

PARALLEL PROCESSING BY A MICROCONTROLLER BASED-SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
ÇANKAYA UNIVERSITY

BY

SERDAR ÇETĐNKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JANUARY , 2009

 iv

ABSTRACT

PARALLEL PROCESSING BY A MICROCONTROLLER-BASED SYSTEM

ÇETĐNKAYA, Serdar

M.S.c., Department of Computer Engineering

Supervisor : Prof. Dr. Mehmet R. Tolun

JANUARY 2009, 62 pages

In this thesis, a microcontroller-based system which executes parallel process is

developed. This system is designed to crack password getting the most performance.

When system cracks password, system outputs execution time.

There are two software systems. One of them which is running on master and one

another software system which is running on nodes compose the embedded software

system. System architecture is based on MIMD architecture. Performance analysis is

based on Amdahl’s Law. Speedup is calculated.

Keywords: Parallel Processing, Embedded Software Development

 v

ÖZ

MĐKRODENETLEYĐCĐ TABANLI B ĐR SĐSTEM ĐLE PARALEL ĐŞLEM

ÇETĐNKAYA, Serdar

Yükseklisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Prof. Dr. Mehmet R. Tolun

OCAK 2009, 62 sayfa

Bu tez çalışmasında paralel işlem yapan microdenetleyici tabanlı gömülü bir sistem

geliştirilmi ştir. Sistem kullanıcı tarafından girilen şifreyi en yüksek performans ile

çözmek amacıyla tasarlanmıştır. Sistem kullanıcının şifresini çözdüğü an harcanan

işlem zamanını çıktı olarak vermektedir.

Đki yazılım sistemi vardır. Master üzerinde koşan yazılım ve node’lar üzerinde koşan

yazılım olmak üzere iki gömülü yazılım sistemi oluşturur. MIMD (Multiple

intruction, multible data) mimari temel alınmıştır. Değişik sayılarda node

kullanılarak performans analizi için Amdahl’s Law temel alınmıştır.

Hızlanma(speedup) ve verimlilik(efficiency) hesaplamaları yapılmıştır.

Anahtar Kelimeler: Paralel Đşlem, Gömülü Yazılım Geliştirme

 vi

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to his supervisor Prof. Dr.

Mehmet Tolun for his guidance, advice, criticism, encouragements and insight

throughout the research.

Additionally, I want to thank to my father Hasan for their support, encouragement and

reliance throughout my life.

 vii

TABLE OF CONTENTS

STATEMENT OF NON-PRAGIARISM………………………………… iii

ABSTRACT………………………………………………………………. iv

ÖZ…………………………………………………………………………. v

ACKNOWLEDGMENTS………………………………………………… vi

TABLE OF CONTENTS…………………………………………………. vii

LIST OF FIGURES……………………………………………………….. ix

CHAPTERS :

 1. INTRODUCTION………………………………………………….. 1

 1.1 Theoretical foundations………………………………………. 2

 1.1.1 Parallel Processing……………………………………….. 2

 1.1.2 Parallel Hardwares……………………………………….. 3

 1.1.3 Amdahl’s Law, Speedup, Efficiency…………………….. 4

 2. CASE TOOLS AND TECHNOLOGICAL ASPECTS……………. 8

 2.1 Mpasm Library and Software Aspects………………………... 8

 2.2 ISIS Simulation System……………………………………….. 12

 3. MICROCONTROLLER ARCHITECTURE………………………. 16

 3.1 Memory Organization……………………………………….. 16

 3.2 Data EEPROM Memory……………………………………... 18

 3.3 I/O Ports……………………………………………………… 22

 3.4 Timer Modules………………………………………………. 23

 3.5 Special Features of the CPU………………………………… 25

 4. PARALLEL PROCESSING BY A MICROCONTROLLER-BASED

 SYSTEM……………………………………………………………… 28

 4.1 Ready State……………………………………………………… 28

 viii

 4.2 Running State……………..…………………………………….. 30

 4.3 Calculating Speedup……………………………………………. 60

 5. CONCLUSION AND FUTURE WORK…………………………….. 62

REFERENCES…………………………………………………………….. R1

 ix

LIST OF FIGURES

FIGURES

 1.1 Speedup under Amdahl’s Law…………………………......... 5

 1.2 Fixed-Size Model…………………………………………….. 6

 1.3 Scaled-Size Model………………………………………….... 6

2.1 Simple Assembler Process…………………………………… 9

2.2 Link Process………………………………………………...... 10

2.3 Library Build Process………………………………………... 11

3.1 Program Memory Map and Stack 16f84………………….... 17

3.2 Program Memory Map and Stack 16f877………………….. 18

3.3 Block diagram of the Timer0 / WDT Prescaler……………... 24

4.1 System Design……………………………………………...... 29

4.2 System is Ready State……………………………………...... 30

4.3 System is Running State…………………………………….. 60

4.4 Calculating Speedup using different number of nodes and

 an input value……………………………………………...... 61

4.5 Speedup graph……………………………………………….. 61

1

CHAPTER 1

INTRODUCTION

Multiple CPU system offer the promise of both increasing the throughput of a

computing system as well as decreasing job response time through the use of

parallel processing. In such systems, throughput is increased by the addition of

more microcontrollers and, which associated with this increased capacity, which

is reduction in job response time due to decreasing queueing delays. Further

reduction in job response time requires exploiting parallelism within the job by

simultaneously executing a job’s tasks on multiple microcontrollers.

As initially pointed out by Amdahl [1] there are fundamental limitation on

speedup that are obtainable through parallel execution. Even under the ideal

assumption that jobs have unbounded parallelism, cost associated with managing

the cooperation between a job’s tasks like synchronization or data sharing put

limitations on possible speedups. An additional cost of sychronization arises from

randomness in task execution times.These variations can arise either from

resource sharing, such as memory conflicts, arise from the inherent randomness of

a computations, or from both effects.

These random variations result in staggering task completion times and have

different effects depending on parallel processing architecture [2]. An analysis of

how different interconnection structure influences the efficiency. In this thesis, we

focus on the task execution time to determine fundamental limitation of task

sychronization. Our system assumes that all system cost associated with

2

syncronization are included in task execution times.

1.1. Theoretical foundations

1.1.1. Parallel Processing

Parallel processing is a form of computation in which many instructions are

carried out simultaneously, operating on the principle that large problems can

often be divided into smaller ones, which are then solved concurrently ("in

parallel"). There are several different forms of parallel computing: bit-level

parallelism, instruction-level parallelism, data parallelism, and task parallelism. It

has been used for many years, mainly in high-performance computing, but

interest in it has grown in recent years due to the physical constraints preventing

frequency scaling. Parallel computing has become the dominant paradigm in

computer architecture, mainly in the form of multicore processors.[3] However, in

recent years, power consumption by parallel computers has become a concern.

Parallel computers can be roughly classified according to the level at which the

hardware supports parallelism with multi-core and multi-processor computers

having multiple processing elements within a single machine, while clusters,

MPPs, and grids use multiple computers to work on the same task. Parallel

computer programs are more difficult to write than sequential ones, because

concurrency introduces several new classes of potential software bugs, of which

race conditions are the most common. Communication and synchronization

between the different subtasks is typically one of the greatest barriers to getting

good parallel program performance. The speed-up of a program as a result of

parallelization is given by Amdahl's law which will be explained further in

section1.1.3.

