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Abstract:  The source and receiver plane characteristics of flat topped (FT) 
beam propagating in turbulent atmosphere are investigated. To this end, 
source size, beam power and M2 factor of source plane FT beam are 
derived. For a turbulent propagation medium, via Huygens Fresnel 
diffraction integral, the receiver plane intensity is found. Power captured 
within an area on the receiver plane is calculated. Kurtosis parameter and 
beam size variation along the propagation axis are formulated. Graphical 
outputs are provided displaying the variations of the derived source and 
receiver plane parameters against the order of flatness and propagation 
length. Analogous to free space behavior, when propagating in turbulence, 
the FT beam first will form a circular ring in the center. As the propagation 
length increases, the circumference of this ring will become narrower, 
giving rise to a downward peak emerging from the center of the beam, 
eventually turning the intensity profile into a pure Gaussian shape.  
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1. Introduction 

Flat topped (FT) beams are derived from the fundamental Gaussian beam by introducing an 
order of flatness parameter. They possess a number of attractive features. Amongst these are 
less spreading in propagation and medical applications [1]. It is the former that is of interest to 
us in this article. From propagation point of view, there exists a wide selection of source beam 
formulations. Broadly considered, four basic classifications are possible, namely, super-
Gaussian, flattened-Gaussian, Fermi-Dirac and super-Lorentzian [2, 3]. Among these, our 
model is based on flattened-Gaussian beam of Li [3, 4] which consists of taking the original 
flattened-Gaussian case proposed by Gori [5] and including the Gaussian exponential inside 
the summation after applying the conditions of flatness. In all cases however, there is an order 
parameter whose role is to control the flatness of the beam.  

Recently we have analyzed the scintillation properties of flattened-Gaussian type beams, 
concluding that it will have favorable characteristics at certain propagation ranges, source 
sizes and operating wavelengths [6].  

Up to now, some studies have been conducted by Cai, Lü and other researchers, mainly 
exploiting the free space propagation aspects of FT beams [7-14]. Very few studies 
concerning propagation in atmospheric turbulence have appeared in the literature [15]. On the 
other hand a comprehensive analysis of the source and the receiver plane parameters of FT 
beams in the presence of atmospheric turbulence have not so far been undertaken. In this 
respect, our current study has the following novelties 

1. The inclusion of turbulence in the propagation of FT beams 
2. A comprehensive analysis of source and receiver plane parameters of FT beams. 

2. Formulation 

2.1. Formulation of the source field and its related parameters 

Our source field expression is adopted from Eq. (8) of [3], by dropping the order parameter in 
the denominator. Hence the field expression, ( )su s  becomes 

( ) ( ) ( )2 2 2 2, 1 1 exp / / ,      (1)
N

s s x y x sx y syu u s s s sα α⎡ ⎤= = − − − −
⎣ ⎦

s

in Eq. (1), ( ),x ys s designates the decomposition of the vector s into x and y components of the 

transverse source plane, N is the order parameter for flatness, such that at N = 1, ( )su s  will 

yield the fundamental mode (Gaussian) source field, correspondingly  and sx syα α becoming 

the Gaussian source sizes along sx and sy directions. When 1N ≠ , on the other hand, the beam 
sizes will depart from Gaussian source sizes, and according to the definition developed by 
Carter [16], will be given by  
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where, ( )sI s  denotes the intensity of the source plane to be obtained from Eq. (1) as follows 

( ) ( ) ( )* .                                                (4)s s sI u us s s=  

Hence upon substitution into Eq. (2) from Eqs. (1) and (4), and expanding the terms in the 
square bracket as binomial series, thus performing the integrations, beam size of the sx 
direction will read 

( )
( )

( ) ( )
1 1

1 1

1/2

2
1 11 1 1 1 11

,       
1 12 1 1 (5)

N N N Nn n n n
sxsxN

n n n n

N NN N
n nn n n nn n

α α + +

= = = =

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥
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where the forms of 1

2

C

C

⎛ ⎞
⎜ ⎟
⎝ ⎠

 refer to binomial coefficients such that, ( )1
1 1 2 2

2

= !/ ! !
C

C C C C
C

⎛ ⎞
⎡ ⎤−⎜ ⎟ ⎣ ⎦

⎝ ⎠
. In 

Eq. (5), the expression for syNα is attained by simply interchanging sxα with syα . From Eq. 

