1)
∫ ∞

r

[∫ ∞

t

λ(t)λ(x)
(�ρ(x))β

[∫ x

t
λ(s)∇γ

a s
]p–γ

f p–γ +1(x)∇γ
a x

]
∇γ

a t. (2.4)

Using Fubini’s theorem on time scales, inequality (2.4) can be rewritten as

∫ ∞

r

λ(t)�p–γ +1(t)
(�ρ(t))β

∇γ
a t

≤ (p – γ + 1)

×
∫ ∞

r
λ(x)

(
�ρ(x)

)–β f p–γ +1(x)
[∫ x

r
λ(t)

[∫ x

t
λ(s)∇γ

a s
]p–γ

∇γ
a t

]
∇γ

a x. (2.5)

Now, from the chain rule (1.10), there exists c ∈ [ρ(t), t] such that (here ∇γ ,t
a denotes the

(γ , a)-nabla derivative with respect to t)

∇γ ,t
a

[
–
(∫ x

t
λ(s)∇γ

a

)p–γ +1]
= (p – γ + 1)λ(t)

[∫ x

c
λ(s)∇γ

a s
]p–γ

≥ (p – γ + 1)λ(t)
[∫ x

t
λ(s)∇γ

a s
]p–γ

. (2.6)

Substituting (2.6) into (2.5) leads to

∫ ∞

r

λ(t)�p–γ +1(t)
(�ρ(t))β

∇γ
a t

≤
∫ ∞

r
λ(x)

(
�ρ(x)

)–β f p–γ +1(x)
[∫ x

r
–∇γ ,t

a

[(∫ x

t
λ(s)∇γ

a s
)p–γ +1]

∇γ
a t

]
∇γ

a x

=
∫ ∞

r

λ(x)�p–γ +1(x)f p–γ +1(x)
(�ρ(x))β

∇γ
a x.

This shows the validity of inequality (2.1). �

Now, as special cases of our results, we give the continuous, discrete, and quantum α-
conformable inequalities. Namely, in cases of time scales T = R, T = hZ, T = Z, and T =
qN0 .

Corollary 2.2 If T = R in Theorem 2.1, inequality (2.1) reduces to

∫ ∞

r

λ(t)�p–γ +1(t)
�β (t)

(t – a)γ –1 dt ≤
∫ ∞

r
λ(t)�p–β(t)f p–γ +1(t)(t – a)γ –1 dt,
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where

�(t) =
∫ ∞

t
λ(s)f (s)(s – a)γ –1 ds and �(t) =

∫ t

r
λ(s)(s – a)γ –1 ds.

Corollary 2.3 If T = hZ in Theorem 2.1, inequality (2.1) reduces to

∞∑
t= r

h

λ(ht)�p–γ +1(ht)
�β (ht – h)

(
ργ –1(ht) – a

)(γ –1)
h

≤
∞∑

t= r
h

λ(ht)�p–γ +1(ht)f p–γ +1(ht)
�β (ht – h)

(
ργ –1(ht) – a

)(γ –1)
h ,

where

�(t) = h
∞∑

s= t
h

λ(hs)f (hs)
(
ργ –1(hs) – a

)(γ –1)
h and

�(t) = h

t
h –1∑
s= r

h

λ(hs)
(
ργ –1(hs) – a

)(γ –1)
h .

Corollary 2.4 For T = Z, we simply take h = 1 in Corollary 2.3. In this case, inequality
(2.1) reduces to

∞∑
t=r

λ(t)�p–γ +1(t)
�β (t – 1)

(
ργ –1(t) – a

)(γ –1) ≤
∞∑
t=r

λ(t)�p–γ +1(t)f p–γ +1(t)
�β (t – 1)

(
ργ –1(t) – a

)(γ –1),

where

�(t) =
∞∑
s=t

λ(s)f (s)
(
ργ –1(s) – a

)(γ –1) and �(t) =
t–1∑
s=r

λ(s)
(
ργ –1(t) – a

)(γ –1).