Task parallelism (also known as function parallelism and control parallelism) is a

form of parallelization of computer code across multiple processors in parallel

3

computing environments. Task parallelism focusses on distributing execution

processes (threads) across different parallel computing nodes. It contrasts to data

parallelism as another form of parallelism.In a multiprocessor system, task

parallelism is achieved when each processor executes a different thread (or

process) on the same or different data. The threads may execute the same or

different code. In the general case, different execution threads communicate with

one another as they work. Communication takes place usually to pass data from

one thread to the next as part of a workflow.As a simple example, if we are

running code on a 2-processor system in a parallel environment and we wish to do

tasks "A" and "B" , it is possible to tell CPU "a" to do task "A" and CPU "b" to do

task 'B" simultaneously, thereby reducing the runtime of the execution. The tasks

can be assigned using conditional statements as described below. Task parallelism

emphasizes the distributed (parallelized) nature of the processing (i.e. threads), as

opposed to the data (data parallelism). Most real programs fall somewhere on a

continuum between Task parallelism and Data parallelism.

1.1.2. Parallel Hardwares

The four classifications defined by Flynn [4] are based upon the number of

concurrent instruction (or control) and data streams available in the architecture:

Single Instruction, Single Data stream (SISD); a sequential computer which

exploits no parallelism in either the instruction or data streams. Examples of SISD

architecture are the traditional uniprocessor machines like a PC or old

mainframes. Single Instruction, Multiple Data streams (SIMD); a computer which

exploits multiple data streams against a single instruction stream to perform

operations which may be naturally parallelized. For example, an array processor

or GPU. Multiple Instruction, Single Data stream (MISD); multiple instructions

operate on a single data stream. Uncommon architecture which is generally used

for fault tolerance. Heterogeneous systems operate on the same data stream and

must agree on the result. Examples include the Space Shuttle flight control

computer.

4

Multiple Instruction, Multiple Data streams (MIMD); multiple autonomous

processors simultaneously executing different instructions on different data.

Distributed systems are generally recognized to be MIMD architectures; either

exploiting a single shared memory space or a distributed memory space. Some

further divide the MIMD category into the following categories: Single Program,

Multiple Data streams (SPMD): Multiple autonomous processors simultaneously

executing the same program (but at independent points, rather than in the lockstep

that SIMD imposes) on different data. Also referred to as 'Single Process,

multiple data'. SPMD is the most common style of parallel programming.Multiple

Program Multiple Data (MPMD) : Multiple autonomous processors

simultaneously operating at least 2 independent programs. Typically such systems

pick one node to be the "host" ("the explicit host/node programming model") or

"manager" (the "Manager/Worker" strategy), which runs one program that farms

out data to all the other nodes which all run a second program. Those other nodes

then return their results directly to the manager.

1.1.3. Amdahl’s Law, Speedup, Efficiency

If N is the number of processors, s is the amount of time spent (by a serial

processor) on serial parts of a program and p is the amount of time spent (by a

serial processor) on parts of the program that can be done in parallel, then

Amdahl’s law says that speedup is given below.

Speedup = (s + p) ⁄ (s + p ⁄ N) = 1 ⁄ (s + p ⁄ N) For N = 1024, this is an

unforgivingly step function of s near s = 0 (see Figure1).

5

Figure 1.1: Speedup under Amdahl’s Law

The expression and graph both contain the implicit assumption that p is

independent of N, which is virtually never the case. One does not take a fixed-size

problem and run it on various numbers of processors except when doing academic

research; in practice, the problem size scales with the number of processors.

When given a more powerful processor, the problem generally expands to make

use of the increased facilities. Users have control over such things as grid

resolution, number of timesteps, difference operator complexity, and other

parameters that are usually adjusted to allow the program to be run in some

desired amount of time. Hence, it may be most realistic to assume that run time,

not problem size, is constant. As a first approximation, we have found that it is the

parallel or vector part of a program that scales with the problem size. Times for

vector startup, program loading, serial bottlenecks and I/O that make up.

Component of the run do not grow with problem size. When we double the

number of degrees of freedom in a physical simulation, we double the number of

processors. But this means that, as a first approximation, the amount of work that

6

can be done in parallel varies linearly with the number of processors. For the

three applications mentioned above, we found that the parallel portion scaled by

factors of 1023.9969, 1023.9965, and 1023.9965. If we use s’ and p’ to represent

serial and parallel time spent on the parallel system, then a serial processor would

require time s’ + p’ x N to perform the task. This reasoning gives an alternative to

Amdahl’s law suggested by E. Barsis at Sandia:

Scaled speedup = (s’+ p’ x N) / (s’ + p’) = s’+ p’ x N = N + (1 N) x s’

In contrast with Figure 1, this function is simply a line, and one with much more

moderate slope: 1 – N.

It is thus much easier to achieve efficient parallel performance than is implied by

Amdahl’s paradigm. The two approaches, fixed-sized and scaled-sized, are

contrasted and summarized in Figure 1.2 and 1.3.

7

The aim of the thesis is to obtain high performance using parallel processing with

a suitable architecture. We want to show that depending on low cost for

estimating execution time.

8

CHAPTER 2

CASE TOOLS AND TECHNOLOGICAL ASPECTS

2.1. Mpasm Library and Software Aspects

The MPASM assembler is a command-line or Windows-based PC application that

provides a platform for developing assembly language code for Microchip's PIC©

microcontroller (MCU) families. There are two executable versions of the

assembler: The windows version (mpasmwin.exe). Use this version with

MPLAB© IDE, in a stand-alone Windows application, or on the command line.

This version is available with MPLAB IDE or with the regular and demo version

of the MPLAB C18 C compiler. This is the recommended version. The command-

line version (mpasm.exe). Use this version on the command line, either from a

command shell or directly on the command line. This version is available with the

regular and demo version of the MPLAB C18 C compiler. The MPASM

assembler supports all PIC MCU devices, as well as memory and KeeLoq© secure

data products from Microchip Technology Inc.

The MPASM assembler provides a universal solution for developing assembly

code for all of Microchip's PIC MCUs. Notable features include: MPLAB IDE

Compatibility, Command Line Interface, Windows/Command Shell Interfaces,

Rich Directive Language, Flexible Macro Language.

Since the MPASM assembler is a universal assembler for all PIC MCU devices,

9

application code developed for the PIC16F877A can be translated into a program

for the PIC18F452. This may require changing the few instruction mnemonics

that are not the same between the devices (assuming that register and peripheral

usage were similar). The rest of the directive and macro language will be the

same. Included with MPLAB IDE are template files for all PIC MCUs. Template

files allow you to quick set up a project in MPLAB with a generic file that can be

filled in with code as you develop your application. Template files contain the

basic structure of a source file, provide some examples for declaring variable

storage and for setting device configuration bits.

The MPASM assembler can be used in two ways: To generate absolute code that

can be executed directly by a microcontroller. To generate relocatable code that

can be linked with other separately assembled or compiled modules. Relocatable

code can not be executed by a microcontroller until it has been linked. Absolute

code is the default output from the MPASM assembler. This process is shown

below.

Figure 2.1: Simple Assembler Process

When a source file is assembled in this manner, all variables and routines used in

the source file must be defined within that source file, or in files that have been

explicitly included by that source file. If assembly proceeds without errors, a hex

file will be generated, containing the executable machine code for the target

10

device. This file can then be used with a debugger to test code execution or with a

device programmer to program the microcontroller.

The MPASM assembler also has the ability to generate a relocatable object

module that can be linked with other modules using Microchip's MPLINK linker

to form the final executable code. This method is very useful for creating reusable

modules.

Figure 2.2: Link Process

Related modules can be grouped and stored together in a library using microchip's

MPLIB librarian. Required libraries can be specified at link time, and only the

routines that are needed will be included in the final executable.

