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Abstract: Throughout this article, generalizations of some Grónwall–Bellman integral inequalities
for two real-valued unknown functions in n independent variables are introduced. We are looking
at some novel explicit bounds of a particular class of Young and Pachpatte integral inequalities.
The results in this paper can be utilized as a useful way to investigate the uniqueness, bounded-
ness, continuousness, dependence and stability of nonlinear hyperbolic partial integro-differential
equations. To highlight our research advantages, several implementations of these findings will be
presented. Young’s method, which depends on a Riemann method, will follow to prove the key results.
Symmetry plays an essential role in determining the correct methods for solving dynamic inequalities.

Keywords: integral inequalities; hyperbolic partial differential equation; Young’s technique

1. Introduction

Gronwall–Bellman’s inequality [1] in the integral form states the following: Let u and
f be continuous and nonnegative functions defined on [a, b], and let u0 be a nonnegative
constant. Then, the inequality

u(t) ≤ u0 +
∫ t

a
f (s)u(s)ds, for all t ∈ [a, b], (1)

implies that

u(t) ≤ u0 exp
( ∫ t

a
f (s)ds

)
, for all t ∈ [a, b].

Baburao G. Pachpatte [2] proved the discrete version of Equation (1). In particular, he
proved that if u(n), a(n), and γ(n) are nonnegative sequences defined for n ∈ N0, a(n) is
non-decreasing for n ∈ N0, and if

u(n) ≤ a(n) +
n−1

∑
s=0

γ(n)u(n), n ∈ N0, (2)

then

u(n) ≤ a(n)
n−1

∏
s=0

[1 + γ(n)], n ∈ N0.
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The authors of [3] studied the following result:

Ψ(u(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)ζ(u(ς, η))v(u(ς, η))

+
∫ ς

0
=2(χ, η)ζ(u(χ, η))v(u(χ, η))dχ

]
dηdς,

where u, f , = ∈ C(I1 × I2,R+), and a ∈ C(ζ,R+) are non-decreasing functions, I1, I2 ∈ R,
θ ∈ C1(I1, I1), and ϑ ∈ C1(I2, I2) are non-decreasing with θ(`) ≤ ` on I1, ϑ(t) ≤ t on
I2, =1, =2 ∈ C(ζ,R+), and Ψ, ζ, v ∈ C(R+,R+) with {Ψ, ζ, v}(u) > 0 for u > 0, and
lim

u→+∞
Ψ(u) = +∞.

Additionally, Anderson [4] studied the following result:

ω(u(t, s)) ≤ a(t, s) + c(t, s)
∫ t

t0

∫ ∞

s
ω′(u(τ, η))[d(τ, η)w(u(τ, η)) + b(τ, η)]∇η∆τ, (3)

where u, a, c, and d are nonnegative continuous functions defined for (t, s) ∈ T×T, b is a
nonnegative continuous function for (t, s) ∈ [t0, ∞)T × [t0, ∞)T and ω ∈ C1(R+,R+), with
ω′ > 0 for u > 0.

Wendroff’s inequality, see [5], states the following: Let ψ(ξ, ρ) and φ(ξ, ρ) be nonnega-
tive and continuous functions where ξ, ρ ∈ R+. If

ψ(ξ, ρ) ≤ A1(ξ) + A2(ρ) +
∫ ξ

0

∫ ρ

0
φ(θ, t)ψ(θ, t)dθdt, (4)

holds for ξ, ρ ∈ R+, where A1(ξ) and A2(ρ) are continuous and positive functions on ξ,
ρ ∈ R+, and the derivatives A′1(ξ) and A′2(ρ) on ξ, ρ ∈ R+ are nonnegative, then

ψ(ξ, ρ) ≤ E(ξ, ρ) exp
(∫ ξ

0

∫ ρ

0
φ(θ, t)dθdt

)
,

on ξ, ρ ∈ R+, where

E(ξ, ρ) =
[A2(ρ) + A1(0)][A1(ξ) + A2(0)]

A1(0) + A2(0)
,

on ξ, ρ ∈ R+.
Subsequently, some new Wendroff-type inequalities were developed (see, for exam-

ple, [6,7]) to provide natural and effective means to further develop the theory of integral
and partial integro-differential equations.

Wendroff’s inequality (Inequality (4)) has gained significant attention, and numerous
articles have been published in the literature involved various extensions, generalizations,
and applications [5–22].

For example, Bondge and Pachpatte [7] investigated some simple Wendroff-type
inequalities with n independent variables as follows: Let ψ(t), P(t), and Q(t) be continuous
and nonnegative functions defined on Ω and Ψi(ξi) > 0 and Ψ′i(ξi) ≥ 0 for 1 ≤ i ≤ n be
continuous functions defined for ξi ≥ ξi0:

(i) If

ψ(ξ) ≤
n

∑
i=1

Ψi(ξi) +
∫ ξ

ξ0
P(ρ)ψ(ρ)dρ,

for ξ ∈ Ω, then

ψ(ξ) ≤ E(ξ) exp
(∫ ξ

ξ0
P(ρ)dρ

)
,
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for ξ ∈ Ω, where

E(ξ) =

[
∑n

i=1 Ψi(ςi) + Ψ1(ς
0
1)−Ψ1(ξ1)

][
∑n

i=1 Ψi(ξi) + Ψ2(ξ
0
2)−Ψ2(ξ2)

]
[

∑n
i=1 Ψi(ξi) + Ψ1(ξ

0
1) + Ψ2(ξ2)

] . (5)

(ii) If

ψ(ξ) ≤
n

∑
i=1

Ψi(ξi) +
∫ ξ

ξ0
P(ρ)ψ(ρ)dρ +

∫ ξ

ξ0
P(ρ)ψ(ρ)

(∫ ρ

ξ0
Q(θ)ψ(θ)dθ

)
dρ,

for ξ ∈ Ω, then

ψ(ξ) ≤
n

∑
i=1

Ψi(ξi) +
∫ ξ

ξ0
P(ρ)E(ρ)(ρ) exp

(∫ ρ

ξ0
[P(θ)Q(θ)]dθ

)
dρ,

for ξ ∈ Ω, where E(ξ) is defined by Equation (5).