Corollary 2.5 If T = qN0 in Theorem 2.1, inequality (2.1) reduces to

∑
t∈(r,∞)

t(ργ –1(t) – a)(γ –1)
q̃ λ(t)�p–γ +1(t)

�β (ρ(t))

≤
∑

t∈(r,∞)

t(ργ –1(t) – a)(γ –1)
q̃ λ(t)�p–γ +1(t)f p–γ +1(t)

�β (ρ(t))
,

where

�(t) = (q̃ – 1)
∑

s∈(t,∞)

sλ(s)f (s)
(
ργ –1(s) – a

)(γ –1)
q̃ and

�(t) = (q̃ – 1)
∑

s∈(r,t)

sλ(s)
(
ργ –1(s) – a

)(γ –1)
q̃ .
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It is interesting to discuss inequality (2.1) after changing the limit of integral
∫ t

r λ(s)∇γ
a s

to be from t to ∞. Let us do that in the following theorem.

Theorem 2.6 Under the same hypotheses of Theorem 2.1 with β > 1, then we have that

∫ ∞

r

λ(t)�p–γ +1(t)
�β–γ +1(t)

∇γ
a t ≤ p – γ + 1

β – γ

∫ ∞

r
λ(t)�p–β (t)f p–γ +1(t)∇γ

a t, (2.7)

where

�(r) = 0, �(t) =
∫ ∞

t
λ(s)f (s)∇γ

a s and �(t) =
∫ ∞

t
λ(s)∇γ

a s.

Proof Since f is nondecreasing, we have for t ≥ x ≥ r

�(x) =
∫ ∞

x
λ(s)f (s)∇γ

a s ≥ f (x)�(x).

So,

f (x)�p–γ (x) ≥ �p–γ (x)f p–γ +1(x). (2.8)

By utilizing the chain rule (1.9) and using ∇γ
a (�(x)) = –λ(x)f (x) ≤ 0, we get

∇γ
a
(
�p–γ +1(x)

)
= (p – γ + 1)∇γ

a
(
�(x)

)∫ 1

0

[
(1 – h)�(x) + h�

(
ρ(x)

)]p–γ dh

≤ –(p – γ + 1)λ(x)f (x)
∫ 1

0

[
h�(x) + (1 – h)�(x)

]p–γ dh

= –(p – γ + 1)λ(x)f (x)�p–γ (x). (2.9)

From (2.8) and (2.9) we get

∇γ
a
(
�p–γ +1(x)

) ≤ –(p – γ + 1)λ(x)�p–γ (x)f p–γ +1(x).

Thus,

λ(t)∇γ
a (�p–γ +1(x))

�β–γ +1(t)
≤ –(p – γ + 1)λ(t)λ(x)�p–γ (x)f p–γ +1(x)

�β–γ +1(t)
.

Therefore, upon integrating both sides with respect to x over [r, t]T,

λ(t)[�p–γ +1(t) – �p–γ +1(r)]
�β–γ +1(t)

=
∫ t

r

λ(t)∇γ
a (�p–γ +1(x))

�β–γ +1(t)
∇γ

a x

≤ –(p – γ + 1)
∫ t

r

λ(t)λ(x)�p–γ (x)f p–γ +1(x)
�β–γ +1(t)

∇γ
a x.

Since �p–γ +1(r) = 0, we have

λ(t)�p–γ +1(t)
�β–γ +1(t)

≤ –(p – γ + 1)
∫ t

r

λ(t)λ(x)�p–γ (x)f p–γ +1(x)
�β–γ +1(t)

∇γ
a x.
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Then, by integrating both sides with respect to t over [r,∞)T, we get

∫ ∞

r

λ(t)�p–γ +1(t)
�β–γ +1(t)

∇γ
a t

≤ –(p – γ + 1)
∫ ∞

r

[∫ t

r

λ(t)λ(x)�p–γ (x)f p–γ +1(x)
�β–γ +1(t)

∇γ
a x

]
∇γ

a t. (2.10)

With the help of Fubini’s theorem on time scales, inequality (2.10) can be rewritten as

∫ ∞

r

λ(t)�p–γ +1(t)
�β–γ +1(t)

∇γ
a t

≤ (p – γ + 1)
∫ ∞

r
λ(x)�p–γ (x)f p–γ +1(x)

[∫ ∞

x
–λ(t)�–(β–γ +1)(t)∇γ

a t
]
∇γ

a x. (2.11)

From chain rule (1.10), there exists d ∈ [ρ(t), t] with

–∇γ
a
(
�(–β+γ )(t)