11

Figure 2.3: Library Build Process

Assembly is a programming language you may use to develop the source code for

your application. The source code file may be created using any ASCII text file

editor or using MPLAB’s Programmer’s Editor. Your source code should

conform to the following basic guidelines. Each line of the source file may

contain up to four types of information: labels – “tags” given to locations in

source code, mnemonics – short names that are given for each machine

instruction, operands – most mnemonics operate on operands, such as registers,

labels or numbers: directives – special instructions to the assembler, macros –

short cuts for defining commonly used assembly routines, comments – user

notations to the code.

The order and position of these are important. For ease of debugging, it is

recommended that labels start in column one and mnemonics start in column two

or beyond. Operands follow the mnemonic. Comments may follow the operands,

12

mnemonics or labels, and can start in any column. The maximum column width is

255 characters. Comments can also be on a line by themselves.

White space or a colon must separate the label and the mnemonic, and white

space must separate the mnemonic and the operand(s). Multiple operands must be

separated by commas. “White space” is one or more spaces or tabs. White space

is used to separate pieces of a source line. White space should be used to make

your code easier to read. Unless within character constants, any white space

means the same as exactly one space. Files associated with MPASM are listed

here: source Code (.asm) Default source file extension input to assembler.

Include File (.inc) Include (header) file.Listing File (.lst) Default output extension

for listing files generated by assembler. Error File (.err) Output extension from

assembler for error files. Hex File Formats (.hex, .hxl, .hxh) Output extension

from assembler for hex files. Cross Reference File (.xrf) Output extension from

assembler for cross reference files. Symbol and Debug File (.cod) Output

extension for the symbol and debug file. For absolute code, this file will be

generated by the assembler. For relocatable code, this file and a file will be

generated by the MPLINK linker. Object File (.o) Output extension from

assembler for object files.

2.2. ISIS Simulation System

Many CAD users dismiss schematic capture as a necessary evil in the process of

creating PCB layout but we have always disputed this point of view. With PCB

layout now offering automation of both component placement and track routing,

getting the design into the computer can often be the most time consuming

element of the exercise. And if you use circuit simulation to develop your ideas,

you are going to spend even more time working on the schematic.

ISIS has been created with this in mind. It has evolved over twelve years research

and development and has been proven by thousands of users worldwide. The

13

strength of its architecture has allowed us to integrate first conventional graph

based simulation and now - with PROTEUS VSM - interactive circuit simulation

into the design environment. For the first time ever it is possible to draw a

complete circuit for a micro-controller based system and then test it interactively,

all from within the same piece of software. Meanwhile, ISIS retains a host of

features aimed at the PCB designer, so that the same design can be exported for

production with ARES or other PCB layout software.

For the educational user and engineering author, ISIS also excels at producing

attractive schematics like you see in the magazines. It provides total control of

drawing appearance in terms of line widths, fill styles, colours and fonts. In

addition, a system of templates allows you to define a ‘house style’ and to copy

the appearance of one drawing to another.

Other general features include: Runs on Windows 98/Me/2k/XP and later.

Automatic wire routing and dot placement/removal. Powerful tools for selecting

objects and assigning their properties. Total support for buses including

component pins, inter-sheet terminals, module ports and wires. Bill of Materials

and Electrical Rules Check reports. Netlist outputs to suit all popular PCB layout

tools.

For the ‘power user’, ISIS incorporates a number of features which aid in the

management of large designs. Indeed, a number of our customers have used it to

produce designs containing many thousands of components.

Hierarchical design with support for parameterized component values on sub-

circuits. Design Global Annotation allowing multiple instances of a sub-circuit to

have different component references. Automatic Annotation - the ability to

number the components automatically. ASCII Data Import - .this facility

provides the means to automatically bring component stock codes and costs into

ISIS design or library files where they can then be incorporated or even totaled

14

up in the Bill of Materials report.

Users of ARES, or indeed other PCB software will find some of the following

PCB design specific features of interest: Sheet Global Net Properties which allow

you to efficiently define a routing strategy for all the nets on a given sheet (e.g. a

power supply needing POWER width tracks). Physical terminals which provide

the means to have the pins on a connector scattered all over a design. Support for

heterogeneous multi-element devices. For example, a relay device can have three

elements called RELAY:A, RELAY:B and RELAY:C. RELAY:A is the coil

whilst elements B and C are separate contacts. Each element can be placed

individually wherever on the design is most convenient.

Support for pin-swap and gate-swap. This includes both the ability to specify

legal swaps in the ISIS library parts and the ability to back-annotate changes into

a schematic. A visual packaging tool which shows the PCB footprint and its pin

numbers alongside the list of pin names for the schematic part. This facilitates

easy and error free assignment of pin numbers to pin names. In additional,

multiple packagings may be created for a single schematic part.

ISIS provides the development environment for PROTEUS VSM, our

revolutionary interactive system level simulator. This product combines mixed

mode circuit simulation, micro-processor models and interactive component

models to allow the simulation of complete micro-controller based designs. ISIS

provides the means to enter the design in the first place, the architecture for real

time interactive simulation and a system for managing the source and object code

associated with each project. In addition, a number of graph objects can be placed

on the schematic to enable conventional time, frequency and swept variable

simulation to be performed.

Major features of PROTEUS VSM include: True Mixed Mode simulation based

on Berkeley SPICE3F5 with extensions for digital simulation and true mixed

mode operation. Support for both interactive and graph based simulation. CPU

15

Models available for popular microcontrollers such as the PIC and 8051 series.

Interactive peripheral models include LED and LCD displays, a universal matrix

keypad, an RS232 terminal and a whole library of switches, pots, lamps, LEDs

etc. Virtual Instruments include voltmeters, ammeters, a dual beam oscilloscope

and a 24 channel logic analyser. On-screen graphing - the graphs are placed

directly on the schematic just like any other object. Graphs can be maximised to a

full screen mode for cursor based measurement and so forth. Graph Based

Analysis types include transient, frequency, noise, distortion, AC and DC sweeps

and fourier transform. An Audio graph allows playback of simulated waveforms.

Direct support for analogue component models in SPICE format. Open

architecture for ‘plug in’ component models coded in C++ or other languages.

These can be electrical., graphical or a combination of the two.

Digital simulator includes a BASIC-like programming language for modelling

and test vector generation. A design created for simulation can also be used to

generate a netlist for creating a PCB - there is no need to enter the design a second

time.

16

CHAPTER 3

MICROCONTROLLER ARCHITECTURE

3.1. Memory Organization

There are two memory blocks in the PIC16F84A. These are the program memory

and the data memory. Each block has its own bus, so that access to each block can

occur during the same oscillator cycle. The data memory can further be broken

down into the general purpose RAM and the Special Function Registers (SFRs).

The operation of the SFRs that control the “core” are described here. The SFRs

used to control the peripheral modules are described in the section discussing each

individual peripheral module. The data memory area also contains the data

EEPROM memory. This memory is not directly mapped into the data memory,

but is indirectly mapped. That is, an indirect address pointer specifies the address

of the data EEPROM memory to read/write. The 64 bytes of data EEPROM

memory have the address range 0h-3Fh.

17

Figure 3.1: Program Memory Map and Stack 16f84

The PIC16F877A devices have a 13-bit program counter capable of addressing an

8K word x 14 bit program memory space. The PIC16F876A/877A devices have

8K words x 14 bits of Flash program memory, while PIC16F873A/874A devices

have 4K words x 14 bits. Accessing a location above the physically implemented

address will cause a wraparound. The Reset vector is at 0000h and the interrupt

vector is at 0004h.

18

Figure 3.2: Program Memory Map and Stack 16f877

3.2. Data EEPROM Memory

The EEPROM data memory is readable and writable during normal operation

(full VDD range). This memory is not directly mapped in the register file space.