(5), it is clear that at N = 1, sxNα  will appropriately reduce to sxα . 
The power contained in the FT beam of flatness order N, denoted as PsN, can be calculated 

by integrating the intensity over the entire transverse plane, which means that it is equivalent 
to the denominator in Eqs. (2) or (3). This way PsN will become  

( ) ( )
1

1
1 11 1

                                        
1

2 1 . (6)
N N

n n
sx sy

n n
sN

NN
P

nn n n
πα α +

= =

⎛ ⎞⎛ ⎞
− ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠

= ∑∑

 
M2 is reported to be a measure of beam quality [13]. Its formulation, again separated into 

sx and sy components, is given by 

( )0.52 2 24 ,                                          (7)x sx fxM π σ σ=

( )0.52 2 24 ,                                          (8)y sy fyM π σ σ=  

where the pairs 2 2 2 2 and ,  and sx sy fx fyσ σ σ σ are respectively, the second moments associated with 

spatial and frequency spatial domains that are described, for the x direction, by the following 
equations  

( )

( )

2

2 , (9)

x s x x

sx

s x x

s I s ds

I s ds

σ

∞

−∞
∞

−∞

=
∫

∫
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Here the fx and fy are the variables of frequency spatial domain. ( )s xI s and ( )f xI f are attained 

by respectively decoupling the x and y components in the 

manner ( ) ( ) ( ),s x y s x s yI s s I s I s= , ( ) ( ) ( ),f x y f x s yI f f I f I f=  where the 

function, ( ),f x yI f f , is retrieved from the two dimensional spatial frequency Fourier 

transform of ( ),s x yI s s . Identical expressions will hold for the y component. By applying the 

same steps as before, that is resorting to the use of binomial expansion, the 2
xM of Eq. (7) will 

develop into  
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Note that 2

yM will be identical to 2
xM . Thus, both 2

xM  and 2
yM  carry no dependency on the 

source parameters involving the transverse directions. Furthermore, the definition of 2M is 
confined to the source plane, therefore for an FT beam considered in this paper, Eq. (11) will 
be valid regardless of propagation medium.  

Before ending this section, we would like to note that, although it is theoretically possible 
to have selected N to be non-integer as pointed out by Li [4], we limit the present study to N 
being (positive) integer, since, the summations would otherwise turn into infinite series, thus 
preventing us gaining a proper insight into the subject.     

2.2. Formulation of the average receiver intensity and its related parameters 

After the FT beam has propagated in the turbulent atmosphere, the average intensity on a 
receiver plane located at axial distance of L away from the source plane, will be supplied via 
the Huygens Fresnel integral in the following way  

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )

2 2
2 1 2

2 2
1 2 1 22

1 2

, exp
22
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I I p p u u jk
LLπ

ψ ψ

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

∗

⎧ ⎫⎡ ⎤− − −⎢ ⎥⎪ ⎪⎣ ⎦< >=< >= ⎨ ⎬
⎪ ⎪
⎩ ⎭

⎡ ⎤< + >
⎣ ⎦

×
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p s p s

p s s

s p s p

d s d s

(12)

 

where ( ) ( ),x yp pp =  are the x and y components of the transverse receiver plane, 2 /k π λ=  

with λ  being the wavelength of propagation. The ensemble average term appearing on the 
second line of Eq. (12) is [17] 

( ) ( ) ( ) ( )22
1 2 1 2 0 1 2exp , , exp 0.5 exp ,            (13)Dψψ ψ ρ∗ −⎡ ⎤⎡ ⎤ ⎡ ⎤< + >= − − = − −⎣ ⎦⎣ ⎦ ⎣ ⎦

s p s p s s s s  
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where ( )1 2Dψ −s s represents the wave structure function, and ( ) 3 / 52 2
0 0.545 nC k Lρ

−
= is the 

coherence length of a spherical wave propagating in the turbulent medium, 2
nC  indicates the 

structure constant. As expressed in Eq. (13), in our derivation we employ the quadratic 
approximation of Rytov's phase structure function.  