)
= –(β – γ )λ(t)�–β+γ –1(d)

≥ –(β – γ )λ(t)�–β+γ –1(t). (2.12)

Combining (2.12) and (2.11) yields

∫ ∞

r

λ(t)�p–γ +1(t)
�β–γ +1(t)

∇γ
a t

≤ p – γ + 1
β – γ

∫ ∞

r
λ(x)�p–γ (x)f p–γ +1(x)

[∫ ∞

x
–∇γ

a
(
�–β+γ (t)

)∇γ
a t

]
∇γ

a x

=
p – γ + 1

β – γ

∫ ∞

r
λ(x)�p–β(x)f p–γ +1(x)∇γ

a x,

from which inequality (2.7) follows. �

We are ready to present several special cases of our results to continuous, discrete, and
quantum α-conformable inequalities. Namely, in cases of time scalesT = R,T = hZ,T = Z,
and T = qN0 .

Corollary 2.7 If T = R in Theorem 2.6, then inequality (2.7) boils down to

∫ ∞

r

λ(t)�p–γ +1(t)
�β–γ +1(t)

(t – a)γ –1 dt ≤ p – γ + 1
β – γ

∫ ∞

r
λ(t)�p–β (t)f p–γ +1(t)(t – a)γ –1 dt,

where

�(t) =
∫ ∞

t
λ(s)f (s)(s – a)γ –1 ds and �(t) =

∫ ∞

t
λ(s)(s – a)γ –1 ds.

Corollary 2.8 If T = hZ in Theorem 2.6, then inequality (2.7) boils down to

∞∑
t= r

h

λ(ht)�p–γ +1(ht)
�β–γ +1(ht)

(
ργ –1(ht) – a

)(γ –1)
h
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≤ p – γ + 1
β – γ

∞∑
t= r

h

λ(ht)�p–γ (ht)f p–γ +1(ht)
(
ργ –1(ht) – a

)(γ –1)
h ,

where

�(t) = h
∞∑

s= t
h

λ(hs)f (hs)
(
ργ –1(hs) – a

)(γ –1)
h and

�(t) = h
∞∑

s= t
h

λ(hs)
(
ργ –1(hs) – a

)(γ –1)
h .

Corollary 2.9 For T = Z, we simply take h = 1 in Corollary 2.8. In this case, inequality
(2.7) boils down to

∞∑
t=r

λ(t)�p–γ +1(t)
�β–γ +1(t)

(
ργ –1(t) – a

)(γ –1)

≤ p – γ + 1
β – γ

∞∑
t=r

λ(t)�p–β (t)f p–γ +1(t)
(
ργ –1(t) – a

)(γ –1),

where

�(t) =
∞∑
s=t

λ(s)f (s)
(
ργ –1(s) – a

)(γ –1) and �(t) =
∞∑
s=t

λ(s)
(
ργ –1(s) – a

)(γ –1).

Corollary 2.10 If T = qN0 in Theorem 2.6, then inequality (2.7) boils down to

∑
t∈(r,∞)

tλ(t)�p–γ +1(t)
�β–γ +1(t)

(
ργ –1(t) – a

)(γ –1)
q̃

≤ p – γ + 1
β – γ

∑
t∈(r,∞)

tλ(t)�p–β (t)f p–γ +1(t)
(
ργ –1(t) – a

)(γ –1)
q̃ ,

where

�(t) = (q̃ – 1)
∑

s∈(t,∞)

sλ(s)f (s)
(
ργ –1(t) – a

)(γ –1)
q̃ and

�(t) = (q̃ – 1)
∑

s∈(t,∞)

sλ(s)
(
ργ –1(t) – a

)(γ –1)
q̃ .