19

Instead it is indirectly addressed through the Special Function Registers. There are

four SFRs used to read and write this memory. These registers are: EECON1,

EECON2 (not a physically implemented register), EEDATA, EEADR, EEDATA

holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM

location being accessed. PIC16F84A devices have 64 bytes of data EEPROM

with an address range from 0h to 3Fh. The EEPROM data memory allows byte

read and write. A byte write automatically erases the location and writes the new

data (erase before write). The EEPROM data memory is rated for high erase/write

cycles. The write time is controlled by an on-chip timer. The writetime will vary

with voltage and temperature as well as from chip to chip. Please refer to AC

specifications for exact limits. When the device is code protected, the CPU may

continue to read and write the data EEPROM memory.

The device programmer can no longer Access this memory. To read a data

memory location, the user must write the address to the EEADR register and then

set control bit RD (EECON1<0>). The data is available, in the very next cycle, in

the EEDATA register; therefore, it can be read in the next instruction. EEDATA

will hold this value until another read or until it is written to by the user (during a

write operation).

To write an EEPROM data location, the user must first write the address to the

EEADR register and the data to the EEDATA register. Then the user must follow

a specific sequence to initiate the write for each byte.

The write will not initiate if the above sequence is not exactly followed (write 55h

to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly

recommend that interrupts be disabled during this code segment.

20

Additionally, the WREN bit in EECON1 must be set to enable write. This

mechanism prevents accidental writes to data EEPROM due to errant

(unexpected) code execution (i.e., lost programs). The user should keep the

WREN bit clear at all times, except when updating EEPROM. The WREN bit is

not cleared by hardware. After a write sequence has been initiated, clearing the

WREN bit will not affect this write cycle. The WR bit will be inhibited from

being set unless the WREN bit is set. At the completion of the write cycle, the

WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit

(EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must

be cleared by software.

Depending on the application, good programming practice may dictate that the

value written to the Data EEPROM should be verified (Example 3-3) to the

desired value to be written. This should be used in applications where an

EEPROM bit will be stressed near the specification limit. Generally, the

EEPROM write failure will be a bit which was written as a ’0’, but reads back as

a ’1’ (due to leakage off the bit).

The data EEPROM and Flash program memory is readable and writable during

normal operation (over the full VDD range). This memory is not directly mapped

in the register file space. Instead, it is indirectly addressed through the Special

Function Registers. There are six SFRs used to read and write this memory:

EECON1, EECON2, EEDATA, EEDATH, EEADR, EEADRH.

When interfacing to the data memory block, EEDATA holds the 8-bit data for

read/write and EEADR holds the address of the EEPROM location being

accessed. These devices have 128 or 256 bytes of data EEPROM (depending on

the device), with an address range from 00h to FFh. On devices with 128 bytes,

addresses from 80h to FFh are unimplemented and will wraparound to the

beginning of data EEPROM memory. When writing to unimplemented locations,

the on-chip charge pump will be turned off. When interfacing the program

memory block, the EEDATA and EEDATH registers form a two-byte word that

21

holds the 14-bit data for read/write and the EEADR and EEADRH registers form

a two-byte word that holds the 13-bit address of the program memory location

being accessed. These devices have 4 or 8K words of program Flash, with an

address range from 0000h to 0FFFh for the PIC16F873A/874A and 0000h to

1FFFh for the PIC16F876A/877A. Addresses above the range of the respective

device will wraparound to the beginning of program memory. The EEPROM data

memory allows single-byte read and write. The Flash program memory allows

single-word reads and four-word block writes. Program memory write operations

automatically perform an erase-beforewrite on blocks of four words. A byte write

in data EEPROM memory automatically erases the location and writes the new

data (erase-before-write). The write time is controlled by an on-chip timer. The

write/erase voltages are generated by an on-chip charge pump, rated to operate

over the voltage range of the device for byte or word operations. When the device

is code-protected, the CPU may continue to read and write the data EEPROM

memory. Depending on the settings of the write-protect bits, the device may or

may not be able to write certain blocks of the program memory; however, reads of

the program memory are allowed. When code-protected, the device programmer

can no longer access data or program memory; this does NOT inhibit internal

reads or writes.

The EEADRH:EEADR register pair can address up to a maximum of 256 bytes of

data EEPROM or up to a maximum of 8K words of program EEPROM. When

selecting a data address value, only the LSByte of the address is written to the

EEADR register. When selecting a program address value, the MSByte of the

address is written to the EEADRH register and the LSByte is written to the

EEADR register. If the device contains less memory than the full address reach of

the address register pair, the Most Significant bits of the registers are not

implemented. For example, if the device has 128 bytes of data EEPROM, the

Most Significant bit of EEADR is not implemented on Access to data EEPROM.

3.3. I/O Ports

22

Some pins for these I/O ports are multiplexed with an alternate function for the

peripheral features on the device. In general, when a peripheral is enabled, that

pin may not be used as a general purpose I/O pin. PORTA is a 5-bit wide, bi-

directional port. The corresponding data direction register is TRISA. Setting a

TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the

corresponding output driver in a hi-impedance mode). Clearing a TRISA bit (= 0)

will make the corresponding PORTA pin an output (i.e., put the contents of the

output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will

write to the port latch. All write operations are read-modify-write operations.

Therefore, a write to a port implies that the port pins are read. This value is

modified and then written to the port data latch. Pin RA4 is multiplexed with the

Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin

is a Schmitt Trigger input and an open drain output. All other RA port pins have

TTL input levels and full CMOS output drivers. PORTB is an 8-bit wide, bi-

directional port. The corresponding data direction register is TRISB. Setting a

TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the

corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0)

will make the corresponding PORTB pin an output (i.e., put the contents of the

output latch on the selected pin).

On 16f877, PORTA is a 6-bit wide, bidirectional port. The corresponding data

direction register is TRISA. Setting a TRISA bit (= 1) will make the orresponding

PORTA pin an input (i.e., put the corresponding output driver in a High-

Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding

PORTA pin an output (i.e., put the contents of the output latch on the selected

pin). Reading the PORTA register reads the status of the pins, whereas writing to

it will write to the port latch. All write operations are read-modify-write

operations. Therefore, a write to a port implies that the port pins are read, the

23

value is modified and then written to the port data latch. Pin RA4 is multiplexed

with the Timer0 module clock input to become the RA4/T0CKI pin. The

RA4/T0CKI pin is a Schmitt Trigger input and an open-drain output. All other

PORTA pins have TTL input levels and full CMOS output drivers.Other PORTA

pins are multiplexed with analog inputs and the analog VREF input for both the

A/D converters and the comparators. The operation of each pin is selected by

clearing/setting the appropriate control bits in the ADCON1 and/or CMCON

registers.

3.4. Timer Modules

The Timer0 module timer/counter has the following features: 8-bit timer/counter,

Readable and writable, Internal or external clock select, Edge select for external

clock, 8-bit software programmable prescaler, Interrupt-on-overflow from FFh

to 00h.

An 8-bit counter is available as a prescaler for the Timer0 module, or as a

postscaler for the Watchdog Timer, respectively (Figure 5-2). For simplicity, this

counter is being referred to as “prescaler” throughout this data sheet. Note that

there is only one prescaler available which is mutually exclusively shared

between the Timer0 module and the Watchdog Timer. Thus, a prescaler

assignment for the Timer0 module means that there is no prescaler for the

Watchdog Timer, and vice-versa. The prescaler is not readable or writable. The

PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment

and prescale ratio. Clearing bit PSA will assign the prescaler to the Timer0

module. When the prescaler is assigned to the Timer0 module, prescale values of

1:2, 1:4, ..., 1:256 are selectable. Setting bit PSA will assign the prescaler to the

Watchdog Timer (WDT). When the prescaler is assigned to the

WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable. When assigned to the

Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1,

MOVWF 1, BSF 1,etc.) will clear the prescaler. When assigned to WDT, a

24

CLRWDT instruction will clear the prescaler along with the WDT.