An extension of Snow’s technique of n independent variables was performed by
Young [15]. His inequality has several valuable applications in the theory of integro-
differential and partial differential equations with n independent variables. He considered
that φ(ξ), Ψ(ξ) ≥ 0, and Φ(ξ) are continuous functions on Ω ⊂ Rn. Let ν(τ; ξ) be a
solution of the characteristic initial value problem

(−1)nντ1 ...τn(τ; ξ) = 0 in Ω,

ν(τ; ξ) = 1 on τi = ςi, i = 1, . . . , n

In addition, let D+ be a connected subdomain of Ω containing ξ such that ν ≥ 0 for
all τ ∈ D+. If D ⊂ D+ and

φ(ξ) ≤ Ψ(ξ) +
∫ ξ

ξ0
Φ(τ)φ(τ)dτ,

then

φ(ξ) ≤ Ψ(ξ) +
∫ ξ

ξ0
Ψ(τ)Φ(τ)ν(τ)dτ.

Motivated by the inequalities mentioned above, we prove more general integral
inequalities with n independent variables by using Young’s technique. The proposed
general integral inequalities can be employed in the analysis of many problems in the
theory of integral and partial differential equations, which could easily be considered
powerful tools. Symmetry plays an essential role in determining the correct methods for
solving dynamic inequalities.

2. Auxiliary Results

First, we state and prove two important lemmas, and we will use them to prove the
main results of this paper. To prove the following lemma, Bellman’s technique (see, for
instance, [16]) will be applied.

Lemma 1. Let φ(ξ) and ν(ξ) be real-valued, positive, and continuous functions. In addition, let
all derivatives of φ(ξ) be positive on Ω with φ(ξ) = 1 on ξi = ξo

i . If the inequality

Dφ(ξ) ≤ ν(ξ)φ(ξ), (6)

holds, then

φ(ξ) ≤ exp
(∫ ξ

ξo
ν(t)dt

)
. (7)
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Proof. The inequality (6) leads to

φ(ξ)Dφ(ξ)

φ2(ξ)
≤ ν(ξ).

Thus, by the assumptions on f (ς) and its derivatives, we have

φ(ξ)Dφ(ξ)

φ2(ξ)
≤ ν(ξ) +

(Dnφ(ξ))(D1 . . . Dn−1φ(ξ))

f 2(ξ)
,

which implies that

Dn

(
D1 . . . Dn−1φ(ξ)

φ(ξ)

)
≤ ν(ξ). (8)

Integrate both sides of the inequality (8) with respect to the component ξn from ξo
n to

ξn to obtain
D1 . . . Dn−1φ(ξ)

φ(ξ)
≤
∫ ξn

ξo
n

ν(ξ1, . . . , ξn−1, tn)dtn.

Therefore, and by the assumptions φ(ξ) and its derivatives, we can write the following
inequality:

φ(ξ)D1 . . . Dn−1φ(ξ)

φ2(ξ)
≤
∫ ξn

ξo
n

ν(ξ1, . . . , ξn−1, tn)dtn +
(Dn−1φ(ξ))(D1 . . . Dn−2φ(ξ))

ξ2(ξ)
,

which yields

Dn−1

(
D1 . . . Dn−2φ(ξ)

φ(ξ)

)
≤
∫ ξn

ξo
n

ν(ξ1, . . . , ξn−1, tn)dtn. (9)

Now, integrate both sides of inequality (9) with respect to the component ξn−1 from
ξo

n−1 to ξn−1 to obtain

D1 . . . Dn−2φ(ξ)

φ(ξ)
≤
∫ ξn−1

ξo
n−1

∫ ξn

ξo
n

ν(ξ1, . . . ξn−2, tn−1, tn)dtndtn−1.

We can continue this way until reaching

D1φ(ξ)

φ(ξ)
≤
∫ ξ2

ξo
2

. . .
∫ ξn

ξo
n

ν(ξ1, t2, . . . , tn)dtn . . . dt2. (10)

Integrating both sides of inequality (10) with respect to the component ξ1 from ξo
1 to

ξ1 gives

log
(

φ(ξ)

φ(ξo
1, ξ2, . . . , ξn)

)
≤
∫ ξ

ξo
ν(t)dt,

which implies inequality (7). This proves the lemma.

To prove the following lemma, Young’s technique (see, for instance, [17]) will be applied:

Lemma 2. Let K(ξ), ω(ξ), and Λ(ξ) be real-valued nonnegative differentiable functions on Ω.
Moreover, suppose that K(ξ) and all its derivatives with respect to ξ1, . . . , ξn up to an order n− 1
vanish at ξi = ξo

i for i = 1, . . . , n. Let v(θ; ξ) be the solution of the following characteristic initial
value problem:

(−1)n ∂nv(θ; ξ)

∂θ1 . . . ∂θn
−Λ(θ)v(θ; ξ) = 0, in Ω,

v(θ; ξ) = 1 on θi = ξi, i = 1, . . . , n. (11)
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If the inequality

DK(ξ) ≤ ω(ξ) + Λ(ξ)K(ξ), (12)

holds, then

K(ξ) ≤
∫ ξ

ξo
ω(θ)v(θ; ς)dθ. (13)

Proof. The inequality (12) implies that

L[K(ξ)] ≤ ω(ξ), where L ≡ D−Λ(ξ). (14)

If z(ξ) is a function that is continuously differentiable n times in the parallelepiped
ξo < t < ξ (denoted by D), then

zL[K]− KL1[z] =
n

∑
j=1

(−1)j−1Dj[(D0 . . . Dj−1z)(Dj+1 . . . DnDn+1K)], (15)

where L1 ≡ (−1)nD−Λ(ξ) and D0 = Dn+1 = I is the identity operator. Integrating both
sides of Equation (15) over D and taking into account that K(ξ) and all of its derivatives
with respect to ξ1, . . . , ξn up to the order n− 1 vanish at θi = ξo

i for i = 1, . . . , n produces

∫
D
(zL[K]− KL1[z])dθ =

n

∑
j=1

(−1)j−1
∫

θj=ξ j

(D1 . . . Dj−1z)(Dj+1 . . . DnK)dθ
′
, (16)

where dθ
′
= dθ1 . . . dθj−1dθj+1 . . . dθn. Now, we choose z(ξ) to be the function v(θ; ξ) that

satisfies the IVP (11). Since v(θ; ξ) = 1 on θj = ξ j for j = 1, . . . , n, it follows that

D1 . . . Dj−1v(θ; ξ) = 0, on θj = ξ j, j = 2, . . . , n.