Theorem 2.11 Under the same hypotheses of Theorem 2.1 with 0 ≤ β ≤ 1, we have that

∫ ∞

r

λ(t)�p–γ +1(t)
�β (t)

∇γ
a t ≤ p – γ + 1

β – 1

∫ ∞

r
λ(t)�p–β–γ +1(t)f p–γ +1(t)∇γ

a t, (2.13)

where

�(t) =
∫ t

r
λ(s)f (s)∇γ

a s and �(t) =
∫ t

r
λ(s)∇γ

a s.
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Proof As f is nondecreasing, we have for x ≥ r

�(x) =
∫ x

r
λ(s)f (s)∇γ

a s ≤ f (x)
∫ x

r
λ(s)∇γ

a s = f (x)�(x),

then

f (x)�p–γ (x) ≤ f p–γ +1(x)�p–γ (x). (2.14)

Using the chain rule (1.9) and the fact that ∇γ
a (�(x)) = λ(x)f (x) ≥ 0, we get

∇γ
a
(
�p–γ +1(x)

)
= (p – γ + 1)∇γ

a
(
�(x)

)∫ 1

0

[
h�

(
ρ(x)

)
+ (1 – h)�(x)

]p–γ dh

≤ (p – γ + 1)λ(x)f (x)
∫ 1

0

[
h�(x) + (1 – h)�(x)

]p–γ dh

= (p – γ + 1)λ(x)f (x)�p–γ (x). (2.15)

Combining (2.14) with (2.15) gives

∇γ
a
(
�p–γ +1(x)

) ≤ (p – γ + 1)λ(x)�p–γ (x)f p–γ +1(x),

and thus

λ(t)∇γ
a (�p–γ +1(x))
�β (t)

≤ (p – γ + 1)λ(t)λ(x)�p–γ (x)f p–γ +1(x)
�β (t)

.

Therefore,

λ(t)∇γ
a �p–γ +1(t)
�β (t)

=
∫ t

r

λ(t)∇γ
a �p–α+1(x)
�(t)β

∇γ
a x

≤ (p – γ + 1)
∫ t

r

λ(t)λ(x)�p–γ (x)f p–γ +1(x)
�β (t)

∇γ
a x,

and hence
∫ ∞

r

λ(t)�p–γ +1(t)
�β (t)

∇γ
a t

≤ (p – γ + 1)
∫ ∞

r

[∫ t

r

λ(t)λ(x)�p–γ (x)f p–γ +1(x)
�β (t)

∇γ
a x

]
∇γ

a t. (2.16)

By making use of Fubini’s theorem on time scales, inequality (2.16) can be rewritten as

∫ ∞

r

λ(t)�p–γ +1(t)
�β (t)

∇γ
a t

≤ (p – γ + 1)
∫ ∞

r
λ(x)�p–γ (x)f p–γ +1(x)

[∫ ∞

x
λ(t)�–β(t)∇γ

a t
]
∇γ

a x. (2.17)

Again using the chain rule (1.10), there is c ∈ [ρ(t), t] such that

∇γ
a �–β+1(t) = (1 – β)�–β (c)∇γ

a �(t)
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≥ (1 – β)λ(t)�–β(t). (2.18)

Substituting (2.18) into (2.17) gives

∫ ∞

r

λ(t)�p–γ +1(t)
�β (t)

∇γ
a t

≤ p – γ + 1
1 – β

∫ ∞

r
λ(x)�p–γ (x)f p–γ +1(x)

[∫ ∞

x
∇γ

a �–β+1(t)∇γ
a t

]
∇γ

a x

=
p – γ + 1

β – 1

∫ ∞

r
λ(x)�p–γ –β+1(x)f p–γ +1(x)∇γ

a x.

This completes the proof. �

Again, we present some special cases of our results to the continuous, discrete, and
quantum α-conformable inequalities. Namely, in cases of time scalesT = R,T = hZ,T = Z,
and T = qN0 .

Corollary 2.12 If T = R in Theorem 2.11, inequality (2.13) reduces to

∫ ∞

r

λ(t)�p–γ +1(t)
�β (t)

(t – a)γ –1 dt ≤ p – γ + 1
β – 1

∫ ∞

r
λ(t)�p–β (t)f p–γ +1(t)(t – a)α–1 dt,

where

�(t) =
∫ t

r
λ(s)f (s)(s – a)γ –1 ds and �(t) =

∫ t

r
λ(s)(s – a)γ –1 ds.