Figure 3.3: Block diagram of the Timer0 / WDT Prescaler

The Timer0 module timer/counter has the following features: 8-bit timer/counter,

Readable and writable, 8-bit software programmable prescaler, Internal or

external clock select, Interrupt on overflow from FFh to 00h, Edge select for

external clock.

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with

the WDT. Additional information on the Timer0 module is available in the

PICmicro® Mid-Range MCU Family Reference Manual (DS33023).

Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In Timer

mode, the Timer0 module will increment every instruction cycle (without

25

prescaler). If the TMR0 register is written, the increment is inhibited for the

following two instruction cycles. The user can work around this by writing an

adjusted value to the TMR0 register. Counter mode is selected by setting bit

T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment either on

every rising or falling edge of pin RA4/T0CKI. The incrementing edge is

determined by the Timer0 Source Edge Select bit, T0SE (OPTION_REG<4>).

Clearing bit T0SE selects the rising edge. The prescaler is mutually exclusively

shared between the Timer0 module and the Watchdog Timer. The prescaler is not

readable or writable.

3.5. Special Features of the CPU

What sets a microcontroller apart from other processors are special circuits to deal

with the needs of real time applications. The PIC16F84A has a host of such

features intended to maximize system reliability, minimize cost through

elimination of external components, provide power saving operating modes

and offer code protection. These features are: OSC Selection, RESET, Power-on

Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST),

Interrupts, Watchdog Timer (WDT), SLEEP, Code Protection, ID Locations,

In-Circuit Serial Programming™ (ICSP™).

The PIC16F84A has a Watchdog Timer which can be shut-off only through

configuration bits. It runs off its own RC oscillator for added reliability. There are

two timers that offer necessary delays on power-up. One is the Oscillator Start-up

Timer (OST), intended to keep the chip in RESET until the crystal oscillator is

stable.

The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms

(nominal) on power-up only. This design keeps the device in RESET while the

power supply stabilizes. With these two timers on-chip, most applications need no

external RESET circuitry. SLEEP mode offers a very low current power-down

26

mode. The user can wake-up from SLEEP through external RESET, Watchdog

Timer Time-out or through an interrupt. Several oscillator options are provided to

allow the part to fit the application. The RC oscillator option saves system cost

while the LP crystal option saves power. A set of configuration bits are used to

select the various options. The configuration bits can be programmed (read as '0'),

or left unprogrammed (read as '1'), to select various device configurations. These

bits are mapped in program memory location 2007h. Address 2007h is beyond the

user program memory space and it belongs to the special test/configuration

memory space (2000h - 3FFFh). This space can only be accessed during

programming.

All PIC16F87XA devices have a host of features intended to maximize system

reliability, minimize cost through elimination of external components, provide

power saving operating modes and offer code protection. These are:

PIC16F87XA devices have a Watchdog Timer which can be shut-off only

through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the

Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the

crystal oscillator is stable. The other is the Power-up Timer (PWRT), which

provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to

keep the part in Reset while the power supply stabilizes. With these two timers

on-chip, most applications need no external Reset circuitry. Sleep mode is

designed to offer a very low current power-down mode. The user can wake-up

from Sleep through external Reset, Watchdog Timer wake-up or through an

interrupt. Several oscillator options are also made available to allow the part to fit

the application. The RC oscillator option saves system cost while the LP crystal

option saves power. A set of configuration bits is used to select various options.

27

bit 13 CP: Flash Program Memory Code Protection bit

1 = Code protection off

0 = All program memory code-protected

bit 12 Unimplemented: Read as ‘1’

bit 11 DEBUG: In-Circuit Debugger Mode bit

1 = In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins

0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger

bit 10-9 WRT1:WRT0 Flash Program Memory Write Enable bits

11 = Write protection off; all program memory may be written to by EECON

control

10 = 0000h to 00FFh write-protected; 0100h to 1FFFh may be written to by

EECON control

01 = 0000h to 07FFh write-protected; 0800h to 1FFFh may be written to by

EECON control

00 = 0000h to 0FFFh write-protected; 1000h to 1FFFh may be written to by

EECON control

28

CHAPTER 4

PARALLEL PROCESSING BY A MICROCONTROLLER BASED-

SYSTEM

4.1. Ready State

Digital circuit is designed using ISIS case tool. On the our circuit, there are

microcontrollers, registers, keypad, LCD display, capacitors. Each

microcontroller has own program. There are four nodes which have got same

program. Master runs different from nodes. The simultaneous usage of more than

one microcontroller’s CPU are used to execute same program. Ideally, parallel

processing makes a program, running fast because there are more CPUs running

it. In practice, it is often difficult to divide a program in such a way that separate

CPUs can execute different portions without interfering with each other. It is

possible to perform parallel processing by connecting the CPU in a network.

However, this type of parallel processing requires very sophisticated software

called distributed processing software.

29

Figure 4.1: System Design

if ISIS simulation tool runs on initial state, the programs which is running on

master and node waits a trigger from master. On this state, master reads data from

ports when user enters any key on key pad. One register keeps data from ports for

mission and in that case a pin reads data from start button. Start button initially is

low. After user pushes the first four bits button, register record the data from port

and then register waits for second four bits from the user. If start button is high

register data is considered for data from user . User enters 8 bits data. On the

blow, there are assembler code for initial state.

30

Figure 4.2: System is Ready State

4.2. Running State

When the register has the password, it specifies the nodes which one waits data

from master. Program counter determines number of nodes. After this mode,

programs divide register data which is password. If the number of nodes are two,

program divides by two. In this way, program divides by number of nodes. The

program, running on master send signal to node for activation of node. After this

sign signal, node waits data from master. Assembler subroutine of master is

shown on the below.

LIST p=16F877

INCLUDE "P16F877.INC"

31

ranl equ H'0A'

ranm equ H'0B'

ranh equ H'0C'

beat equ H'0D'

reg1 equ H'0E'

reg2 equ H'0D'

reg_FirstDortBit equ H'0F'

reg_SecondDortBit equ H'1F'

reg_ThirdDortBit equ H'2F'

reg_ExeTimeFirst equ H'FF'

reg_ExeTimeSecond equ H'FF'

cblock 0x20

char,cmd,lc1,lc2;

endc

; org 0

goto G_INITIAL

; org 0x04 ; void interrupt(void)

; goto C_inthlr

G_INITIAL

clrwdt ; watchdog timer ı temizle

movlw b'10110111'; assign prescaler, internal clock frekansı

option

bsf STATUS,RP0

movlw H'00'

movwf TRISA

movlw H'FF'

32

movwf TRISB

movlw H'3F'

movwf TRISC

movlw H'FF'

movwf TRISD

movlw H'00'

movwf TRISE

bcf STATUS,RP0

clrf PORTA

clrf PORTB

clrf PORTC

clrf PORTD

clrf PORTE

clrf reg1

clrf reg2

;clrf reg_ExeTimeFirst

movlw H'FF'

movwf reg_ExeTimeFirst

G_ENTER_NUMBER

call C_ENTERKONTROL ;Control enter

btfss reg2,0 ;is any bit set?

call C_SETILKDORTBIT ;get first four bits.