Therefore, Equation (16) becomes∫
D

vL[K]dθ =
∫

θ1=ξ1

D2 . . . DnK dθ
′

= K(ξ). (17)

The continuity of v along with the fact that v = 1 on θ = ξ leads to the existence of a
domain Ω+ containing ξ for which v ≥ 0. We multiply both sides of inequality (14) by v
and then use Equation (17) to obtain inequality (13). Tis proves the lemma.

Now, we are ready to state and prove our main results.

3. Results and Discussion

In this section, the main results of this paper are stated and proven in Theorems 1–3.
This is accomplished by using Lemmas 1 and 2:

Theorem 1. Let ti(ς), bi(ς), qi(ς), ei(ς), fi(ς), gi(ς), and hi(ς) be nonnegative, real-valued con-
tinuous functions on Ω and ai(ς) be positive, nondecreasing, and continuous functions on Ω, where
i = 1, 2. Assume that the system

ti(ς) ≤ ai(ς) +
∫ ς

ςo
bi(υ)t1(υ)ds +

∫ ς

ςo
qi(υ)t2(υ)ds +

∫ ς

ςo
ei(υ)

(∫ υ

ςo
fi(c)t1(c)dt

)
ds

+
∫ ς

ςo
gi(υ)

(∫ υ

ςo
hi(c)t2(c)dt

)
ds, (18)
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is satisfied for all ς ∈ Ω with ς ≥ ςo. Then, we have

ti(ς) ≤ ai(ς)

(
1 +

∫ ς

ςo

(
φi(υ)η(υ)ds + ρi(υ)

∫ υ

ςo
ψi(c)η(c)dt

)
ds
)

, (19)

where
φ1(ς) = b1(ς) +

a2(ς)
a1(ς)

q1(ς), φ2(ς) = q2(ς) +
a1(ς)
a2(ς)

b2(ς), φ(ς) = ∑2
i=1 φi(ς),

ψ1(ς) = f1(ς) +
a2(ς)
a1(ς)

h1(ς), ψ2(ς) = h2(ς) +
a1(ς)
a2(ς)

f2(ς), ψ(ς) = ∑2
i=1 ψi(ς),

ρi(ς) = ei(ς) + gi(ς), and η(ς) = 2 + 2
∫ ς

ςo φ(υ) exp
(∫ υ

ςo (φ(c) + ψ(c))dt
)

ds.

Proof. Assuming that the functions ai(ς), i = 1, 2 are positive and nondecreasing functions,
this allows us to rewrite the system in (18) in the following form:

ti(ς)

ai(ς)
≤ Ti(ς), (20)

where

Ti(ς) = 1+
∫ ς

ςo
bi(υ)

t1(υ)

ai(υ)
ds +

∫ ς

ςo
qi(υ)

t2(υ)

ai(υ)
ds +

∫ ς

ςo
ei(υ)

(∫ υ

ςo
fi(c)

t1(c)
ai(c)

dt
)

ds

+
∫ ς

ςo
gi(υ)

(∫ υ

ςo
hi(c)

t2(c)
ai(c)

dt
)

ds;

Ti(ς) = 1 on ςi = ςo
i , i = 1, . . . , n. (21)

For i = 1, we differentiate both sides of Equation (21) and then use inequality (20) to
obtain

DT1(ς) ≤ b1(ς)T1(ς) + q1(ς)
a2(ς)

a1(ς)
T2(ς) + e1(ς)

∫ ς

ςo
f1(υ)T1(υ)ds

+ g1(ς)
∫ ς

ςo
h1(ς)

a2(υ)

a1(υ)
T2(υ)ds. (22)

Since all functions are nonnegative, the inequality (22) takes the following form:

DT1(ς) ≤ φ1(ς)T (ς) + ρ1(ς)
∫ ς

ςo
ψ1(υ)T (υ)ds, (23)

where T (ς) = ∑2
i=1 Ti(ς). Similarly, for T2(ς), we have

DT2(ς) ≤ φ2(ς)T (ς) + ρ2(ς)
∫ ς

ςo
ψ2(υ)T (υ)ds. (24)

Adding inequalities (23) and (24) gives

DT (ς) ≤ φ(ς)T (ς) + ρ(ς)
∫ ς

ςo
ψ(υ)T (υ)ds. (25)

Adding and subtracting ρ(ς)T (ς) to the right-hand side of inequality (25) yields

DT (ς) ≤ (φ(ς)− ρ(ς))T (ς) + ρ(ς)Z(ς), (26)

where

Z(ς) = T (ς) +
∫ ς

ςo
ψ(υ)T (υ)ds, which implies that

Z(ς) ≥ T (ς), Z(ς) ≥
∫ ς

ςo
ψ(υ)T (υ)ds, and Z(ςo) = T (ςo) = 2. (27)
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Using inequality (27) permits writing inequality (26) in the following form:

DT (ς) ≤ φ(ς)Z(ς). (28)

On the other hand, the relation (27) along with the inequality (28) allows us to write

DZ(ς) ≤ (φ(ς) + ψ(ς))Z(ς). (29)

We can apply Lemma 1 on the inequality (29) to obtain

Z(ς) ≤ 2 exp
(∫ ς

ςo
[φ(υ) + ψ(υ)]ds

)
. (30)

By using the upper bound in inequality (30) on Z(ς) in the inequality (28) and then
integrating both sides of the resulting inequality with respect to ς from ςo to ς, we obtain

T (ς) ≤ η(ς). (31)

Utilizing the inequality (31) in the inequality (23) gives

DT1(ς) ≤ φ1(ς)η(ς) + ρ1(ς)
∫ ς

ςo
ψ1(υ)η(υ)ds,

which, by integration with respect to ς from ςo to ς, yields

T1(ς) ≤ 1 +
∫ ς

ςo

(
φ1(υ)η(υ) + ρ1(υ)

∫ υ

ςo
ψ1(c)η(c)dt

)
ds. (32)

Similarly, we have the following upper bound for T2(ς):

T2(ς) ≤ 1 +
∫ ς

ςo

(
φ2(υ)η(υ) + ρ2(υ)

∫ υ

ςo
ψ2(c)η(c)dt

)
ds. (33)

Embedding these upper bounds from inequalities (32) and (33) on T1(ς) and T2(ς),
respectively, into the inequality (20) produces the system’s solution (inequality (19)). This
proves the theorem.