When the source field expression of Eq. (1) is substituted into Eq. (12), thereby benefiting 
from the term by term integration facility invoked by the use of binomial expansion, the 
average receiver intensity takes the form of  
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and 
1 2

,ny nn n yζ γ are the y  counterparts of 
1 2

,nx nn n xζ γ in which x  is replaced by y . 

To examine the beam size variation along the propagation axis, Eq. (4) is employed, with 
the modification that in the numerator ( )sI s  is replaced with ( )rI p  from Eq. (14). Thus for 

the px direction, the beam size during propagation will be established as  

( )
1/ 2

22 .                            (15)pxN x r x y sNp I dp dp Pα
∞ ∞

−∞ −∞

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

∫ ∫ p  

Owing to the nature of turbulent atmosphere propagation, there exists no attenuation or 
absorption in the medium. Thus, we are able to retain the integrand in the numerator of Eq. 
(15) to be that of the source plane. Looking at Eq. (14), it is clear that due to the complexity of 
the expression for ( )rI p , we cannot proceed analytically; therefore numerical evaluations 

have to be sought for finding the beam size during propagation. 
The kurtosis parameter of the propagating beam is defined as the ratio of the fourth and 

second moments of the intensity in the following way [18] 

( )

( )

4

2

2

,             (16)

x r x y sN
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x r x y sN

p I dp dp P
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p I dp dp P

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

=
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∫ ∫

∫ ∫

p

p

 

yK is found by switching the receiver plane coordinate parameter to py. Again, the complexity 

of the ( )rI p  expression does not allow us to acquire an analytic result for the kurtosis 

parameter. 
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Finally in this section, we state the power that will fall into a receiver aperture of radius 

rα , which is also known as power in bucket, that is 

( )
0

2 .                      (17)
r

N r sNP rI dr Pp
α

α
π= ∫  

In dividing by the source power, PsN, i.e. the term in the denominator of Eq. (17), it is 
envisaged that each individual FT beam of order N, is normalized with respect to its own 
order of flatness. 

3. Results and discussions  

3.1. Source plane  

Taking Eq. (4), in Fig. 1, we initially plot the 3D picture of source intensity at fixed Gaussian 
source sizes of 3 cmsx syα α= = , against the flatness order N. As seen in this figure, the source 

intensity of the FT beam will become flatter with escalating N values, eventually assuming the 
shape of a cylinder if equal Gaussian source sizes are used.  Figure 1 also makes it evident 
that higher N values will give rise to larger beam sizes and source powers. 
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Fig. 1. FT source beam profiles at different flatness order. 

 

Figure 2 contains the overlaid contour plots of the beams belonging to Fig. 1, cut along the 
slanted axis of the transverse plane. From Fig. 2, the increases in beam size and source power 
of the FT beam at higher values of N are detected once more. 
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Fig. 2. Overlaid plots of four FT source beams belonging to Fig. 1 cut along the slanted axis. 
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Fig. 3. Source beam size variation versus flatness order. 