btfsc reg2,0

call C_SETIKINCIDORTBIT ;get second four bits

movlw H'03'

andwf reg2,0

sublw H'03'

btfsc STATUS,Z ;are 2nd cour bits set?

goto G_NUMBER_ENTERED ;if ok,crack password

goto G_ENTER_NUMBER

33

C_DISPLAY_ENTERED_NUMBER

btfss reg1,7

call C_ZERO

btfsc reg1,7

call C_ONE

btfss reg1,6

call C_ZERO

btfsc reg1,6

call C_ONE

btfss reg1,5

call C_ZERO

btfsc reg1,5

call C_ONE

btfss reg1,4

call C_ZERO

btfsc reg1,4

call C_ONE

btfss reg1,3

call C_ZERO

btfsc reg1,3

call C_ONE

btfss reg1,2

call C_ZERO

btfsc reg1,2

call C_ONE

btfss reg1,1

call C_ZERO

btfsc reg1,1

call C_ONE

btfss reg1,0

34

call C_ZERO

btfsc reg1,0

call C_ONE

return

C_DISPLAY_EXECUTION_TIME

btfss reg_ExeTimeFirst,7

call C_ZERO

btfsc reg_ExeTimeFirst,7

call C_ONE

btfss reg_ExeTimeFirst,6

call C_ZERO

btfsc reg_ExeTimeFirst,6

call C_ONE

btfss reg_ExeTimeFirst,5

call C_ZERO

btfsc reg_ExeTimeFirst,5

call C_ONE

btfss reg_ExeTimeFirst,4

call C_ZERO

btfsc reg_ExeTimeFirst,4

call C_ONE

btfss reg_ExeTimeFirst,3

call C_ZERO

btfsc reg_ExeTimeFirst,3

call C_ONE

btfss reg_ExeTimeFirst,2

call C_ZERO

btfsc reg_ExeTimeFirst,2

call C_ONE

btfss reg_ExeTimeFirst,1

35

call C_ZERO

btfsc reg_ExeTimeFirst,1

call C_ONE

btfss reg_ExeTimeFirst,0

call C_ZERO

btfsc reg_ExeTimeFirst,0

call C_ONE

return

C_DISPLAY_RECEIVED_MSJ_NODE2

movlw 'N'

call G_putc

movlw 'o'

call G_putc

movlw 'd'

call G_putc

movlw 'e'

call G_putc

movlw '2'

call G_putc

movlw ' '

call G_putc

movlw 'i'

call G_putc

movlw 's'

call G_putc

movlw ' '

call G_putc

movlw 'r'

call G_putc

movlw 'u'

36

call G_putc

movlw 'n'

call G_putc

movlw 'n'

call G_putc

movlw 'i'

call G_putc

movlw 'g'

call G_putc

call C_WAIT

return

;;;

G_DISPLAY_NODE2_RUNNING

clrw

movwf PORTB

bcf STATUS,RP0

bsf RCSTA,SPEN

bsf RCSTA,CREN

bsf STATUS,RP0

movlw H'00'

clrw

movwf TRISA

movwf TRISB

movlw H'19'

movwf SPBRG

movlw H'A4'

movwf TXSTA

movlw 100

37

call G_delay

call C_DISPLAY_RECEIVED_MSJ_NODE2

movlw H'0C'

call G_wrcmd

movlw H'0D'

call G_wrcmd

call G_loop

return

;;;

G_DISPLAY_EXECUTION_TIME

clrw

movlw H'00'

movwf PORTB

bcf STATUS,RP0

bsf RCSTA,SPEN

bsf RCSTA,CREN

bsf STATUS,RP0

clrw

movlw H'00'

movwf TRISA

movwf TRISB

movlw H'19'

movwf SPBRG

movlw H'A4'

movwf TXSTA

movlw 100

call G_delay

38

movlw 'E'

call G_putc

call C_WAIT

movlw 'X'

call G_putc

call C_WAIT

movlw 'E'

call G_putc

call C_WAIT

movlw 'C'

call G_putc

call C_WAIT

movlw 'U'

call G_putc

call C_WAIT

movlw 'T'

call G_putc

call C_WAIT

movlw 'I'

call G_putc

call C_WAIT

movlw 'O'

call G_putc

call C_WAIT

movlw 'N'

call G_putc

call C_WAIT

movlw ':'

call G_putc

call C_WAIT

39

call C_DISPLAY_EXECUTION_TIME

movlw 'm'

call G_putc

call C_WAIT

movlw 's'

call G_putc

call C_WAIT

movlw H'0C'

call G_wrcmd

movlw H'0D'

call G_wrcmd

call G_loop

return

;;;

G_loop

call G_getc

movwf char

sublw 0d

btfsc STATUS,Z

goto G_cls

movf char,w

sublw 08

btfsc STATUS,Z

goto G_bspace

movf char,W

40

call G_putc

goto G_loop

G_cls

movlw H'01'

call G_wrcmd

goto G_loop

G_bspace

movlw H'10'

call G_wrcmd

goto G_loop

G_hang clrwdt

goto G_hang

G_wrcmd movwf cmd

movlw 0xFE

call G_putc

movf cmd,W

goto G_putc

G_getc bcf STATUS,RP0

C_getc1 btfss PIR1,RCIF

goto C_getc1

movf RCREG,W ; read char

bcf PIR1,RCIF ; clear interrupt flag

return

41

G_putc bcf STATUS,RP0

movwf TXREG

bsf STATUS,RP0

movf TXSTA,W

C_putc1 btfss TXSTA,1

goto C_putc1

bcf STATUS,RP0

return

C_WAIT:

movlw 5

call G_delay

return

G_delay movwf lc2

G_sw2 movlw H'FF'

movwf lc1

C_sw3 nop

decfsz lc1,f

goto C_sw3

decfsz lc2,f

goto G_sw2

return

C_inthlr retfie

C_ENTERKONTROL

movlw H'10'

andwf PORTB,0

sublw H'10'

btfsc STATUS,Z ;are first four bits set?

42

call C_ILKDORTBITGIRILDI

movlw H'20'

andwf PORTB,0

sublw H'20'

btfsc STATUS,Z ;are second four bits set?

call C_SONDORTBITGIRILDI

movlw H'30'

andwf PORTB,0

sublw H'30'

btfsc STATUS,Z

call C_TUMBITLERGIRILDI

;movlw H'C0'

;andwf PORTB,0

;sublw H'C0'

;btfsc STATUS,Z ;is sytem reset?

;goto INITIAL

return

C_ILKDORTBITGIRILDI

bsf reg2,0

return

C_SONDORTBITGIRILDI

bsf reg2,1

return

C_TUMBITLERGIRILDI

movlw H'03'

movwf reg2

return

C_SETILKDORTBIT

movlw H'01'

andwf PORTB,0

sublw H'01'