Remark 1. If n = 2 (i.e., we are dealing with functions in two variables), and ςo = 0, then
Theorem 1 yields that for i = 1, 2, if the system

ti(ς,=) ≤ ai(ς,=) +
∫ ς

0

∫ =
0

bi(υ, c)t1(υ, c)dtds +
∫ ς

0

∫ =
0

qi(υ, c)t2(υ, c)dtds

+
∫ ς

0

∫ =
0

ei(υ, c)
(∫ υ

0

∫ t

0
fi(r, θ)t1(r, θ)dθdr

)
dtds

+
∫ ς

0

∫ =
0

gi(υ, c)
(∫ υ

0

∫ t

0
hi(r, θ)t2(r, θ)dθdr

)
dtds, (34)

holds, then

ti(ς,=) ≤ ai(ς,=)
(

1 +
∫ ς

0

∫ =
0

(
φi(υ, c)η(υ, c) + ρi(υ, c)

∫ υ

0

∫ t

0
ψi(r, θ)η(r, θ)dθdr

)
dtds

)
, (35)

where
φ1(υ, c) = b1(υ, c)+ a2(υ,c)

a1(υ,c)q1(υ, c), φ2(υ, c) = q2(υ, c)+ a1(υ,c)
a2(υ,c) b2(υ, c), φ(ς,=) = ∑2

i=1 φi

(ς,=), ψ1(υ, c) = f1(υ, c) + a2(υ,c)
a1(υ,c)h1(υ, c), ψ2(υ, c) = h2(υ, c) + a1(υ,c)

a2(υ,c) f2(υ, c), ψ(ς,=) =

∑2
i=1 ψi(ς,=), ρi(ς,=) = ei(ς,=) + gi(ς,=), and

η(ς,=) = 2 + 2
∫ ς

0

∫ =
0 φ(υ, c) exp

(∫ υ
0

∫ t
0 (φ(r, θ) + ψ(r, θ))dθdr

)
dtds.
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Theorem 2. Suppose that ti(ς), ai(ς), ei(ς), gi(ς), fi(ς), hi(ς), Dbi(ς), and Dci(ς), where
i = 1, 2, are real-valued, nonnegative, continuous, and non-decreasing functions defined on Ω.
Assume that the system

ti(ς) ≤ ai(ς) +
∫ ς

ςo
bi(ς, υ)t1(υ)ds +

∫ ς

ςo
ci(ς, υ)t2(υ)ds +

∫ ς

ςo
ei(υ)

(∫ υ

ςo
fi(ς, c)t1(c)dt

)
ds

+
∫ ς

ςo
gi(υ)

(∫ υ

ςo
hi(ς, c)t2(c)dt

)
ds; i = 1, 2, (36)

is satisfied. Then, we have

ti(ς) ≤ ai(ς) +
∫ ς

ςo

[
φi(υ) +

∫ υ

ςo
Dβi(ς, c)τ(ς, c)dt + βi(ς, υ)τ(ς, υ) + ρi(υ)

∫ υ

ςo
σi(ς, c)τ(ς, c)dt

+
∫ υ

ςo

[
ρi(c)

(∫ t

ςo
Dσi(ς, r)τ(ς, r)dr

)
dt
]]

ds; i = 1, 2, (37)

where

φi(ς) =a1(ς)bi(ς) + a2(ς)ci(ς) +
∫ ς

ςo
a1(υ)Dbi(ς, υ)ds +

∫ ς

ςo
a2(υ)Dci(ς, υ)ds

+
∫ ς

ςo
ei(υ)

(∫ υ

ςo
a1(c)D fi(ς, c)dt

)
ds + ei(ς)

∫ ς

ςo
a1(υ) fi(ς, υ)ds

+
∫ ς

ςo
gi(υ)

(∫ υ

ςo
a2(c)Dhi(ς, c)dt

)
ds + gi(ς)

∫ ς

ςo
a2(υ)hi(ς, υ)ds,

βi(ς) = bi(ς) + ci(ς), ρi(ς) = ei(ς) + gi(ς), σi(ς) = fi(ς) + hi(ς),
β(ς) = ∑2

i=1 βi(ς), ρ(ς) = ∑2
i=1 ρi(ς), σ(ς) = ∑2

i=1 σi(ς), φ(ς) = ∑2
i=1 φi(ς),

τ(ς, ϑ) =
∫ ϑ

ςo Y(ς, $)ψ2($)d$; Y(ς; υ) is the solution to the following characteristic initial
value problem:

(−1)n ∂nY(ς; υ)

∂υ1 . . . ∂υn
−[β(ς)− Dβ− ρ(ς)σ(ς)]Y(ς; υ) = 0, in Ω,

Y(ς; υ) = 1 on υi = ςi, i = 1, . . . , n, (38)

ψ2 = φ(ς) + (Dβ(ς) + ρ(ς)σ(ς))ψ1(ς) +
∫ ς

ςo ρ(υ)Dσ(ς, υ)ψ1(υ)ds,

ψ1(ς) =
∫ ς

ςo

(
φ(υ) + ρ(υ)Dσ(ς, υ)

∫ υ
ςo φ(c)v(ς; c)dt

)
w(ς; υ)ds such that v(ς; υ) is the so-

lution to the initial value problem

(−1)n ∂nv(ς; υ)

∂υ1 . . . ∂υn
−[β(ς) + Dβ(ς) + ρ(ς)σ(ς) + ρ(ς)Dσ(ς) + 2]v(ς; υ) = 0, in Ω,

v(ς; υ) = 1 on υi = ςi, i = 1, . . . , n. (39)

Additionally, w(ς; υ) is the solution to the initial value problem

(−1)n ∂nw(ς; υ)

∂υ1 . . . ∂υn
−[β(ς) + Dβ(ς) + ρ(ς)σ(ς)− ρ(ς)Dσ(ς) + 1]w(ς; υ) = 0, in Ω,

w(ς; υ) = 1 on υi = ςi, i = 1, . . . , n. (40)
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Proof. Start with