Corollary 2.13 If T = hZ in Theorem 2.11, inequality (2.13) reduces to

∞∑
t= r

h

λ(ht)�p–γ +1(ht)
�β (ht)

(
ργ –1(ht) – a

)(γ –1)
h

≤ p – γ + 1
β – 1

∞∑
t= r

h

λ(ht)�p–β (ht)f p–γ +1(ht)
(
ργ –1(ht) – a

)(γ –1)
h ,

where

�(t) = h

t
h –1∑
s= r

h

λ(hs)f (hs)
(
ργ –1(ht) – a

)(γ –1)
h and

�(t) = h

t
h –1∑
s= r

h

λ(hs)
(
ργ –1(ht) – a

)(γ –1)
h .

Corollary 2.14 For T = Z, we simply take h = 1 in Corollary 2.13. In this case, inequality
(2.13) reduces to

∞∑
t=r

λ(t)�p–γ +1(t)
�β (t)

(
ργ –1(t) – a

)(γ –1)
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≤ p – γ + 1
β – 1

∞∑
t=r

λ(t)�p–β (t)f p–γ +1(t)
(
ργ –1(t) – a

)(γ –1),

where

�(t) =
t–1∑
s=r

λ(s)f (s)
(
ργ –1(s) – a

)(γ –1) and �(t) =
t–1∑
s=r

λ(s)
(
ργ –1(s) – a

)(γ –1).

Corollary 2.15 If T = qN0 in Theorem 2.11, then inequality (2.13) reduces to

∑
t∈(r,∞)

tλ(t)�p–γ +1(t)
�β (t)

(
ργ –1(t) – a

)(γ –1)
q̃

≤ p – γ + 1
β – 1

∑
t∈(r,t)

tλ(t)�p–β (t)f p–γ +1(t)
(
ργ –1(t) – a

)(γ –1)
q̃ ,

where

�(t) = (q̃ – 1)
∑

s∈(r,t)

sλ(s)f (s)
(
ργ –1(s) – a

)(γ –1)
q̃ and

�(t) = (q̃ – 1)
∑

s∈(r,t)

sλ(s)
(
ργ –1(s) – a

)(γ –1)
q̃ .

We next discuss inequality (2.13) for the case when the limit of integral
∫ t

r λ(s)∇γ
a s is

changed from t to ∞.

Theorem 2.16 Under the same hypotheses of Theorem 2.1 with β ≥ 1, then we have that

∫ ∞

r

λ(t)�p–γ +1(t)
(�ρ(t))β

∇γ
a t ≤ p – γ + 1

1 – β

∫ ∞

r
λ(x)�p–γ (t)�1–β (t)f p–γ +1(t)∇γ

a t, (2.19)

where

�(t) =
∫ t

r
λ(s)f (s)∇γ

a s, �(t) =
∫ t

r
λ(s)∇γ

a s and �(t) =
∫ ∞

t
λ(s)∇γ

a s.

Proof Since f is nondecreasing, we have for x ≥ r

�(x) =
∫ x

r
λ(s)f (s)∇γ

a s

≤ f (x)
∫ x

r
λ(s)∇γ

a s = f (x)�(x),

then

f (x)�p–γ (x) ≤ f p–γ +1(x)�p–γ (x). (2.20)

Employing the chain rule (1.9) and using ∇γ
a �(x) = λ(x)f (x) ≥ 0, we get

∇γ
a
(
�p–γ +1(x)

)
= (p – γ + 1)∇γ

a �(x)
∫ 1

0

[
h�

(
ρ(x)

)
+ (1 – h)�(x)

]p–α dh
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≤ (p – γ + 1)λ(x)f (x)
∫ 1

0

[
h�(x) + (1 – h)�(x)

]p–γ dh

= (p – γ + 1)λ(x)f (x)�p–γ (x). (2.21)

Combining (2.20) with (2.21) leads to

∇γ
a
(
�p–γ +1(x)

) ≤ (p – γ + 1)λ(x)�p–γ (x)f p–γ +1(x),

and so

λ(t)∇γ
a (�p–γ +1(x))
(�ρ(t))β

≤ (p – γ + 1)λ(t)λ(x)�p–γ (x)f p–γ +1(x)
(�ρ(t))β

.