 
The observations in Figs. 1 and 2 about the variations of beam size and source power 

against flatness order N are in conformity with the associated mathematical formulations 
found in Eqs. (5) and (6). To assess these variations quantitatively, using Eqs. (5) and (6), 
Figs. 3 and 4 are plotted. Comparing Figs. 3 and 4, we conclude that the proportional 
increases in the source power against N, are more rapid than those of the beam size. It is to be 
understood from Figs. 3 and 4 that, to arrive at meaningful results for the receiver plane 
parameters, each FT beam must be normalized with respect to its own source plane 
parameters, rather than the normalization with respect to the Gaussian case for which N is 
unity.   
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Fig. 4. Source beam power variation versus flatness order. 

 
According to Fig. 5, 2

xM  factor will become larger as the flatness order increases. This 
finding is consistent with the results in Ref. 10. 

 

2 4 6 8 10 12 14 16 18 20
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Flatness order (N)

M
x2   F

ac
to

r

 
Fig. 5. Variation of 2

xM versus flatness order. 

3.2. Receiver plane  

Throughout the receiver plane illustrations, we have utilized the wavelength and structure 
constant of 1.55 μmλ = , 2 15 -2/310  mnC −= . Therefore, these parameters are not quoted in our 
figures. By taking Eq. (14) and setting the source sizes and the flatness order as stated in the 
inset of the figure, Fig. 6 provides the views of the FT beam at selected propagation distances. 
Figure 6 shows that, the FT beam will initially develop a circular ring in the center. As the 
propagation advances, the circumference of this ring will become narrower, while a 
downward peak will gradually emerge from the center of the beam. Eventually this peak will 
smooth out the initial ring, with the profile turning into a pure Gaussian shape. This 
phenomenon may be considered to be akin to acquiring the spot of Arago as described in [19]. 
This type behavior of the FT beam is also commonly observed in other studies of free space 
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propagation [4, 7, 8, 9, and 11]. For the FT beam of Fig. 6, the overlaid views of the beam 
progress cut along the slanted axis are displayed in Fig. 7. Introducing the Fresnel parameter 

( )2 /sF Lα λ= with s sx syα α α= = being the source size for a symmetrical source, in the plots 

of Figs. 6 and 7, the propagation distances of L = 0.7 km, 1.4 km and 5 km correspond to F of 
0.83 (i.e., close to Fresnel diffraction region meaning near field), 0.42 and 0.12 (i.e., in the 
Fraunhoffer diffraction region meaning far field), respectively. 

 

-10
0

10 -10

0

100

0.5

1

s y
 axis in

 cm

s
x  axis in cm

 α
sx

 = 3.0 cm , α
sy

 = 3.0 cm , N =  10 , L = 0 km 

I s

-10
0

10 -10

0

100

0.5

1

p y
 axis in cm

 L = 0.7 km 

p
x  axis in cm

<
 I

r >
 

-10
0

10 -10

0
100

0.5

1

p y
 axis in

 cm

 L = 1.4 km 

p
x  axis in cm

< 
I r

 >
  

-10
0

10 -10

0
100

0.5

1

p y
 axis in cm

 L = 5 km 

p
x  axis in cm

< 
I r

 >
  

 
Fig. 6. Propagation view of the FT beam for selected source and propagation parameters. 
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Fig. 7. Overlaid plots of the FT beam belonging to Fig. 6 cut along the slanted axis. 

 
Upon choosing asymmetric source sizes, an elliptical source beam is accomplished [8]. 

Further we can create an FT beam with sharp edges by exaggerating this asymmetry feature. 
The receiver plane intensity of such a beam is offered in Fig. 8, along with the associated 
source plane intensity. Here, the effect of the propagation channel implementing a Fourier 
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transform action on the source beam field, thus converting it into an Airy function like shape  
in intensity during propagation, is slightly visible from the side lobes present in the lower 
picture of Fig. 8. Here we note that the most general case of elliptical flat-topped beam whose 
profile variables x and y cannot be separated is characterized by αsx, αsy and αsxy as shown in 
Ref. [9]. The propagation of such astigmatic flat-topped beam in the turbulent atmosphere is 
recently reported by Cai and He [20, 21]. The elliptical flat-topped beam of our derivation is 
obtained by setting αsx ≠ αsy. 
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Fig. 8. Intensity distribution of an elliptical FT beam before and after propagation. 
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Fig. 9. Receiver beam size variation versus flatness order. 