ζi(ς) =
∫ ς

ςo
bi(ς, υ)t1(υ)ds +

∫ ς

ςo
ci(ς, υ)t2(υ)ds +

∫ ς

ςo
ei(υ)

(∫ υ

ςo
fi(ς, c)t1(c)dt

)
ds

+
∫ ς

ςo
gi(υ)

(∫ υ

ςo
hi(ς, c)t2(c)dt

)
ds;

and ζ(ς) =
2

∑
j=1

ζ j(ς); i = 1, 2. (41)

Thus, the system given in (36) takes the form

ti(ς) ≤ ai(ς) + ζi(ς); i = 1, 2. (42)

Since all functions are nonnegative and non-decreasing, relation (41), along with
Equation (42), gives the following inequalities:

Dζi(ς) ≤ φi(ς) + ζ1(ς)bi(ς) +
∫ ς

ςo
ζ1(υ)Dbi(ς, υ)ds + ζ2(ς)ci(ς) +

∫ ς

ςo
ζ2(υ)Dci(ς, υ)ds

+ ei(ς)
∫ ς

ςo
ζ1(υ) fi(ς, υ)ds +

∫ ς

ςo
ei(υ)

(∫ υ

ςo
ζ1(c)D fi(c)dt

)
ds

+ gi(ς)
∫ ς

ςo
ζ2(υ)hi(ς, υ)ds +

∫ ς

ςo
gi(υ)

(∫ υ

ςo
ζ2(c)Dhi(c)dt

)
ds

≤ φi(ς) + ζ(ς)βi(ς) +
∫ ς

ςo
ζ(υ)Dβi(ς, υ)ds + ρi(ς)

∫ ς

ςo
ζ(υ)σi(ς, υ)ds

+
∫ ς

ςo
ρi(υ)

(∫ υ

ςo
ζ(c)Dσi(c)dt

)
ds; i = 1, 2. (43)

Adding the inequalities in (43) (i.e., for the cases where i = 1 and i = 2) gives

Dζ(ς) ≤ φ(ς) + ζ(ς)β(ς) +
∫ ς

ςo
ζ(υ)Dβ(ς, υ)ds + ρ(ς)

∫ ς

ςo
ζ(υ)σ(ς, υ)ds

+
∫ ς

ςo
ρ(υ)

(∫ υ

ςo
ζ(c)Dσ(ς, c)dt

)
ds. (44)

Clearly, all functions in the inequality (44) are nonnegative and non-decreasing as well.
Therefore, the inequality (44) can be written as

Dζ(ς) ≤ φ(ς) + ζ(ς)β(ς) + (Dβ(ς) + ρ(ς)σ(ς))
∫ ς

ςo
ζ(υ)ds +

∫ ς

ςo
ρ(υ)Dσ(ς, υ)

(∫ υ

ςo
ζ(c)dt

)
ds. (45)

Adding (Dβ(ς) + ρ(ς)σ(ς))ζ(ς) to both sides of inequality (45) produces

Dζ(ς) + (Dβ(ς) + ρ(ς)σ(ς))ζ(ς)

≤ φ(ς) + ζ(ς)β(ς) + (Dβ(ς) + ρ(ς)σ(ς))K1(ς) +
∫ ς

ςo
ρ(υ)Dσ(ς, υ)

(∫ υ

ςo
ζ(c)dt

)
ds, (46)

where K1(ς) = ζ(ς) +
∫ ς

ςo ζ(υ)ds. This definition of K1(ς) implies that

K1(ς) ≥ ζ(ς), K1(ς) ≥
∫ ς

ςo
ζ(υ)ds, and K1(ς

o) = ζ(ςo) = 0. (47)

From inequalities (47) and (46), we obtain

Dζ(ς) ≤ φ(ς) +K1(ς)β(ς) + (Dβ(ς) + ρ(ς)σ(ς))K1(ς) +
∫ ς

ςo
ρ(υ)Dσ(ς, υ)K1(υ)ds,
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which again, by the fact that ζ(ς) ≤ K1(ς) and that the functions ρ(ς) and Dσ(ς) are
nonnegative and non-decreasing, implies

DK1(ς) ≤ φ(ς) + (β(ς) + Dβ(ς) + ρ(ς)σ(ς))K1(ς) +
∫ ς

ςo
ρ(υ)Dσ(ς, υ)K1(υ)ds +K1(ς)

≤ φ(ς) + (β(ς) + Dβ(ς) + ρ(ς)σ(ς) + 1)K1(ς) + ρ(ς)Dσ(ς)
∫ ς

ςo
K1(υ)ds. (48)

By adding ρ(ς)Dσ(ς)K1(ς) to both sides of the inequality (48), we have

DK1(ς) + ρ(ς)Dσ(ς)K1(ς) ≤ φ(ς) + (β(ς) + Dβ(ς) + ρ(ς)σ(ς) + 1)K1(ς)

+ ρ(ς)Dσ(ς)K2(ς), (49)

where K2(ς) = K1(ς) +
∫ ς

ςo K1(υ)ds. This definition of K2(ς) together with the inequal-
ity (49) leads to

DK2(ς)− (β(ς) + Dβ(ς) + ρ(ς)σ(ς) + ρ(ς)Dσ(ς) + 2)K2(ς) ≤ φ(ς). (50)

We can apply Lemma 2 to inequality (50) to find

K2(ς) ≤
∫ ς

ςo
φ(υ)v(ς; υ)ds, (51)

where v(ς; υ) is the solution to the initial value problem (39).
We can substitute this bound (inequality (51)) onto K2(ς) in the inequality (49) to have

DK1(ς)− (β(ς) + Dβ(ς) + ρ(ς)σ(ς)− ρ(ς)Dσ(ς) + 1)K1(ς)

≤ φ(ς) + ρ(ς)Dσ(ς)
∫ ς

ςo
φ(υ)v(ς; υ)ds. (52)

By applying Lemma 2 to inequality (52), we obtain

K1(ς) ≤ ψ1(ς), (53)

where ψ1(ς) =
∫ ς

ςo

(
φ(υ) + ρ(υ)Dσ(ς, υ)

∫ υ
ςo φ(c)v(ς; c)dt

)
w(ς; υ)ds;

w(ς; υ) is the solution to the initial value problem in (40). We can use the bound in
inequality (53) on K1(ς) along with inequality (47) in the inequality (46) to obtain