Thus,

λ(t)�p–γ +1(t)
(�ρ(t))β

=
∫ t

r

λ(t)∇γ
a (�p–γ +1(x))
(�ρ(t))β

∇γ
a x

≤ (p – γ + 1)
∫ t

r

λ(t)λ(x)�p–γ (x)f p–γ +1(x)
(�ρ(t))β

∇γ
a x,

and hence

∫ ∞

r

λ(t)�p–γ +1(t)
(�ρ(t))β

∇γ
a t

≥ (p – γ + 1)
∫ ∞

r

[∫ t

r

λ(t)λ(x)�p–γ (x)f p–γ +1(x)
(�ρ(t))β

∇γ
a x

]
∇γ

a t. (2.22)

Employing Fubini’s theorem on time scales, inequality (2.22) can be rewritten as

∫ ∞

r

λ(t)�p–γ +1(t)
(�ρ(t))β–γ +1 ∇γ

a t

≤ (p – γ + 1)
∫ ∞

r
λ(x)�p–γ (x)f p–γ +1(x)

[∫ ∞

x
λ(t)

(
�ρ(t)

)–β∇γ
a t

]
∇γ

a x. (2.23)

We employ the chain rule (1.10) again to have d ∈ [ρ(t), t] such that

∇γ
a �–β+1(t) = (1 – β)�–β (d)∇γ

a �(t) ≥ (β – 1)λ(t)
(
�ρ(t)

)–β . (2.24)

Substituting (2.24) into (2.23) yields

∫ ∞

r

λ(t)�p–γ +1(t)
(�ρ(t))β

∇γ
a t

≤ p – γ + 1
β – 1

∫ ∞

r
λ(x)�p–γ (x)f p–γ +1(x)

[∫ ∞

x
∇γ

a
(
�1–β(t)

)∇γ
a t

]
∇γ

a x

=
p – γ + 1

1 – β

∫ ∞

r
λ(x)�p–γ (x)�1–β(x)f p–γ +1(x)∇γ

a x,

which is our desired inequality (2.19). �
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Now, as special cases of our results, we will give the continuous, discrete, and quantum
α-conformable inequalities. Namely, in cases of time scales T = R, T = hZ, T = Z, and
T = qN0 .

Corollary 2.17 If T = R in Theorem 2.16, then inequality (2.19) boils down to

∫ ∞

r

λ(t)�p–γ +1(t)
�β (t)

(t – a)γ –1 dt

≤ p – γ + 1
1 – β

∫ ∞

r
λ(t)�p–γ (t)�γ –β(t)f p–γ +1(t)(t – a)γ –1 dt,

where

�(t) =
∫ t

r
λ(s)f (s)(s – a)γ –1 ds, �(t) =

∫ t

r
λ(s)(s – a)γ –1 ds and

�(t) =
∫ ∞

t
λ(s)(s – a)γ –1 ds.

Corollary 2.18 If T = hZ in Theorem 2.16, then inequality (2.19) boils down to

∞∑
t= r

h

λ(ht)�p–γ +1(ht)
�β (ht – h)

(
ρ(ht)γ –1 – a

)(1–γ )
h

≤ p – γ + 1
1 – β

∞∑
t= r

h

λ(ht)�p–γ (ht)�γ –β(ht)f p–γ +1(ht)
(
ρ(ht)γ –1 – a

)(1–γ )
h ,

where

�(t) = h

t
h –1∑
s= r

h

λ(hs)f (hs)
(
ρ(hs)γ –1 – a

)(1–γ )
h ,

�(t) = h

t
h –1∑
s= r

h

λ(hs)
(
ρ(hs)γ –1 – a

)(1–γ )
h and

�(t) = h
∞∑

s= t
h

λ(hs)
(
ρ(hs)γ –1 – a

)(1–γ )
h .

Corollary 2.19 For T = Z, we simply take h = 1 in Corollary 2.18. In this case, inequality
(2.19) boils down to

∞∑
t=r

λ(t)�p–γ +1(t)
�β (t – 1)

(
ρ(t)γ –1 – a

)(1–γ )

≤ p – γ + 1
1 – β

∞∑
t=r

λ(t)�p–γ (t)�γ –β(t)f p–γ +1(t)
(
ρ(t)γ –1 – a

)(1–γ ),
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where

�(t) =
t–1∑
s=r

λ(s)f (s)
(
ρ(s)γ –1 – a

)(1–γ ), �(t) =
t–1∑
s=r

λ(s)
(
ρ(s)γ –1 – a

)(1–γ ) and

�(t) =
∞∑
s=t

λ(s)
(
ρ(hs)γ –1 – a

)(1–γ ).