 
Next we explore the beam size and power in bucket variations along the propagation axis. 

The beam size variation is shown in Fig. 9 against the flatness order, where the Gaussian 
source sizes and propagation length are adjusted as given in the same figure Here for better 
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assessment, based on Eqs. (5) and (15), we have resorted to the relative beam size definition 
given by  

( ) / .                             (18)pxN pxN sxN sxNα α α αΔ = −  

Figure 9 reveals that for the selected range of source and propagation parameters, the 
relative beam size drops sharply at lower values of N, while this trend later continues at much 
slower pace. Turning to power in bucket variation and choosing a receiving aperture size of 

( )1/ 22 20.5r sx syα α α= +  in Eq. (17), we come across a similar picture, as illustrated in Fig. 10, 

where the falling trend at small N values is slightly retarded. Of course we should be careful 
here in the interpretation of receiving less power with increasing N. Less power occurs 
because, as explained underneath Eq. (17), NP

α
 is determined by dividing the received power 

of each individual FT beam by its own source power. If this normalization were to be carried 
out with respect the Gaussian case, i.e., N = 1, then we would come across rising power in 
bucket values with increasing N, instead of the presently falling trend. 
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Fig. 10. Power in bucket variation versus flatness order. 

 
Finally in this section, we analyze the kurtosis parameter which is known to be linked to 

the flatness or sharpness of the beam [18]. Figure 11 exhibits the variation of kurtosis 
parameter versus the propagation length at selected N values and fixed Gaussian source sizes. 
It is to be noted from Figs. (1) and (2) that on the source plane, the beam profile becomes 
sharper with larger N. This fact is reflected in Fig. 11 such that at short propagation distances, 
kurtosis parameter becomes smaller as N gets bigger. On the other hand, kurtosis parameter of 
all beams, except for N = 1, begins to rise at medium propagation ranges, later reaching a 
maximum. This is a predictable behavior, where the rise corresponds to the formation of the 
ring, the subsequent narrowing action and then the appearance of the peak in Figs 6 and 7. 
When these curly surfaces on the beam start to erode with the beam evolving towards a 
Gaussian profile, the kurtosis parameter declines, finally approximating to the N = 1 
(Gaussian) case for all N values, as seen to the right of Fig. 11.   
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Fig. 11. Kurtosis parameter variation versus propagation length. 

4. Conclusion 

The source and receiver plane characteristics of flat topped (FT) beam propagating in 
turbulent atmosphere are studied. Source beam intensity, source beam size and power, M2 
factor are formulated and plotted against flatness order. From these plots, it is seen that beam 
intensity profile will become flatter, while source size, beam power and M2 factor will 
increase against growing value of flatness order. Via the use of Huygens Fresnel integral, the 
average intensity on the receiver plane for a turbulent propagation environment is derived. 
Based on this intensity expression, the kurtosis parameter, beam size variation along the 
propagation axis and power in bucket formulations are stated. Plotting the receiver average 
intensity at selected source and propagation parameters, it is observed that, initially a circular 
ring will be formed in the center. As we go along the propagation axis however, the 
circumference of this ring will become narrower, while a downward peak will gradually 
emerge from the center of the beam. Eventually this peak will smooth out the initial ring, with 
the profile converging towards a pure Gaussian shape. These beam profile changes are also 
reflected in the plots of kurtosis parameter against propagation length. Furthermore, when the 
source beam is made highly asymmetric, the conversion of receiver intensity profile into an 
Airy function becomes more visible. The relative beam size becomes smaller, as the order 
parameter is raised, indicating that flatter beams will be subjected to less spreading during 
propagation in turbulence. For a fixed receiver aperture radius, less power is captured against 
the rising flatness order. 
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