Dζ(ς)−[β(ς)− Dβ(ς)− ρ(ς)σ(ς)]ζ(ς)

≤ φ(ς) + (Dβ(ς) + ρ(ς)σ(ς))ψ1(ς) +
∫ ς

ςo
ρ(υ)Dσ(ς, υ)ψ1(υ)ds. (54)

An application of Lemma 2 on the inequality (54) gives

ζ(ς) ≤
∫ ς

ςo
ψ2(υ)Y(ς; υ)ds, (55)

where ψ2(ς) = φ(ς) + (Dβ(ς) + ρ(ς)σ(ς))ψ1(ς) +
∫ ς

ςo ρ(υ)Dσ(ς, υ)ψ1(υ)ds, and Y(ς; υ) is
the solution to the initial value problem in (38).
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We can use the upper bound in (55) on ζ(ς) in the inequality (43) to obtain

ζi(ς) ≤
∫ ς

ςo

[
φi(υ) + βi(υ)τ(ς, υ) +

∫ υ

ςo
Dβi(ς, c)τ(ς, c)dt

+ρi(υ)
∫ υ

ςo
σi(ς, c)τ(ς, c)dt

+
∫ υ

ςo
ρi(c)

(∫ t

ςo
Dσi(ς, r)τ(ς, r)dr

)
dt
]

ds; i = 1, 2. (56)

Substituting from inequality (56) in the inequality (42) produces inequality (37). This
completes the proof.

Remark 2. Let us consider the following system with n = 2 (i.e., we are dealing with functions in
R2, and ςo = 0). For i = 1, 2, if

ti(ς,=) ≤ ai(ς,=) +
∫ ς

0

∫ =
0

bi(υ, c)t1(υ, c)dtds +
∫ ς

0

∫ =
0

ci(υ, c)t2(υ, c)dtds

+
∫ ς

0

∫ =
0

ei(υ, c)
(∫ υ

0

∫ t

0
fi(r, θ)t1(r, θ)dθdr

)
dtds

+
∫ ς

0

∫ =
0

gi(υ, c)
(∫ υ

0

∫ t

0
hi(r, θ)t2(r, θ)dθdr

)
dtds,

then

ti(ς,=) ≤ ai(ς,=) +
∫ ς

0

∫ =
0

[
φi(υ, c) + βi(υ, c)τ(υ, c) + ρi(υ, c)

∫ υ

0

∫ t

0
σi(r, θ)τ(r, θ)dθdr

]
dtds, (57)

where

φi(ς,=) = a1(ς,=)bi(ς,=) + a2(ς,=)ci(ς,=) + ei(ς,=)
∫ ς

0

∫ =
0

a1(υ, c) fi(υ, c)dtds

+ gi(ς,=)
∫ ς

0

∫ =
0

a2(υ, c)hi(υ, c)dtds,

βi(ς,=) = bi(ς,=) + ci(ς,=), ρi(ς,=) = ei(ς,=) + gi(ς,=), σi(ς,=) = fi(ς,=) +
hi(ς,=), β(ς,=) = ∑2

i=1 βi(ς,=), ρ(ς,=) = ∑2
i=1 ρi(ς,=), σ(ς,=) = ∑2

i=1 σi(ς,=), φ(ς,=) =
∑2

i=1 φi(ς,=), τ(ς,=; υ, c) =
∫ υ

0

∫ t
0 Y(ς,=; r, θ)ψ(r, θ)dθdr; Y(ς,=; υ, c) is the solution to the

following characteristic initial value problem:

∂2Y(ς,=; υ, c)
∂υ∂t

−[β(ς)− ρ(ς)σ(ς)]Y(ς,=; υ, c) = 0, in Ω,

Y(ς,=; υ, c) = 1 on υ = ς, t = =,

ψ(ς,=) = φ(ς,=) + ρ(ς,=)σ(ς,=)
∫ ς

0

∫ =
0 φ(υ, c)w(ς,=; υ, c)dtds, and w(ς,=; υ, c) is

the solution to the initial value problem

∂2w(ς,=; υ, c)
∂υ∂t

−[β(ς) + ρ(ς)σ(ς) + 1]w(ς,=; υ, c) = 0, in Ω,

w(ς,=; υ, c) = 1 on υ = ς, t = =.

Theorem 3. Let ti(ς), pi(ς), qi(ς), ci(ς), fi(ς), gi(ς), and hi(ς) be real-valued, positive, contin-
uous functions on Ω, and let ai(ς) be positive, continuous, non-decreasing functions on Ω;
i = 1, 2. In addition, let H(α) be positive, continuous, non-decreasing function satisfying
t−1H(α) ≤ H(t−1α), where α ≥ 0. Assume that the system
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ti(ς) ≤ ai(ς) +
∫ ς

ςo
pi(υ)H(t1(υ))ds +

∫ ς

ςo
qi(υ)H(t2(υ))ds

+
∫ ς

ςo
ei(υ)

(∫ υ

ςo
fi(c)H(t1(c))dt

)
ds +

∫ ς

ςo
gi(υ)

(∫ υ

ςo
hi(c)H(t2(c))dt

)
ds, (58)

is satisfied for all ς ∈ Ω with ς ≥ ςo. Then, for ςo ≤ ς ≤ ς∗, we have

ti(ς) ≤ ai(ς)

[
1 + 2

∫ ς

ςo

[
φi(υ)H(γ(υ))ds + ρi(υ)

∫ υ

ςo
ψi(c)H(γ(c))dt

]
ds
]

, (59)

where φ1(ς) = p1(ς) + q1(ς)
a2(ς)
a1(ς)

, φ2(ς) = p2(ς)
a1(ς)
a2(ς)

+ q2(ς), φ(ς) = ∑2
i=1 φi(ς), ψ1(ς) =

f1(ς) + h1(ς)
a2(ς)
a1(ς)

, ψ2(ς) = f2(ς)
a1(ς)
a2(ς)

+ h2(ς), ψ(ς) = ∑2
i=1 ψi(ς), ρi(ς) = ei(ς) + gi(ς),

ρ(ς) = ∑2
i=1 ρi(ς), and G(r) =

∫ r
ro

ds
H(υ)

, while ς∗ is chosen so that G(2) + 2
∫ ς

ςo (φ(υ) +

ρ(υ)
∫ ς

ςo ψ(c)(c)dt)ds ∈ Dom(G−1) and

γ(ς) = G−1
(

G(2) + 2
∫ ς

ςo

(
φ(υ) + ρ(υ)

∫ ς
ςo ψ(c)dt

)
ds
)

.