43

btfsc STATUS,Z

call C_SIFIR ;zero bit is set

movlw H'02'

andwf PORTB,0

sublw H'02'

btfsc STATUS,Z

call C_BIR ;first bit is set

movlw H'04'

andwf PORTB,0

sublw H'04'

btfsc STATUS,Z

call C_IKI ;second pin is set

movlw H'08'

andwf PORTB,0

sublw H'08'

btfsc STATUS,Z

call C_UC ;Third pin is set

return

C_SETIKINCIDORTBIT

movlw H'01'

andwf PORTB,0

sublw H'01'

btfsc STATUS,Z

call C_DORT ;fourth bit is set

movlw H'02'

andwf PORTB,0

44

sublw H'02'

btfsc STATUS,Z

call C_BES ;fifth bit is set

movlw H'04'

andwf PORTB,0

sublw H'04'

btfsc STATUS,Z

call C_ALTI ;sixth pin is set

movlw H'08'

andwf PORTB,0

sublw H'08'

btfsc STATUS,Z

call C_YEDI ;seventh pin is set

return

C_SIFIR

bsf reg1,0

return

C_BIR

bsf reg1,1

return

C_IKI

bsf reg1,2

return

C_UC

bsf reg1,3

return

C_DORT

bsf reg1,4

45

return

C_BES

bsf reg1,5

return

C_ALTI

bsf reg1,6

return

C_YEDI

bsf reg1,7

return

C_ZERO:

movlw '0'

call G_putc

call C_WAIT

return

C_ONE:

movlw '1'

call G_putc

call C_WAIT

return

C_HAS_EXECUTION_TIME_RECEIVE_N3

btfss PORTB,6

goto C_HAS_EXECUTION_TIME_RECEIVE_N3

movlw H'3F'

andwf PORTC,0

movwf reg_ExeTimeSecond

return

C_HAS_EXECUTION_TIME_RECEIVE_N2

46

btfss PORTB,7

goto C_HAS_EXECUTION_TIME_RECEIVE_N2

movlw H'FF'

andwf PORTD,0

movwf reg_ExeTimeFirst

return

C_HAS_DATA_RECEIVED_FROM_NODE2 ;FROM NODE 2

btfss PORTB,7

goto C_HAS_DATA_RECEIVED_FROM_NODE2 ;Has Node 2 received data

form Node 1

return

C_HAS_DATA_RECEIVED_FROM_NODE3 ;FROM NODE 3

btfss PORTB,6

goto C_HAS_DATA_RECEIVED_FROM_NODE3 ;Has Node 3 received data

form Node 1

return

C_SEND_DATA_NODE2

movf reg_FirstDortBit,0 ; w = reg_FirstDortBit

movwf PORTA ; Data send node 2

return

C_SEND_DATA_NODE3

movf reg_SecondDortBit,0 ; w = reg_SecondDortBit

movwf PORTA ; Data send node 3

return

G_NUMBER_ENTERED

movlw H'0F'

47

andwf reg1,0 ; w = first 4 bit of reg1

movwf reg_FirstDortBit ; reg_FirstDortBit = w(first 4 bit of reg1)

swapf reg1,0 ; w = reg1(first 4 bit <-> second 4 bit)

andlw H'0F' ; w = second 4 bit of reg1

movwf reg_SecondDortBit ; reg_SecondDortBit = w(second 4 bit of reg1)

movlw H'01'

movwf PORTE ; Node 2 is set

call C_SEND_DATA_NODE2 ;Send data to node 2

call C_HAS_DATA_RECEIVED_FROM_NODE2

movlw H'FE'

andwf PORTE,0

movwf PORTE ;Node 2 is reset

movlw H'00'

movwf PORTA ;Data 0

movlw 2000

call G_delay

movlw H'02'

movwf PORTE ; Node 3 is set

call C_SEND_DATA_NODE3

call C_HAS_DATA_RECEIVED_FROM_NODE3 ;Has Node 3 received data

form Node 1

movlw H'FD'

andwf PORTE,0

movwf PORTE ;Node 3 is reset

movlw H'00'

movwf PORTA ;Data 0

48

bsf PORTE,0 ;Node 2 set edildi.

movlw 2000

call G_delay

call C_HAS_EXECUTION_TIME_RECEIVE_N2 ;node1 <- execution time

bcf PORTE,0 ;Node 2 reset

edildi.

;goto G_DISPLAY_EXECUTION_TIME

bsf PORTE,1 ;Node 3 set edildi.

movlw 2000

call G_delay

call C_HAS_EXECUTION_TIME_RECEIVE_N3 ;node1 <- execution time

bcf PORTE,0 ;Node 3 reset

goto G_DISPLAY_EXECUTION_TIME

end

Assembler subroutine of nodes is shown on the below.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;NODE;;;;;;;;;;;;;;;;;;;;;;;

LIST p=16F84A

INCLUDE "P16F84A.INC"

49

lc1 equ 0x0a

lc2 equ 0x0b

msec equ 0x0c ; tens of milliseconds

sec equ 0x0d ; seconds

min equ 0x0e ; minutes

hour equ 0x0f ; hours

timef equ 0x10 ; register for time flags

save equ 0x11 ; save for ACCU

reg_number equ 0x12

reg_timeMSec1 equ 0x13

reg_findOutNumber equ 0x14

reg_timeSec1 equ 0x15

reg_timeSec2 equ 0x16

reg_ExecutionTime equ 0x17

; constants

msf equ 0x00 ; millisecond flag

sf equ 0x01 ; second flag

mf equ 0x02 ; minute flag

hf equ 0x03 ; hour flag

df equ 0x04 ; day flag

MSD equ 0x4b ; crystal divider (75)

PSD equ 0x05 ; millisecond divider

XD equ 0x4b ; crystal divider (75)

minf equ 0x02 ; minute flag

org 0

50

goto _main

org 0x04 ; void interrupt(void)

_interrupt ; {

movwf save ; save(ACCU);

bcf INTCON,T0IF ; INTCON,T0IF = 0;

incf msec,F ; msec++;

bsf timef,msf ; msf = 1;

movf msec,W ; ACCU = msec;

sublw XD ; if ((ACCU-XD) != 0)

btfss STATUS,Z ; return;

retfie ; else {

clrf msec ; msec = 0;

bsf timef,sf ; msf = 1;

incf sec,F ; sec++;

movf sec,W ; ACCU = sec;

sublw 0x3c ; if ((ACCU-60) != 0)

btfss STATUS,Z ; return;

retfie ; else {

clrf sec ; sec = 0;

bsf timef,minf ; sf = 1;

incf min,F ; min++;

movf min,W ; ACCU = min;

sublw 0x3c ; if ((ACCU-60) != 0)

btfss STATUS,Z ; return;

retfie ; else {

clrf min ; min = 0;

bsf timef,hf ; hf = 1;

incf hour,F ; hour++;

movf hour,W ; ACCU = hour;

51

sublw 0x18 ; if ((ACCU-24) != 0)

btfss STATUS,Z ; return;

retfie ; else {

clrf hour ; hour = 0;

bsf timef,df ; df = 1;

movf save,W ; }}}} restore(ACCU);

retfie ; }

_initialize

bsf STATUS,RP0 ; bank 1

movlw H'00'

movwf TRISB

movlw H'1F'

movwf TRISA

movlw 0x7d ; RBPU=off, INTEDG=off, T0CS=osc, PSA=TMR0

addlw PSD ; PSD = b'101' [64]