Corollary 2.20 If T = qN0 in Theorem 2.16, inequality (2.19) boils down to

∑
t∈(r,∞)

tλ(t)�p–γ +1(t)
�β (ρ(t))

(
ρ(t)γ –1 – a

)(1–γ )
q̃

≤ p – γ + 1
1 – β

∑
t∈(r,∞)

tλ(t)�p–γ (t)�γ –β(t)f p–γ +1(t)
(
ρ(t)γ –1 – a

)(1–γ )
q̃ ,

where

�(t) = (q̃ – 1)
∑

s∈(r,t)

sλ(s)f (s)
(
ρ(s)γ –1 – a

)(1–γ )
q̃ ,

�(t) = (q̃ – 1)
∑

s∈[r,t]

sλ(s)
(
ρ(s)γ –1 – a

)(1–γ )
q̃ and

�(t) = (q̃ – 1)
∑

s∈(r,∞)

sλ(s)
(
ρ(s)γ –1 – a

)(1–γ )
q̃ .

3 Conclusion
In this important work, we discussed some new dynamic inequalities of Hardy type using
nabla integral on time scales. By employing the conformable fractional ∇-conformable-
integral on time scales, several ∇-conformable Hardy-type inequalities on time scales have
been proved. Our proposed results show the potential for producing some original contin-
uous, discrete, and quantum inequalities. We further presented some relevant inequalities
as special cases: discrete inequalities and integral inequalities. These results may be used
to obtain more generalized results of several obtained inequalities before.

Acknowledgements
Not applicable yet.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors announce that there are not any competing interests.

Authors’ contributions
All authors have read and finalized the manuscript with equal contribution.



El-Deeb et al. Journal of Inequalities and Applications        (2021) 2021:192 Page 22 of 23

Author details
1Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt. 2Department of
Mathematics and Computer Science, Alabama State University, Montgomery, AL, USA. 3Department of Mathematics,
Clarkson University, Potsdam, NY, USA. 4Department of Mathematics, Cankaya University, Ankara, 06530, Turkey.
5Institute of Space Science, Magurele-Bucharest, Romania. 6Department of Medical Research, China Medical University
Hospital, China Medical University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 September 2021 Accepted: 8 November 2021

References
1. Abd El-Hamid, H.A., Rezk, H.M., Ahmed, A.M., AlNemer, G., Zakarya, M., El Saify, H.A.: Some dynamic Hilbert-type

inequalities for two variables on time scales. J. Inequal. Appl. 2021(1), 1 (2021)
2. Abdel-Moneim El-Deeb, A., Bazighifan, O., Awrejcewicz, J.: A variety of dynamic Steffensen-type inequalities on a

general time scale. Symmetry 13(9), 1738 (2021)
3. Abdeldaim, A., El-Deeb, A.A.: On generalized of certain retarded nonlinear integral inequalities and its applications in

retarded integro-differential equations (2015)
4. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
5. Adil Khan, M., Ali, T., Dragomir, S.S., Sarikaya, M.Z.: Hermite–Hadamard type inequalities for conformable fractional

integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1033–1048 (2018)
6. Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4(4), 535–557 (2001)
7. Agarwal, R.P., Mahmoud, R.R., O’Regan, D., Aker, S.H.: Some reverse dynamic inequalities on time scales. Bull. Aust.

Math. Soc. 96(3), 445–454 (2017)
8. Agarwal, R.P., O’Regan, D., Saker, S.H.: Hardy Type Inequalities on Time Scales. Springer, Cham (2016)
9. AlNemer, G., Kenawy, M., Zakarya, M., Cesarano, C., Rezk, H.M.: Generalizations of Hardy’s type inequalities via

conformable calculus. Symmetry 13(2), 242 (2021)
10. Asarikaya, M.Z., Billisik, C.C.: Opial type inequalities for conformable fractional integrals via convexity
11. Bendouma, B., Hammoudi, A.: A nabla conformable fractional calculus on time scales. Electron. J. Math. Anal. Appl.

7(1), 202–216 (2019)
12. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston

(2001)
13. Bohner, M., Peterson, A. (eds.): Advances in Dynamic Equations on Time Scales Birkhäuser, Boston (2003)
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