Proof. Utilizing the assumptions on ai(ς), where i = 1, 2, and H(α) allows us to write the
system in (58) as follows:

ti(ς)

ai(ς)
≤ Ti(ς); i = 1, 2, (60)

where

T1(ς) =1 +
∫ ς

ςo
p1(υ)H

(
t1(υ)

a1(υ)

)
ds +

∫ ς

ςo
q1(υ)

a2(υ)

a1(υ)
H
(

t2(υ)

a2(υ)

)
ds

+
∫ ς

ςo
e1(υ)

(∫ υ

ςo
f1(c)H

(
t1(c)
a1(c)

)
dt
)

ds +
∫ ς

ςo
g1(υ)

(∫ υ

ςo
h1(c)

a2(c)
a1(c)

H
(

t2(c)
a2(c)

)
dt
)

ds;

where T1 = 1 on ςi = ςo
i , i = 1, . . . , n, (61)

and

T2(ς) =1 +
∫ ς

ςo
p2(υ)

a1(υ)

a2(υ)
H
(

t1(υ)

a1(υ)

)
ds +

∫ ς

ςo
q2(υ)H

(
t2(υ)

a2(υ)

)
ds

+
∫ ς

ςo
e2(υ)

(∫ υ

ςo
f2(c)

a1(c)
a2(c)

H
(

t1(c)
a1(c)

)
dt
)

ds +
∫ ς

ςo
g2(υ)

(∫ υ

ςo
h2(c)H

(
t2(c)
a2(c)

)
dt
)

ds;

where T2 = 1 on ςi = ςo
i , i = 1, . . . , n. (62)

Now, from relations (60) and (61), we have

DT1(ς) ≤ p1(ς)H(T1(ς)) + q1(ς)
a2(ς)

a1(ς)
H(T2(ς)) + e1(ς)

(∫ ς

ςo
f1(υ)H(T1(υ))ds

)
+ g1(ς)

(∫ ς

ςo
h1(υ)

a2(υ)

a1(υ)
H(T2(υ))ds

)
. (63)

Since all functions are positive and H is a non-decreasing function, the inequality (63)
can be written as follows:

DT1(ς) ≤ 2φ1(ς)H(T (ς)) + 2ρ1(ς)

(∫ ς

ςo
ψ1(υ)H(T (υ))ds

)
, (64)

where φ1(ς), ρ1(ς), and ψ1(ς) are as defined in the statement of this theorem and T (ς) =
∑2

i=1 Ti(ς). Similarly, by relations (60) and (62), we obtain
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DT2(ς) ≤ 2φ2(ς)H(T (ς)) + 2ρ2(ς)

(∫ ς

ςo
ψ2(υ)H(T (υ))ds

)
, (65)

where φ2(ς), ρ2(ς) and ψ2(ς) are as defined in the statement of this theorem.
Now, adding the inequalities in (64) and (65) yields

DT (ς) ≤ 2φ(ς)H(T (ς)) + 2ρ(ς)

(∫ ς

ςo
ψ(υ)H(T (υ))ds

)
, (66)

where φ(ς), ρ(ς) and ψ(ς) are as defined in the statement of this theorem. Since H is
a non-decreasing function and ςo ≤ υ ≤ ς, then H(T (υ)) ≤ H(T (ς)), which causes
inequality (66) to take the form

DT (ς) ≤ 2
[

φ(ς) + ρ(ς)
∫ ς

ςo
ψ(υ)ds

]
H(T (ς)). (67)

By applying Lemma 1, we find from inequality (67) that

G(T (ς))− G(2) ≤ 2
∫ ς

ςo

(
φ(υ) + ρ(υ)

∫ υ

ςo
ψ(c)dt

)
ds,

which implies that

T (ς) ≤ G−1
(

G(2) + 2
∫ ς

ςo

(
φ(υ) + ρ(υ)

∫ υ

ςo
ψ(c)dt

)
ds
)

,

In other words, we have
T (ς) ≤ γ(ς), (68)

where γ(ς) is as given in the statement of the theorem. We can use the bound in (68) on
T (ς) in inequality (64) to obtain

DT1(ς) ≤ 2φ1(ς)H(γ(ς)) + 2ρ(ς)

(∫ ς

ςo
ψ1(υ)H(γ(υ))ds

)
. (69)

Integrating both sides of inequality (69) with respect to ς from ςo to ς produces

T1(ς) ≤ 1 + 2
∫ ς

ςo

[
φ1(υ)H(γ(υ)) + ρ1(υ)

(∫ υ

ςo
ψ1(c)H(γ(c))

)
dt
]

ds. (70)

Similarly, we can obtain from inequalities (65) and (68) that

T2(ς) ≤ 1 + 2
∫ ς

ςo

[
φ2(υ)H(γ(υ)) + ρ2(υ)

(∫ υ

ςo
ψ2(c)H(γ(c))

)
dt
]

ds. (71)

Using inequalities (70) and (71) in inequality (60) leads to inequality (59). This com-
pletes the proof.

4. Applications

This section presents some applications of the results proven in this paper. The theo-
rems proven in this paper cover a wide range of previously proven results. This aim can be
attained by limiting some of the functions in our results. For instance, if the functions ei(ς)
and gi(ς) vanish, then consequently, the functions ψi(ς), ψ(ς), ρ(i)(ς), and ρ(ς) vanish as
well, and then Theorem 3 states the following. If the system

ti(ς) ≤ ai(ς) +
∫ ς

ςo
pi(υ)H(t1(υ))ds +

∫ ς

ςo
qi(υ)H(t2(υ))ds,
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is satisfied for all ς ∈ Ω with ς ≥ ςo, then for ςo ≤ ς ≤ ς∗, we have

ti(ς) ≤ ai(ς)

[
1 + 2

∫ ς

ςo
φi(υ)H(γ(υ))ds

]
,

where φ1(ς) = p1(ς) + q1(ς)
a2(ς)
a1(ς)