OPTION ;

bcf STATUS,RP0 ; bank 0

;movlw 0xa0 ; enable TMR0 interrupt

movlw b'10100000' ;

movwf INTCON ;

clrf msec ; msec = 0;

clrf sec ; sec = 0;

clrf min ; min = 0;

clrf hour ; hour = 0;

clrf timef ; all flags off;

clrf PORTB

clrf PORTA

clrf reg_number

52

clrf reg_timeSec1

movlw H'00'

movwf reg_timeSec2

clrf reg_timeMSec1

clrf reg_findOutNumber

return

C_DELAY

G_delay

movlw H'7F'

movwf lc2

G_sw2 movlw H'FF'

movwf lc1

C_sw3

nop

decfsz lc1,f

goto C_sw3

decfsz lc2,f

goto G_sw2

return

ONE

movlw H'01'

movwf reg_ExecutionTime

return

THREE

movlw H'03'

movwf reg_ExecutionTime

return

SEVEN

movlw H'07'

movwf reg_ExecutionTime

return

53

EIGHT

movlw H'08'

movwf reg_ExecutionTime

return

TEN

movlw H'0A'

movwf reg_ExecutionTime

return

ELEVEN

movlw H'0B'

movwf reg_ExecutionTime

return

THIRTEEN

movlw H'0D'

movwf reg_ExecutionTime

return

FOURTEEN

movlw H'0E'

movwf reg_ExecutionTime

return

ONE_7

movlw H'17'

movwf reg_ExecutionTime

return

TWO_A

movlw H'2A'

movwf reg_ExecutionTime

return

TWO_E

movlw H'2E'

movwf reg_ExecutionTime

54

return

THREE_4

movlw H'34'

movwf reg_ExecutionTime

return

THREE_9

movlw H'39'

movwf reg_ExecutionTime

return

THREE_B

movlw H'3B'

movwf reg_ExecutionTime

return

THREE_C

movlw H'3C'

movwf reg_ExecutionTime

return

C_NUMBER_SELECT

ZERO

movlw H'00'

andwf reg_findOutNumber,0

sublw H'00'

btfsc STATUS,Z

call ONE

movlw H'01'

andwf reg_findOutNumber,0

sublw H'01'

btfsc STATUS,Z

call THREE

55

movlw H'02'

andwf reg_findOutNumber,0

sublw H'02'

btfsc STATUS,Z

call SEVEN

movlw H'03'

andwf reg_findOutNumber,0

sublw H'03'

btfsc STATUS,Z

call SEVEN

movlw H'04'

andwf reg_findOutNumber,0

sublw H'04'

btfsc STATUS,Z

call EIGHT

movlw H'05'

andwf reg_findOutNumber,0

sublw H'05'

btfsc STATUS,Z

call TEN

movlw H'06'

andwf reg_findOutNumber,0

sublw H'06'

btfsc STATUS,Z

call ELEVEN

56

movlw H'07'

andwf reg_findOutNumber,0

sublw H'07'

btfsc STATUS,Z

call THIRTEEN

movlw H'08'

andwf reg_findOutNumber,0

sublw H'08'

btfsc STATUS,Z

call FOURTEEN

movlw H'09'

andwf reg_findOutNumber,0

sublw H'09'

btfsc STATUS,Z

call ONE_7

movlw H'0A'

andwf reg_findOutNumber,0

sublw H'0A'

btfsc STATUS,Z

call TWO_A

movlw H'0B'

andwf reg_findOutNumber,0

sublw H'0B'

btfsc STATUS,Z

call TWO_E

movlw H'0C'

57

andwf reg_findOutNumber,0

sublw H'0C'

btfsc STATUS,Z

call THREE_4

movlw H'0D'

andwf reg_findOutNumber,0

sublw H'0D'

btfsc STATUS,Z

call THREE_9

movlw H'0E'

andwf reg_findOutNumber,0

sublw H'0E'

btfsc STATUS,Z

call THREE_B

movlw H'0F'

andwf reg_findOutNumber,0

sublw H'0F'

btfsc STATUS,Z

call THREE_C

return

C_RECV_DATA_FROM_NODE1

movf PORTA,0

andlw H'0F' ; w = received 4 Bit data

movwf reg_number ; reg_number = w

return

C_GET_TIME1

58

movf sec,0 ; w = sec

movwf reg_timeSec1 ; reg_time1 = w

return

C_GET_TIME2

movf sec,0 ; w = sec

movwf reg_timeSec2 ; reg_time2 = w

return

_main

call _initialize

C_IS_NODE_INIT

btfss PORTA,4 ;Is Node2 set

goto C_IS_NODE_INIT

movf sec,0 ; w = sec

movwf reg_timeSec1 ; reg_time1 = w

call C_RECV_DATA_FROM_NODE1

movlw H'80'

movwf PORTB

movlw H'00'

movwf reg_findOutNumber

G_FIND_OUT_NUMBER

movf reg_findOutNumber,0

incf reg_findOutNumber,1

subwf reg_number,0

btfss STATUS,Z

goto G_FIND_OUT_NUMBER

decf reg_findOutNumber,1

movf sec,0 ; w = sec

59

movwf reg_timeSec2 ; reg_time2 = w

movf sec,0 ; w = sec

movwf reg_ExecutionTime ; reg_time2 = w

call C_NUMBER_SELECT

;movf reg_timeSec1,0 ; w = reg_timeSec1

;subwf reg_timeSec2,0 ; w = reg_timeSec2 - w(reg_timeSec1)AMAN

;movwf reg_ExecutionTime ; reg_ExecutionTime = w

G_IS_NODE_RESET

btfsc PORTA,4 ;Is Node2 reset

goto G_IS_NODE_RESET

movlw H'00'

movwf PORTB

call C_DELAY

C_IS_NODE_SET

btfss PORTA,4 ;Is Node2 set

goto C_IS_NODE_SET

G_SEND_EXECUTION_TIME

bsf reg_ExecutionTime,7

movf reg_ExecutionTime,0

movwf PORTB

C_IS_NODE_RESET

btfsc PORTA,4 ;Is Node2 reset

goto G_SEND_EXECUTION_TIME

movlw H'00'

movwf PORTB

goto C_IS_NODE_RESET

END

When data arrived at node, program on running node write data to own register.

60

Program starts estimation and on the same time, program interrupt is activated.

When it starts to increase program counter by hexadecimal number 01, program

check the data. If the generation of this data is same of sending data, interrupt is

triggered. After this mode, using interrupt mission, execution time is estimated.

After execution time is known, node send a sign signal to master for declaration.

This declaration is about execution time on blocked state.

 Figure 4.3: System is Running State

4.3. Calculating Speedup

 In this thesis, we simulates the system other input values. We enter values for

different number of nodes on the below. The simulation enables to calculate

speedup and illustrate the speedup graph.

61

Figure 4.4: Calculating Speedup using different number of nodes and an

input value

Figure 4.5: Speedup graph

62

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have derived a lower bound for the efficiency of

executing a task graph. This corresponds to an iterative algorithm executing

parallel on multiple microcontroller (this refers to CPU also) and requiring only

partial synchronization. We have found out the most suitable number of

microcontroller for our mission.

We try to calculate execution time using different number of CPU and thus

system is saturated when there are four CPUs. We enter different key at different

number of nodes. Consequently, our sytem is suitable on four nodes for most

efficiency password cracker system.

R1

REFERENCES

[1] Thompson, Washington D.C. (1967) , G.M. Amdahl “ Validity of
theSingle Processor Approach to achieving Large Scale Computing
Capabilities “AFIPS conf. Proc., Thompson, Washington D.C., pp.483-485.

[2] F. Baccelli and A.M. Makowski (1989), “Queueing Models for Systems
with sychronization Constraints”, Proceeding of the IEEE, 77(1), pp.138-161.

[3] Asanovic, Krste et al. (December 18, 2006), “The Landscape of Parallel
Computing Research: A View from Berkeley”. University of California, Berkeley.

[4] Michael J. Flynn, Jones and Bartlett Publishers (1995), “Computer
Architecture: Pipelined and Parallel Processor Design”, 1st edition.

[5] Lars Bengtsson, Kenneth Nilsson, Bertil Svensson (May 1994), “a High
- Performance Embedded Massively Parallel Processing System”,Proceedings
of MPCS'94: 1'st EUROMICRO International Conference on Massively
Parallel Computing Systems, Ischia, Italy.

[6] Hua Bei, Tang Xinan (May 2006), “High-performance IPv6 Forwarding
Algorithm for Multi-core and Multi-threaded Network Processors”, professor
Hua Bei and USTC schoolfellow Dr. Tang Xinan issued on ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.