, φ2(ς) = p2(ς)
a1(ς)
a2(ς)

+ q2(ς), φ(ς) = ∑2
i=1 φi(ς), and

G(r) =
∫ r

ro
ds

H(υ)
, while ς∗ is chosen so that G(2) + 2

∫ ς
ςo φ(υ)ds ∈ Dom(G−1) and

γ(ς) = G−1
(

G(2) + 2
∫ ς

ςo φ(υ)ds
)

.
On the other hand, we can apply Remarks 1 and 2 in order to obtain some upper bounds

for the systems of integral inequalities. In what follows, we present two applications:

1. Consider the following system of integral inequalities in two unknown functions
t1(ς,=) and t2(ς,=):

t1(ς,=) ≤ xy +
∫ ς

0

∫ =
0

st1(υ, c)dtds−
∫ ς

0

∫ =
0

tu2(υ, c)dtds

+
∫ ς

0

∫ =
0

1
st

(∫ υ

0

∫ t

0
θ t2(r, θ)dθdr

)
dtds,

and

t2(ς,=) ≤ xy +
∫ ς

0

∫ =
0

tt1(υ, c)dtds +
∫ ς

0

∫ =
0

1
t2

(∫ υ

0

∫ t

0
(−r− θ)t1(r, θ)dθdr

)
dtds.

Comparing this system with the system given in Remark 1 indicates that

φ1(ς,=) = ς−=, φ2(ς,=) = =, φ(ς,=) = ς, ψ1(ς,=) = =, ψ2(ς,=) = −(ς +=),

ψ(ς,=) = −ς, ρ1(ς,=) = 1
xy

, ρ2(ς,=) = 1
=2 , ρ(ς,=) = ς +=

xy2 .

Thus, we have

η(ς,=) = 2 + 2
∫ ς

0

∫ =
0

υ exp
(∫ υ

0

∫ t

0
(r− r)dθdr

)
dtds

= 2 + ς2=,

which leads to

t1(ς,=) ≤ xy
[

1 +
∫ ς

0

∫ =
0

(
(υ− c)(2 + υ2c) +

1
st

∫ υ

0

∫ t

0
θ(2 + r2θ)dθdr

)
dtds

]
= xy

[
1 +

∫ ς

0

∫ =
0

(
2υ + υ3t− t− 8

9
υ2t2

)
dtds

]
= xy

[
1 + xy

(
ς +

(
ς3 − 4

8

)
=− 8

81
ς2=2

)]
,

and

t2(ς,=) ≤ xy
[

1 +
∫ ς

0

∫ =
0

(
t(2 + υ2c)− 1

t2

∫ υ

0

∫ t

0
(r + θ)(2 + r2θ)dθdr

)
dtds

]
= xy

[
1 +

∫ ς

0

∫ =
0

(
2t + υ2t2 −

(
υ2

t
+ υ +

υ4

8
+

υ3t
9

))
dtds

]
= xy

[
1 + xy

(
−ς

2

(
1 +

ς3

20

)
+

(
1− ς3

72

)
=+

1
9

ς2=2
)
− ς3

3
ln=

]
; = > 0.
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2. Consider the following system of integral inequalities in two unknown functions
t1(ς,=) and t2(ς,=):

t1(ς,=) ≤ −1
2

∫ ς

0

∫ =
0

t1(υ, c)dtds−
∫ ς

0

∫ =
0

(
1
2
+ υ

)
t2(υ, c)dtds

−
∫ ς

0

∫ =
0

1
2

(∫ υ

0

∫ t

0

1
θ

t2(r, θ)dθdr
)

dtds,

and

t2(ς,=) ≤ =+
∫ ς

0

∫ =
0

υt1(υ, c)dtds +
1
2

∫ ς

0

∫ =
0

t2(υ, c)dtds

+
∫ ς

0

∫ =
0

1
2t + 2

(∫ υ

0

∫ t

0
t1(r, θ)dθdr

)
dtds.

Comparing this system with the system given in Remark 2 indicates that

φ1(ς,=) = −=
(

1
2
+ ς

)
− 1

2
xy, φ2(ς,=) = 1

2
=, φ(ς,=) = −3

2
xy,

β1(ς,=) = −(1 + ς), β2(ς,=) = ς +
1
2

, β(ς,=) = −1
2

,

ρ1(ς,=) = −1
2

, ρ2(ς,=) = 1
2(=+ 1)

, ρ(ς,=) = − =
2(=+ 1)

,

σ1(ς,=) = 1
= , σ2(ς,=) = 1, σ(ς,=) = =+ 1

= .

Therefore, we have

β− ρσ = 0, β + ρσ + 1 = 0, this leads to
∂2Y
∂υ∂t

= 0 so Y = 1,

in addition
∂2w
∂υ∂t

= 0, i.e., w = 1, and τ(ς,=) = 3
8

(
ς3=3

18
− ς2=2

)
.

Thus, the inequalities in (57) lead to

t1(ς,=) ≤
∫ ς

0

∫ =
0

[
− t

2
− 3st

2
+

3
8

(
υ2t2 − υ3t3

18
+ υ3t2 − υ4t3

18

)
− 3

16

∫ υ

0

∫ t

0

(
r3θ2

18
− r2θ

)
dθdr

]
dtds

=
xy2

8

[
−2− 3ς +

(
13ς + 16

48

)
ς2=−

(
5ς + 6

576

)
ς3=2

]
,

and

t2(ς,=) ≤ =+
∫ ς

0

∫ =
0

[
t
2
+

3
8

(
υ +

1
2

)(
υ3t3

18
− υ2t2

)
+

3
16(t + 1)

∫ υ

0

∫ t

0

(
r3θ3

18
− r2θ2

)
dθdr

]
dtds

=
=
16

[
16− ς4

2

(
ς + 40
16(15)

)
+

(
ς4

16(15)4
+

ς3

24
+ 4

)
xy−

(
ς3

40
+ 19ς2 + 12ς

)
ς2=2

2(18)

+

(
33ς2

20
+ ς

)
ς3=3

48(16)

]
+

ς4

2(16)

( ς

40
+ 1
)

ln(1 +=); = > −1.
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5. Discussion

By applying Young’s method, which depends on the Riemann method, we proved
additional generalizations of the integral inequality in n independent variables. Some
applications of the results proven in this paper are presented.
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